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Resumen

El espacio de funciones integrables con respecto a una medida vectorial, amén
de interesante en si mismo, sirve de herramienta para aplicaciones en problemas
importantes como la representacion integral y el estudio del dominio éptimo de
operadores lineales o la representacion de reticulos de Banach abstractos como
espacios de funciones. Las medidas vectoriales clasicas v: ¥ — X se definen
sobre o-algebras y con valores en un espacio de Banach, y los espacios corres-
pondientes L'(v) y L. (v) de funciones integrables y débilmente integrables
respectivamente, han sido estudiados en profundidad por numerosos autores,
siendo su comportamiento bien conocido, ver [11], [31, Capitulo 3] y las referen-
cias contenidas en él.

Sin embargo, este contexto no es suficiente, por ejemplo, para aplicaciones a
operadores definidos en espacios que no contienen a las funciones caracteristicas
de conjuntos (ver [5],[16] y [17]) o reticulos de Banach sin unidad débil (ver
[6, pp. 22-23]). Estos casos requieren que la medida vectorial v esté definida
en una estructura mas débil que la de o-algebra, a saber, en un J-anillo. Més
anin, la integracién con respecto a medidas vectoriales definidas en d-anillos es
la generalizacién vectorial natural de la integraciéon con respecto a medidas o-
finitas positivas p, que no estd incluida en el contexto de las medidas vectoriales
en o-algebras si u no es finita.

En consecuencia, las medidas vectoriales definidas en un d§-anillo también
juegan un rol importante y merecen ser estudiadas asi como sus espacios de
funciones integrables. La teoria de integracion con respecto a estas medidas se
debe a Lewis [25] y Masani y Niemi [28], [29].

En este trabajo estamos interesados principalmente en encontrar las propie-
dades que garanticen la representacién de un reticulo de Banach a través de
un espacio de funciones integrables. El Capitulo 4 se dedica a este objetivo y
contiene nuestro resultado principal (Theorem 4.1.7).



Algunas cuestiones interesantes aparecen de forma natural al intentar re-
solver este problema de representacién abstracto. Las propiedades analiticas
de una medida vectorial v definida sobre un J-anillo estdn directamente rela-
cionadas con las propiedades reticulares del espacio L!(v) (ver [15]). Es también
objetivo de este trabajo, estudiar el efecto de ciertas propiedades sobre v en las
propiedades reticulares del espacio L} (v) y el Capitulo 2 estd dedicado a desa-
rrollar nuestros resultados en ese contexto. Concretamente, analizamos la orden
continuidad, la orden densidad y las propiedades de tipo Fatou para L. (v). De-
mostramos que el comportamiento de L} (v) difiere del caso en el que v se define
en una o-algebra cuando v no satisface cierta propiedad de o-finitud local.

En el Capitulo 3 estudiamos las propiedades reticulares de los reticulos de
Banach LP(v) y LP (v) para una medida vectorial v definida en un d-anillo.
La relaciéon entre estos dos espacios, el estudio de la continuidad y ciertas
propiedades de compacidad para algunos operadores de multiplicacién entre
diferentes espacios LP(v) y/o L% (v) son el eje fundamental de esta parte del
trabajo.



Resum

L’espai de funcions integrables respecte a una mesura vectorial, interessant en
si mateixa, serveix d’eina per aplicacions en problemes importants com la re-
presentacio i 'estudi del domini optim d’operadors lineals o la representacié de
reticuls de Banach abstractes com a espais de funcions. Les mesures vectorials
classiques v: ¥ — X es defineixen sobre o-algebres i amb valors en un espai
de Banach, i els espais corresponents L'(v) i L. (v) de funcions integrables i
debilment integrables respectivament, han sigut estudiats en profunditat per
nombrosos autors, essent el seu comportament ben conegut, veure [11], [31,
Capitol 3] i les referéncies contingudes en ell.

No obstant aix0, aquest context no és suficient, per exemple, per a aplicacions
a operadors definits en espais que no contenen les funcions caracteristiques de
conjunts (veure [5],[16] i [17]) o reticuls de Banach sense unitat debil (veure [6,
pp. 22-23]). Aquestos casos requereixen que la mesura vectorial siga definida
en una estructura més debil que la de o-algebra, es a dir, en un d-anell. Més
encara, la integraci6 respecte a mesures vectorials definides en d-anells és la gene-
ralitzacio vectorial natural de la integraci6 respecte a mesures o-finites positives
14, que no esta inclosa en el context de les mesures vectorials en o-algebres quan
1 no és finita.

En conseqiiéncia, les mesures vectorials definides en un d-anell també juguen
un paper important i mereixen esser estudiades aixi com els seus espais de
funcions integrables. La teoria d’integracidé respecte a aquestes mesures es deu
a Lewis [25] i Masani i Niemi [28], [29].

En aquest treball estem interessats principalment en trobar les propietats
que garanteixen la representacié d’un reticul de Banach mitjangant un espai de
funcions integrables. El Capitol 4 es centra en aquest objectiu i conté el nostre
resultat principal (Teorema 4.1.7).



Altres qiiestions apareixen d’una manera natural quan intentem resoldre
aquest problema de representacié abstracte. Les propietats analitiques d’una
mesura vectorial definida sobre un §-anell estan directament relacionades amb
les propietats reticulars de l'espai L' (v/) (veure [15]). Es també objectiu d’aquest
treball, estudiar ’efecte de certes propietats sobre v en les propietats reticulars
de T'espai L (v) i el Capitol 2 esta dedicat a desenvolupar els nostres resultats
en aquest context. Concretament, analitzem la continuitat en ordre, la densitat
en ordre y les propietats de tipus Fatou per Ll (v). Demostrem que el compor-
tament de L. (v) difereix del cas en el qual v es defineix en una o-algebra quan
v no complix certa propietat de o-finitud local.

En el Capitol 3 estudiem les propietats reticulars dels reticuls de Banach
LP(v) i LP (v) per a una mesura vectorial definida en un d-anell. La relacié entre
aquestos dos espais, ’estudi de la continuitat i certes propietats de compacitat
per alguns operadors de multiplicacié entre diferents espais L?(v) i/o LL (v) s6n
I'eix fonamental d’aquesta part del treball.



Summary

The space of integrable functions with respect to a vector measure which is
already interesting by itself, finds applications in important problems as the
integral representation and the study of the optimal domain of linear operators
or the representation of abstract Banach lattices as spaces of functions. Classical
vector measures v: > — X are considered to be defined on a o-algebra and
with values in a Banach space, and the corresponding spaces L!(v) and L. (v)
of integrable and weakly integrable functions respectively have been studied
in depth by many authors being their behavior well understood, see [11], [31,
Chapter 3] and the references therein.

However, this framework is not enough, for instance, for applications to
operators on spaces which do not contain the characteristic functions of sets
(see [5], [16] and [17]) or Banach lattices without weak unit (see [6, pp. 22-23]).
These cases require v to be defined on a weaker structure than o-algebra, namely,
a d-ring. Furthermore, integration with respect to vector measures defined on
d-rings is the natural vector valued generalization of the case of integration with
respect to positive o-finite measures p, which is not included in the frame of
vector measures on o-algebras if p is non finite.

Consequently, vector measures defined on a d-ring also play an important
role and deserve to be studied together with their spaces of integrable functions.
The integration theory with respect to these vector measures v is due to Lewis
[25] and Masani and Niemi [28], [29].

In this work we are mainly interested in providing the properties which guar-
antee the representation of a Banach lattice by means of an space of integrable
functions. Chapter 4 is devoted to this aim and contains our main result (The-
orem 4.1.7).



Some interesting questions appeared when we tried to solve this abstract
representation problem. The analytic properties of a vector measure v defined
on a dé-ring are directly related to the lattice properties of the space L'(v)
(see [15]). It will be also the aim of this work to study the effect of certain
properties of v on the lattice properties of the space L. (v) and Chapter 2 is
devoted to develop our results in this context. Concretely, we analyze order
continuity, order density and Fatou type properties for Ll (v). We will see that
the behavior of L} (v) differs from the case in which v is defined on a o-algebra
whenever v does not satisfies certain local o-finiteness property.

In Chapter 3 we study the lattice properties of the Banach lattices LP(v) and
L? (v) for a vector measure v defined on a o-ring. The relation between these
two spaces, the study of the continuity and some kind of compactness properties
of certain multiplication operators between different spaces LP(v) and/or L (v)
play a fundamental role.
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Introduction

The classical integration theory of scalar functions with respect to a vector
measure was created by Bartle, Dunford and Schwartz in 1955 for studying
the vector extension of the Riesz representation theorem [3]. They developed a
Lebesgue type theory which extends the ordinary space of Lebesgue integrable
functions with respect to an scalar measure to the case of a countably additive
measure with values lying in a Banach space, in a way that the analogous

convergence theorems hold.

Later, in 1970, Lewis provided an axiomatic version for vector measures
having values in a locally convex space and proved some fundamental results
on integration [24],[25]. The definition of integrable function is given by duality
and the theory is equivalent to the one of Bartle, Dunford and Schwartz when

the space where the vector measure takes its values is a Banach space.

The Banach space properties of the space L'(v) of integrable functions with
respect to a Banach valued vector measure v, was firstly studied by Kluvanek
and Knowles in [23] which was published in 1975. Some other authors also con-
tributed to the development of these ideas, as for instance Ricker and Okada (see
[31, Chapter 3] and the references therein). The Banach lattice properties of this
space, which became specially interesting for applications, was deeply studied
by Curbera in a series of three papers at the beginning of the nineties ([7],[8],[9]).
After the work of Stefansson in 1993 ([33]), the space L} (v) of weakly integrable
functions with respect to v began to be considered an important element. The

spaces of p-integrable functions were introduced by Sanchez-Pérez in 2002 and
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the corresponding spaces LP(v) and L (v) have been studied in depth by many
authors being their behavior well understood, see [11],[19] and [32].

In 2000 a new line of applications of these spaces started, basically in two
directions: the determination of the optimal domain for classical operators and
the representation of abstract Banach lattices as spaces of integrable functions.
In both cases, the integration with respect to vector measures on o-algebras is
not sufficient for covering the general purposes of these research. This framework
is not enough, for instance, for applications to operators on spaces which do not
contain the characteristic functions of sets (see [5],[16] and [17]) or Banach

lattices without weak unit (see [6, pp. 22-23]).

These cases require v to be defined on a weaker structure than o-algebra,
namely, a J-ring. Furthermore, integration with respect to vector measures
defined on d-rings is the natural vector valued generalization of the case of
integration with respect to positive o-finite measures p, which is not included

in the frame of vector measures on g-algebras if u is non finite.

Consequently, vector measures defined on a d-ring also play an important
role and deserve to be studied together with their spaces of integrable functions.
The integration theory with respect to these vector measures v is due to Lewis
[25] and Masani and Niemi [28],[29] (see also [15]).

In this work we are mainly interested in providing the properties which
guarantee the representation of a Banach lattice by means of an space of inte-
grable functions. Some results were already well known when we started this
project. Namely, every order continuous Banach lattice ' with a weak unit can
be identified with an space L!(v), where v is defined on a o-algebra (see [7,
Theorem 8]). If the existence of a weak order unit is not assumed, it is still
possible to represent F but using in this case a vector measure on a d-ring (see
[6, pp.22-23]). If the order continuity fails but F has the o-Fatou property and
a weak unit belonging to its order continuous part E,, then F can be identified
with an space L. (v) where v is defined on a o-algebra (see [10, Theorem 2.5]).
Similar results are known for Banach lattices with convexity properties. That

is, for 1 < p < oo, if F is a p-convex order continuous Banach lattice with a
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weak unit, then E is order isomorphic to an space LP(v) with v defined on a
o-algebra ([19, Proposition 2.4]). On the other hand, if E is a p-convex Banach
lattice having the o-Fatou property and a weak unit belonging to E,, then E is

order isomorphic to an space L2, (v) with v on a o-algebra ([12]).

The main goal of this memoir is to get a representation theorem for Ba-
nach lattices without weak unit as general as possible by using vector measures
defined on a dé-ring. Chapter 4 is devoted to this aim and contains our main
result (Theorem 4.1.7).

Some interesting questions appeared when we tried to solve this abstract
representation problem. The analytic properties of a vector measure v defined
on a d-ring are directly related to the lattice properties of the space L!(v)
(see [15]). It will be also the aim of this work to study the effect of certain
properties of v on the lattice properties of the space Ll (v) and Chapter 2 is
devoted to develop our results in this context. Concretely, we analyze order
continuity, order density and Fatou type properties for L. (v). We will see that
the behavior of L. (v) differs from the case in which v is defined on a o-algebra

whenever v does not satisfies certain local o-finiteness property.

In Chapter 3 we study the lattice properties of the Banach lattices LP(v)
and L? (v) for a vector measure v defined on a §-ring. The relation between these
two spaces, the study of the continuity and some kind of compactness properties
of certain multiplication operators between different spaces LP and/or L% play

a fundamental role.

Some applications of the results of this memoir on the lattice properties of
L'(v) and L. (v) and the representation theorems for Banach lattices has been
already obtained. In particular, we have used this technique in order to study
the limits of the equivalence between the Komlés property for Banach functions
spaces X related to p (i.e. for every bounded sequence (f,,) in X, there exists a
subsequence (fy,, )r and a function f € X such that for any further subsequence
(hj); of (fn, )k, the Cesaro sums %22:1 h; converge p-a.e. to f) and the Fatou

property in these spaces. The vector measure representation of spaces as £>°(T")

for a non countable set of indexes I' as L} (v) for a vector measure v provides
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for instance counterexamples to the Komlés property, although this space has

still the Fatou property (see [22]).



Chapter 1

Preliminaries

In this chapter, we expose the concepts and results used throughout the memoir
about Banach lattices, Banach function spaces and integration of real functions

with respect to a vector measure defined on a J-ring.

1.1 Banach lattices

We will mainly use the terminology and the notation of [27] and [34].

Let E be a Banach lattice, that is a real Banach space endowed with a
norm || - || and a partial order < such that

(a) if z,y,z2 € E with x <y, then z+ 2z <y + z,

(b) if z,y € E with « <y, then az < ay for all a > 0,

(¢c) for z,y € E, there exists the supremum of z and y with respect to the
order,

(d) if z,y € E with |z| < |y|, then ||z| < ||y||, where |z| = sup{x, —x} is the
modulo of x.

Note that (c) implies that also there exists the infimum of every z,y € E. The

supremum and the infimum of two elements z and y of F are usually denoted

1



2 Chapter 1. Preliminaries

by x Vy and x Ay respectively. A weak unit of F is an element 0 < e € E such
that £ A e = 0 implies z = 0.

We will use the index 7 to mean that (z.) is a net and the index n to mean
that (z,) is a sequence. A net (x;) C F is an upwards directed system if for
every Tp, T2 there exists 73 such that z,, < z,, and z,, < x,,. This is denoted
by . 1. Similarly, (z,) is a downwards directed system if for every 71, 7o there
exists 73 such that x,, > x,, and z,, > z,, and this is denoted by =, |. If . 1
and x = sup z, exists in F, we will write z, T x. If z, | and x = inf z, exists
in F, we will write 2, | 2. Given a sequence (z,,) C F we will write z,, 1 if the
sequence is increasing and x,, | if it is decreasing. If x,, 1 and x = sup z,, exists
in E, we will write z,, 1 x. Similarly, x,, | . An upwards directed system (x)
in E is said to be a Cauchy system if for any € > 0 there exists 79 such that

|zr, — 7| < €forall x, >z, and z,, > 2.

A subset F' of E is called solid if y € E with |y| < |z| for some © € F
implies y € F. The solid hull of F' C F is the smallest solid space containing F'.
An ideal F of E is a closed solid subspace of E. An ideal F in E is said to be
order dense in E if for every 0 < z € F there exists an upwards directed system
(z;) C F such that 0 < x; 1 = and is said to be super order dense if for every

0 < x € E there exists an increasing sequence (z,) C F such that 0 < z,, T x.

We say that E is order continuous if for every (z,) C E with z, | 0 it
follows that ||z.|| | 0 and E is o-order continuous if for every (z,) C E with
Zn 4 0 it follows that ||x,|| J 0. We denote by E,, the order continuous part of

E, that is, the largest order continuous ideal in F. It can be described as
Ey,={z € E: |z| >z, 10 implies |z,|| | 0}.

Similarly, F, will denote the o-order continuous part of F, that is, the largest

o-order continuous ideal in F, which can be described as
E,={x€E: |z| >z, ] 0 implies ||z,]| J 0}.

Of course E,, C E,.

The Banach lattice E is Dedekind complete if every non empty subset which

is bounded from above in the order of F has a supremum and is Dedekind o-



1.1 Banach lattices 3

complete if every non empty countable subset which is bounded from above in

the order of E has a supremum.

We say that E has the Fatou property if for every (x,;) C E with 0 < z, 1
such that sup ||z, || < oo it follows that there exists © = supz, in E and ||z|| =
sup||z,||. Similarly, E has the o-Fatou property if for every (x,) C E with
0 < z,, 1 such that sup ||z, || < oo it follows that there exists x = supx,, in E

and ||z|| = sup ||z,]|-

. o . . 1
Given x1,...,x, € E, it is possible to define an expression (Z;;l |xj|p) /P

in F for every p > 1, see [26, Chapter 1.d.]. The Banach lattice F is said to be

p-convez if there exists a constant M > 0 such that

n 1 n 1
P P
(S tas) | = M (3 o)
j=1 j=1

for all n and x1,...,z, € E. The smallest constant satisfying the previous

inequality is called the p-convexity constant of E and is denoted by M(p)(E).

Let T: E — F be a linear operator between Banach lattices. The operator
T is said to be positive if Tx > 0 whenever 0 < x € E. Every positive linear
operator between Banach lattices is continuous, see [26, p.2] or [2, Theorem
4.3]. In particular, every inclusion E C F of Banach lattices with the same
order is continuous. We will say that T is an order isomorphism if it is one to
one, onto and satisfies that T'(x A y) = Ta ATy for all z,y € E. In this case,
T is continuous as it is positive and also satisfies T'(z V y) = Ta V Ty for all
x,y € E. If moreover, |Tz|r = ||z||g for all x € E, we will say that T is an
order isometry. We say that F and F are order isomorphic (order isometrics)

if there exists an order isomorphism (isometry) T': E — F.

The set consisting of all continuous linear maps from E into F will be
denoted by B(E, F) and we will write ||T'|| for the usual operator norm of 7'
An operator T € B(E, F) is called L-weakly compact if ||x,|| — 0 for every
disjoint sequence (x,) contained in the solid hull of T'(Bg), where By is the
unit ball of E. We denote by L(E, F') this class of continuous operators and by
W(E, F) the ideal of weakly compact operators. Note that L(E, F) C W(E, F),
see [30, Proposition 3.6.12].
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1.2 Banach function spaces

Let (Q,3, 1) be a measure space without assumptions of finiteness on u. As
usual, a property holds p-almost everywhere (briefly, p-a.e.) if it holds except
on a p-null set. We denote by LY(u) the space of all measurable real functions
on €, where functions which are equal y-a.e. are identified. The space L°(u) will
be endowed with the u-a.e. pointwise order, that is, f < g if and only if f < g
p-a.e. Then, LO(p) is a vector lattice, that is a real linear space satisfying (a),
(b) and (c) in the definition of Banach lattice, and it is Archimedean, that is, for
every 0 < f € L°(i1) we have that + f | 0. Note that for f, f,, € L°(p) with f,, 1,
it follows that f, converges to f p-a.e. if and only if f, 1 f in L°(u), that is,
the pointwise supremum coincides with the lattice supremum. It is important
to emphasize that the pointwise supremum of a net of measurable functions is
not measurable in general, and even if it is measurable may not coincide with

the lattice supremum.

By a Banach function space (briefly, B.f.s.) related to ;1 we mean a Banach
space X C L°(u) satisfying that if | f| < |g| with f € L°(u) and g € X then f €
X and || f]lx < |lgllx. Every B.f.s. is a Banach lattice with the p-a.e. pointwise
order, in which convergence in norm of a sequence implies u-a.e. convergence
for some subsequence. Note that for f, f,, € X with f,, 1, it follows that f,
converges to f p-a.e. if and only if f,, T f in X.

If X is a B.f.s. related to a complete o-finite measure space (€, 2, u) such
that for every A € ¥ with u(A) < oo it follows

(a) xa € X, and
(b) fxa € L*(p) for all f € X,

then we will say that X is a B.f.s. in the sense of Lindenstrauss and Tzafriri
(briefly, LT-B.f.s.), see [26, Definition 1.b.17].
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1.3 Integration with respect to vector measures
on J-rings

The integration theory with respect to a vector measure defined on a é-ring is
due to Lewis [25] and Masani and Niemi [28], [29] (see also [15]). This integration

theory extends the classical one for vector measures defined on o-algebras.

Let R be a §-ring of subsets of an abstract set €2, that is, a ring closed
under countable intersections. We write R'°¢ for the o-algebra of all subsets A
of Q such that AN B € R for all B € R. Note that if R is a o-algebra then
Rl°¢ = R. Denote by M(R!°®) the space of all measurable real functions on
(9, R1¢), by S(R'*°) the space of all simple functions and by S(R) the space
of all R-simple functions (i.e. simple functions supported in R).

Let A: R — R be a countably additive measure, that is, > A(A,) converges
to A(UA,,) whenever (A4,,) is a sequence of pairwise disjoint sets in R with UA,
in R. The variation of ) is the countably additive measure |\|: R!¢ — [0, o0]

given by
[A|(A) = sup { Z [A(A4;)| : (A;) finite disjoint sequence in R N 2‘4}.

For every A € R we have that |[A|(A) < oo. The space L'(\) of integrable
functions with respect to X is defined as the space L!(|\|) with the usual norm.
Every R-simple function ¢ = >""" | a;x 4, is in L'()) and the integral of ¢ with
respect to A is defined as usual by [@dX\ =" | a;A(A;). Moreover, the space
S(R) is dense in L'()\). For every f € L'()), the integral of f with respect to
A is defined as [ fd\ = lim [ ¢, dX for any sequence (¢,) C S(R) converging
to f in LY(N).

Let v: R — X be a vector measure with values in a real Banach space
X, that is, > v(A4,) converges to ¥(UA,) in X whenever (4,) is a sequence
of pairwise disjoint sets in R with UA,, € R. Denoting by X* the topological
dual of X and by Bx~ the unit ball of X* the semivariation of v is the map
lv||: R¢ — [0,00] given by |v|(A) = sup{|z*v|(A) : 2* € Bx-} for all
A € Rl where |z*v| is the variation of the measure z*v: R — R. The

semivariation of v is monotone increasing, countably subadditive, finite on R
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and for all A € R!c satisfies
1
SlIvli(4) < sup {[[v(B)|lx : BeRN24} < ||v||(A) . (1.1)

In view of (1.1), the vector measure v is bounded (i.e. its range is a bounded
set in X) if and only if |[v||(Q) < co. A set A € RY¢ is v-null if ||v||(A) = 0, or
equivalently, v(B) = 0 for all B € RN24. A property holds v-almost everywhere

(briefly, v-a.e.) if it holds except on a v-null set.

For every R'°*-measurable function f: Q — R U {+oc} we can define
£, = sw [ Ifldla"v] < oc.
x*EBx*

Note that if || f||, < oo then |f| < oo v-a.e.

A function f € M(R'"°) is said to be weakly integrable with respect to v
if f € L'(a*v) for all z* € X*, or equivalently, if ||f||, < oo. Let Ll (v) denote
the space of all weakly integrable functions with respect to v, where functions
which are equal v-a.e. are identified. The space Ll (v) is a Banach space with

the norm || - ||,

A function f € Ll (v) is integrable with respect to v if for each A € R!°¢
there exists a vector denoted by [ 4 Jdv € X, such that

m*(/ fdu)z/fdm*l/ for all z* € X™.
A A

We will simply write [ fdv for [, fdv. Let L'(v) denote the space of
all integrable functions with respect to v. Then, L*(v) is a closed subspace of
LL (v) and so it is a Banach space with the norm || -||,. Moreover, S(R) is dense

in L'(v). Note that for every R-simple function ¢ = > ;" | a;xa,, we have that
Jodv =311 aiv(A;).

The equality L} (v) = L'(v) holds whenever the space X where the vector

measure takes its values does not contain a copy of ¢ ([25, Theorem 5.1]).

The integration operator I,,: L'(v) — X given by I,(f) = [ f dv is linear
and continuous with || L, (f)||x < || f].-
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A vector measure v: R — FE with values in a Banach lattice E is positive
if v(A) > 0 for all A € R. In this case, the integration operator I,,: L*(v) — E
is positive (i.e. I,(f) > 0 whenever 0 < f € L*(v)) and it can be checked that
Ifll, = IL(IfD)]lx for all f € L*(v) (see for instance [31, Lemma 3.13] with the

obvious modifications in the case of d-rings).

From [4, Theorem 3.2], there always exists a measure A\: R — [0, 00] with
the same null sets as v. Then, L'(v) and Ll (v) are B.fs. related to |\|.
Moreover, L'(v) is order continuous and L. (v) has the o-Fatou property (see
Section 2.3).

For any measure p: R!¢ — [0, 0o] with the same null sets as v, since the u-
a.e. pointwise order coincides with the v-a.e. one, we will denote L°(v) = L°(u)

and say B.f.s. related to v for B.f.s. related to p.



Chapter 2

Banach lattice properties of
L%U of a vector measure on a
O-ring

The spaces L!(v) and L} (v) of integrable and weakly integrable functions with
respect to a vector measure defined on a o-algebra an with values in a Banach
space X have been studied in depth by many authors and their behavior is well
understood, see [11], [31, Chapter 3] and the references therein. In [15], there is
an analysis of the space L!(v) with v defined on a §-ring which gives evidence of
how large the difference can be between the d-ring and o-algebra cases. However,

there is not a deep study of the lattice behavior of the corresponding space
LL(v).

The aim of this chapter is the study of the Banach lattice properties of
the space L. (v). More precisely, we study some properties related to order
continuity (Section 2.1) and order density (Section 2.2), and some Fatou type
properties (Section 2.3). We will see that many properties satisfied for this space
when v is defined on a o-algebra remain true in general only in the case when v
satisfies certain local o-finiteness property, which guarantees that every function

in L} (v) is the v-a.e. pointwise limit of a sequence of functions in L'(v). We
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end with an illustrative example (Section 2.4).

From now on in this memoir v: R — X will be a vector measure defined
on a d-ring R of subsets of an abstract set {2, with values in a real Banach space

X. Recall that measurable functions are referred to the o-algebra R°.

2.1 Order continuous part of L. (v)

Let us begin by noting that the o-order continuous and the order continuous
parts of L. (v) coincide. Indeed, Ll (v) is Dedekind o-complete as it has the
o-Fatou property (see [34, Theorem 113.1]), and so, since (L,}U(y))a is an ideal
in L. (v), it is also Dedekind o-complete. Then, from [34, Theorem 103.6],
(L}ﬂ(u))a is order continuous and thus (L., (V))a = (L}, (V))an.

It was noted in [10, p. 192], that in the case when R is a o-algebra, the order
continuous part of Ll (v) is just L'(v). This follows from the facts that L!(v)
is order continuous and S(R*¢) = S(R) C L'(v). In the general case, S(R!*¢)
may not be in L!(v), even so, we will see that (L}JJ(V))& = L'(v) remains true.
First, let us characterize when a characteristic function of a measurable set is
in L'(v).

Lemma 2.1.1. The following statements are equivalent for any A € RI°.

(a) xa € L'(v).
() |lv|I(A,) — O for all decreasing sequences (A,) C R!°¢ N 24 with NA,
v-null.

(¢) v(Ayn) — 0 for all disjoint sequences (A,) C RN 24.

Proof.  Suppose that x4 € L'(v) and let (4,) C RN 24 be a decreasing
sequence with NA,, v-null. Since L!(v) is order continuous and x4 > x4, | 0,
then ||v[|(An) = |lxa,|lv = 0. So, (a) implies (b).

If (A,) C RN 24 is a disjoint sequence, taking B,, = U;>,A4; we have a
decreasing sequence (B,) C R!*¢ N 24 with NB,, = 0 and ||v(A4,)| < ||[v||(B,).
So, (b) implies (c).
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Suppose that (c) holds and consider the vector measure v4: R — X defined
by va(B) =v(AN B) for all B € R. Noting that |z*v4|(B) = |z*v|(AN B) for
all B € R and z* € X*, it can be checked that [ |f|d|z*va| = [|f|xad|z*v],
first for simple functions and next, by using the monotone convergence theorem,
for all measurable functions. Thus, ||f|l,, = ||fxall, for every f € M(R!e).
Then, f € L. (v4) if and only if fxa € Ll (v) and, since S(R) is dense in both
L'(v) and L'(va), it follows that f € L'(v4) if and only if fxa € L'(v). By
hypothesis v4 is strongly additive, so, from [15, Corollary 3.2.b)], we have that
xa € L*(va) and thus x4 € L'(v). O

Let us prove now the announced result.

Theorem 2.1.2. The equality (L}U(V))a = LY(v) holds.

Proof.  Obviously L'(v) C (L,,(v)), as L'(v) is order continuous. For the
converse inclusion, consider first a set A € R!° such that x4 € (L;,(v)),. Since
for every decreasing sequence (A,) C RN 24 with NA, v-null, it follows
that x4 > x4, 0 and so ||[V||(An) = |Ixa, |l — 0, then, from Lemma 2.1.1,
xa € L(v).

Consider now ¢ € S(R'*°) such that ¢ € (Lj,(v)),. Write p = 37| ajxa;
with (4;) C R!°® being a disjoint sequence and a; # 0. Since x4, < |£| and
(Ly,(v)), is an ideal, x4, € (Ly,(v)),. Then, xa; € L'(v) and so ¢ € L' (v).

Finally, let f € (L}U(V))a and take a sequence (¢,) C S(R'°) satisfying
that 0 < ¢, 1 |f|. Note that ¢, € (L3,(v)), as on < |f], and so @, € L'(v).

Since |f| > |f| = ¢n 4 0, we have that || |f| —¢nll, — 0. Then, as L'(v) is closed
in L} (v), we have that |f|, and so also f, is in L(v). O

2.2 Order density of L'(v) in L. (v)

The topic in this section is trivial for the case when R is a o-algebra. Indeed, for
every 0 < f € LO(v) there exists (p,) C S(R!°®) such that 0 < ,, 1 f. Since,
in this case R = R and S(R) C L'(v), obviously we have that L!(v) is super

order dense (and so order dense) in L°(v) (and also in L. (v)). However, this
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argument fails for the general case as S(R'°°) may not be contained in L*(v).

Example 2.2.1. Let I' be an uncountable abstract set, R the §-ring of finite
subsets of I' and v: R — ¢o(I") the vector measure defined by v(A) = xa,
see [15, Example 2.2]. Then, xr € Ll (v) = £>°(T'), but there is no sequence
(fn) € LY (v) = ¢o(T') such that 0 < f,, T xr as in this case, since the only v-null
set is the empty set, T' = U,supp(f,) is countable.

Therefore, in general L!(v) is not super order dense in L. (v), but order

dense.

Theorem 2.2.2. The space L'(v) is order dense in L1 (v).

Proof.  Since every Banach lattice is Archimedean, by [27, Theorem 22.3]
it is enough to prove that L'(v) is quasi order dense in Ll (v), i.e. for every
0 # f € L. (v) there exists 0 # g € L'(v) such that |g| < |f|.

Let f € L% (v) with ||[v|(supp(f)) > 0. For A, = {w € Q: |f(w)| > L}, we
have that A,, 1 supp(f) and so ||v|/(supp(f)) = lim, ||v||(4,) (see [29, Corol-
lary 3.5.(e)]). Take n large enough such that |v||(4,) > 0. Since ||v||(An) =
SUP gernzan |[V](B) (see [29, Lemma 3.4.(g)]), there exists B, € R N 24~ such
that ||v||(By) > 0.

On the other hand, take a sequence (1;) C S(R!°®) such that 0 < v; 1
|f|. Then, there exists a v-null set Z € R such that 0 < 9;(w) T f(w)
for all w € Q\Z. Noting that B,, = (U;B,, Nsupp(¥;)\Z) U (B, N Z), since
By Nsupp(¥;)\Z 1, it follows that [[v[[(Bn) = [[v[[(U;jBn N supp(¥;)\Z) =
lim; ||v||(B,, N supp(¢;)\Z). Take j, such that ||v|(B, N supp(y;,)\Z) > 0
and consider the function g = 1, x5, € S(R) C L'(v). Then, g # 0 and
0<g<If] O

Remark 2.2.3. Since L%(v) with the v-a.e. pointwise order is an Archimedean
vector lattice, actually in Theorem 2.2.2 we have proved that L!(v) is order

dense in L°(v).

Now, the natural question is when L!(v) is super order dense in L. (v). It

is easy to see that this happens if v is o-finite, that is, if there exist a sequence
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(A,) in R and a v-null set N € R!°® such that Q = (UA,) U N. In this
case, if 0 < f € L%(v) and (,) C S(R'°) is such that 0 < 1, T f, taking
Pn = YnXxur_ a; € S(R) we have that 0 < ¢, T f. Then, L'(v) is super order
dense in L°(v) and so in L} (v). However, L'(v) being super order dense in

L1 (v) does not imply that v is o-finite.

Example 2.2.4. The vector measure v in Example 2.2.1 considered with values

in /1(T") instead of co(T), satisfies that L' (v) = L. (v) = ¢}(I"). Then, obviously

1

L'(v) is super order dense in L.

(v) but v is not o-finite.

We will characterize the super order density of L!(v) in L} (v) by a weaker
condition on v than o-finiteness. Namely, v will be said to be locally o-finite if
every set A € R!°¢ with ||v||(A) < oo, can be written as A = (UA,,) U N, with
N € R!°¢ y-null and (A4,,) a sequence in R.

Remark 2.2.5. If v is such that L'(v) = Ll (v) (e.g. if X does not contain
any copy of cg), then for every A € R!° with ||v|(A) < oo, we have that
xa € LY (v) = L*(v) and so, from [29, Theorem 4.9.(a)], v is locally o-finite.

Let us see that there are plenty of locally o-finite vector measures which

are not o-finite.

Lemma 2.2.6. Suppose that v is discrete, that is, for every w € Q it follows
that {w} € R and v({w}) # 0. Then,

(a) N € Rl¢ is v-null if and only if N = ().

(b) {ACQ: Aisfinite} C R C {ACQ: A is countable}.

(c) Rloc =29,

(d) v is o-finite if and only if Q is countable.

)
)
)
)

Proof. (a) Suppose N € R!°¢ is v-null. If v € N, then {y} € RN 2" and
so [v({y DIl < |I7||(IN) = 0 which contradicts v({v}) # 0. Hence, N = . The

converse is obvious.

(b) If A C Q is finite then A = U,ca{7} is a finite union of sets in R, so
the first containment holds. For the second one, consider A € R and the vector
measure v4: R — X defined by va(B) = v(AN B) for all B € R!°°. Note
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that B € R!°¢ is v4-null if and only if AN B is v-null, that is, AN B = (). Since
vy4 is defined on a o-algebra we can take z* € Bx~ such that |z%v4| has the
same null sets as v4 (see [18, Theorem IX.2.2]). For every finite set J C Q it
follows that

Y lahral({v}) = laaval(7) < llvall() < [lrall(2) < oo

~yeJ

Then, there exists a countable set I C € such that |z%va|({v}) = 0 for all
v € Q\I, that is, AN {~} =0 for all v € Q\I. So, A C I is countable.

(c) Note that {A C Q: A is countable} C R!%¢ as if A C Q is countable
then A = U,ca{7} is a countable union of sets in R. Given A € 2%, from (b)
we have that A N B is countable, and so is in R!°¢, for every B € R. Hence,
ANB=BN(ANB) e R for every B € R, that is, A € R'°.

(d) Tt follows from (a) and (b). O

From Remark 2.2.5 and Lemma 2.2.6, every discrete vector measure on a
d-ring of subsets of an uncountable set, with values in a Banach space without
any copy of ¢y, is locally o-finite but not o-finite. Also, there are locally o-finite
vector measures which are not o-finite with values in a Banach space containing

a copy of ¢g.

Example 2.2.7. Consider the §-ring R = {A C [0,00) : A is finite} of subsets
of [0, 00) and the vector measure v: R — ¢g defined by v(A) =" w
where (e;,) is the canonical basis of ¢y and f denotes the cardinal of a set. Since

v is discrete, it follows that v is not o-finite.

Note that for all * = (av,) € ¢ = ¢! and w € [0, 00) one has

v({wh) =) il =Lin) - S Xnmiml)

n=1 n=1
and so

2" vI({w}) = lo"v({w))] = Y X 9 gl
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The space L. (v) can be described as the space of functions f: [0,00) — R

such that fx[,—1,n) € A ([O, oo)) for all n and sup,, Q%HfX[n—l,n) ||é1 < 0.

([0,00))
Furthermore, ||f||, = sup, Q%HfX[n—l,n)Hel([o,oo)) for all f € Ly, (v).

Indeed, if f € L. (v), for every n > 1 and every finite set J C [0,00), we
have that

S @) ot (@) = 20 3 [fw)lear|({u}) = 27 / Flxs dleav]

weJ weJ

2"/|f|d|en1/| < 0.

IN

S0, fXn-1,n) € 61([0,00)) and

1
SUP oo |1 [l 1 0,00y < SUP / |fldlenv] < [1f1].-

Conversely, let f: [0,00) — R be a function such that fxp,_1») € & ([0, oo))

for all n and sup,, 2% fX[nfl,n)Hel([o ooy < 00 Take now z* = (a,,) € ¢. Since
A, = supp(f) N[n —1,n) is countable for each n, applying the monotone con-

vergence theorem we have that

/ MXprmy dlzvl = 3 / F @Iy dia v = 3 1F@)llav]({w})

wEA, weA,
|an| ‘an|
wEA,

Then, applying again the monotone convergence theorem it follows

/ fldla*v] Z / Xty dla™v]

1
<z 'S?Lp 27Hf><[nfl»n)”141([o,oo))'

Therefore, f € LL (v) and || f|, < sup,, %"fx["*l’")uel([o,oo))'

Let us see now that the space L!(v) is the space of functions f: [0,00) — R

such that fx[,—1,,) € £*([0,00)) for all n and lim,, 3= fX[n—1,n) Hél([o,oo)) = 0.
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Suppose f € L*(v). Then fx[—1,,) € £*([0,00)) for all n as f € L (v).

From (2.2.1) and noting that e, is a positive measure, we have that

HfX[n* ’H)H 1([0,00
12n £1([0,00)) §/|f|d|enyl:/|f|d€nV:en(/|f|dV> -0

since [ |f|dv € ¢o as |f] is also in L!(v).

Conversely, let f: [0,00) — R be a function such that fx[,—1,) € o ([0, oo))

for all n and lim,, 2*171

fX[n*Ln)Hel([o,oo)) = 0. Clearly f € LL(v). For each
A € Rloc = 2[0:2) take the element

o (|’fXAﬂ[n—17n)H41([o,oo))) € co.

2’ﬂ

Then, for every z* = (a;,) € ¢, we have that

(@a) = fom["_;f)““”’“” o= [ Iflds's
n=1

where the last equality can be obtained similarly to (2.2.1) but using the order
continuity of L'(x*v) instead of the monotone convergence theorem. Therefore,
|f| € L*(v) with [, |f|dv = x4 and so f is also in L' (v) with

1
Jra=l5 X s@

weAN[n—1,n) "

Note that every f € L. (v) has countable support as supp(f) N[n —1,n) is
countable for all n. If B € R is such that ||v||(B) < oo, that is x5 € L} (v),

then B is countable. Hence, v is locally o-finite.

Let us prove now that the super order density of L!(v) in L} (v) is charac-

terized by the local o-finiteness of v.

Theorem 2.2.8. The space L'(v) is super order dense in L. (v) if and only if

v is locally o-finite.

Proof. Suppose that L!(v) is super order dense in L (v). For each A € R
with [[v]|(A) < oo, since 0 < x4 € LL (v), there exists a sequence (f,,) C L'(v)
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such that 0 < f,, 1 x4. Then, thereis Z € R v-null so that 0 < f,,(w) T xa(w)
for all w € Q\Z. Thus, A\Z = U,supp(fn)\Z.

On the other hand, since each f,, € L'(v), from [29, Theorem 4.9.(a)] , there
exist (A7); C R and a v-null set N,, € R such that supp(f,) = (U;A}) UN,,.
Then,

A= (UpU; AANZ)U (Up N2 \Z) U (AN Z)

where A7\Z € R and (U, N,\Z) U (AN Z) is v-null.

Conversely, suppose that v is locally o-finite and let 0 < f € L. (v). There
exists a sequence (v,) C S(R!°®) such that 0 < 1, 1 f. For each n, we can

krn
Jj=
By = min{af, ...,ay }, it follows

write ¢, = 1 O XBY with (B}'); pairwise disjoint and o > 0. Then, taking

1 1
I supp0)) = It o < 5ol < 5l < o0

So, there is (A); C R and Z,, v-null such that supp () = (U;AT)UZ,. Denote
Pn = w”XUillU};lAZ’- € S(R). For w & U, Z,, we have that w € Q\(U,supp(¢n))
or w € Uy U; A7, In any case, pn(w) = ¥p(w) for all n large enough. Then,
ont f. O

We have seen just before Example 2.2.4 that if v is o-finite then L'(v) is
super order dense in L°(v). The converse also holds, indeed taking €2 instead of
A in the proof of the local o-finiteness of v in Theorem 2.2.8, the same argument
works to show Q = (UA, ) U N, with N € R"¢ y-null and (A4,) C R.

We know from [29, Theorem 4.9.(a)] that for each f € L!(v) there are
(A,) C R and a v-null set N € R!°¢ such that supp(f) = (UA, ) UN. Does the

same hold for functions in L (v)?

Proposition 2.2.9. For each f € Ll (v) there exist N € R v-null and
(A,) C R such that supp(f) = (UA,) UN if and only if v is locally o-finite.

Proof. Suppose that v is locally o-finite and take f € L1 (v). From the proof
of Theorem 2.2.8, there exists a sequence (¢,) C S(R) such that 0 < ¢, T |f|.
Let Z € R' be a v-null set such that 0 < ¢, (w) T |f(w)| for all w € Q\Z.
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Then,
supp(f) = (U supp(¢n)\Z) U (supp(f) N Z)

where supp(¢,)\Z € R and supp(f) N Z is v-null. For the converse only note
that if B € R!°¢ is such that ||v||(B) < oo, then x5 € LL (v). O

Let {Q, : a € A} be a maximal family of non v-null sets in R with Q,NQg
v-null for « # B, see the proof of [4, Theorem 3.1] for the existence of such a
family. Then, L*(v) is the unconditional direct sum of the spaces L'(v,) where
Ve Yo — X is the restriction of v to the o-algebra ¥, = {A € R: A C Q,}.
More precisely, for each f € L'(v) there exists a countable set I C A such that
[ = > uecr [Xa, v-ae. and the sum converges unconditionally in L(v), see
[15, Theorem 3.6]. Does a similar result hold for the space L. (v)? The v-a.e.
pointwise convergence of the sum for functions in L. (v) is again characterized

by the local o-finiteness of v.

Proposition 2.2.10. For each f € L} (v) there exists a countable I C A such
that f =3 c; fxa. v-a.e. pointwise if and only if v is locally o-finite.

Proof. Suppose that for every f € L} (v) there exists a countable I C A such
that f =Y _c; fxa. v-a.e. pointwise. Then, given B € R!°¢ with [|v[|(B) < oo,
since xp € Li(v), we can write xp = Y. c; XBna. Pointwise except on a v-
null set Z, for some countable I C A. So, B = (UaerBNQy) U (BN Z), where
BN, €Rand BN Z is v-null.

Conversely, suppose that v is locally o-finite and take f € L. (v). From
Proposition 2.2.9, there exists (A,) C R and a v-null set N € R!°® such that
supp(f) = (UA,) UN. Since each A,, € R, there exists a countable set I,, C A
such that A, N Qg is v-null for all § € A\I, (see the proof of [4, Theorem
3.1]). Take I = UI,, and Z = supp(f)\ Uaer Qa. Let us see that Z is a v-null
set. Given B € RN 2%, if B € I we have that BN Qz = . On the other
hand, if 8 ¢ I, since BN Qg C supp(f) N Qg = (UA, N Qg) U (N NQg) where
each A, N Qg is v-null, we have that B N Qg is v-null. From the maximality
of the family {Q, : a € A} it follows that B is v-null. Then, f =3 .; fxa.
pointwise except on Z U (Uger Uaer\ {8} 2o N §2g) which is a v-null set. O

Since fxq, € L. (v,) for all @ € A whenever f € L. (v), in the case of v
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being locally o-finite, we can say that the space Ll (v) is the v-a.e. pointwise

direct sum of the spaces L. (v4).

We cannot expect that ) ., fxq, converges unconditionally to f in L (v)
for a countable set I C A. Indeed, unconditional convergence of the sum in
L'(v) is due to the order continuity of L!(v). For instance, if v is a discrete
vector measure (see Lemma 2.2.6), taking {{7} : v € I'} which is a maximal
family of non v-null sets in R with {a} N {8} v-null for a # 3, we have that if
f € L,(v)issuch that }_ fx(,} converges to f in norm |[|-||,, then f € L*(v),
since > 11 X = 2onet SR X{y € S(R) € L' (v) and L*(v) is closed in
LL(v).

2.3 Fatou property for L. (v)

The space Ll (v) always has the o-Fatou property. We include the proof for
completeness. Given (f,) C LL(v) such that 0 < f,, T and sup || fnll, < oo,
there exists a v-null set Z € R!°® such that 0 < f,,(w) 1 for allw € Q\Z. Taking
the measurable function g:  — [0, 00| defined by g(w) = sup f(w) if w € Q\Z
and g(w) = 0 if w € Z, we have that 0 < f,xq\z T ¢ pointwise and, by the

monotone convergence theorem,
[odiets =tim [ faxanz vl < " [sup £l

for every x* € X*. So, ||g|l, < sup ||fnll, < 00, and then g < oo v-a.e. (except
on a v-null set N). Taking f = gxo\n we have that f: Q — [0,00) and
£l = llgll, < o0, so f € Ly, (v). Moreover, 0 < f, T f with [|f]l, = sup || fullv,

as || fully < [[fllv < sup || fall, for all n.

In the case when v is defined on a o-algebra, it was noted in [10, p. 191] that
L} (v) is the o-Fatou completion of L'(v), that is, the minimal B.f:s. related to
v, with the o-Fatou property and containing L!(v). This fact does not hold for
the general case. For instance, if v is the vector measure defined in Example
2.2.1 and (§°(T") denotes the Banach lattice of all real bounded functions on I'
with countable support, then L'(v) G ¢°(T) & L. (v) where ¢£3°(T') has the
o-Fatou property. Note that in this case v is not locally o-finite, as xr € L% (v).
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This is the reason for which L} () fails to be the o-Fatou completion of L*(v).
Let us denote by [L!(v)], .. the o-Fatou completion of L!(v). In general we have
that [L'(v)], . € LL(v).

Theorem 2.3.1. The o-Fatou completion of L' (v) can be described as
[L'(V)], . = {f € L,(v) : supp(f) = (UA,)UN with (4,) C R and N v-null}.

Consequently, the space LY (v) = [L'(v)], if and only if v is locally o-finite.

Proof. Denote by F the space of functions f € L} (v) for which there exist
(A,) C R and a v-null set N € R!°¢ such that supp(f) = (UA,) UN. Let
us see that F' is a closed subspace of L} (v). Given f € Ll (v) and (f,) C F
such that ||f — full. — 0, we can take a subsequence such that f,, — f v-
a.e. That is, there exists a v-null set Z € R'¢ such that f,, (w) — f(w) for
all w € Q\Z. Then, supp(f)\Z C Usupp(fn,). On the other hand, each f,,
satisfies that supp(fn,) = (U;A%) U N}, for some (A¥); € R and N, € R'*
v-null. So, supp(f) = Uk U; B;? U N where B]’? = A;’? Nsupp(f)\Z € R and
N = (Up N, Nsupp(f)\Z) U (supp(f) N Z) is v-null, that is, f € F.

Note that if |f| < |g| with f € L9(v) and g € F, then f € F since
supp(f)\Z = (supp(f)\Z) N supp(g) for some v-null set Z. Therefore, F en-
dowed with the norm || - ||,, is a B.f.s. related to v, which, by [29, Theorem
4.9.(a)], contains L!(v).

Let us see now that F' has the o-Fatou property. Given (f,) C F such
that 0 < f,, 1 and sup || f,|l, < oo, since L, (v) has the o-Fatou property, there
exists f = sup f, € LL (v) with ||f||, = sup||fu||,. Moreover, since 0 < f,, 1 f,
supp(f) = (U supp(fn)\Z) U (supp(f) N Z) for some v-null set Z € R, Then,
it follows that f € F, as each f, € F.

Finally, suppose that F is a B.f.s. related to v, with the o-Fatou property
and containing L(v). Let f € F and take a sequence (A,) C R and a v-null set
N € R!°¢ such that supp(f) = (UA, ) UN. On the other hand, take a sequence
(¢,) C S(R!¢) such that 0 < 1, 1 |f|. Denoting ¢, = Unxur_,a; € S(R) C
L(v) we have that 0 < ¢, 1 |f|. Since L!(v) C E continuously (see Section 1.1)
and then sup ||¢n|lg < Csup |lenll, < C|flly < oo for some positive constant
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C, it follows that there exists g = sup ¢, € E. Then, since 0 < ¢, T g, we have
that |f| =g € E and so f € E.

The consequence follows from Proposition 2.2.9. O

Consider now the Fatou completion [L'(v)], of L'(v), that is, the minimal
B.f.s. related to v, with the Fatou property and containing L' (). The o-Fatou
completion [L!(v)], . always exists since L., () always has the o-Fatou property.
However, we do not know if in general L., (v) has the Fatou property, so [L!(v)],

could not exist.

Remark 2.3.2. In the case when [L!(v)], exists, we have that

L'v) C L' (V)] € Lyy(v) € [LH (W),

Indeed, given f € Ll (v), from Remark 2.2.3, there exists (f,) C L'(v) such
that 0 < f, 1 |f] in L°(v). Since L'(v) C [L'(v)], continuously, it follows that
sup || fr |22y, < Csup || f7]lv < Clf]l, < oo for some constant C' > 0. Then,

.- Noting that f, < g € Lv) for all 7, we
have that |f| < g and so |f| € [L'(v)],. Hence, f € [L}(v)],. Note that actually
|f| = g, since f, < |f| € [L'(v)], for all 7 and so g < |f|.

there exists g = sup f, in [L1(v)]

Remark 2.3.3. If L (v) has the Fatou property, then [L!(v)], exists and, from
Remark 2.3.2, we have that L} (v) = [L'(V)],.

The following result we give conditions under which L (v) has the Fatou
property. These conditions are satisfied for instance if v takes values in a Banach

space without any copy of c¢g.

Proposition 2.3.4. The following statements are equivalent:

(a) Li(v) = Ly, (v).
(b) Ll (v) is order continuous.
(c) L*(v) has the o-Fatou property.
If (a)-(c) hold, then L. (v) has the Fatou property and

L'v) = [L' ()], = Luy(v) = [L' ()],
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Proof.  The equivalence between (a) and (b) follows from Theorem 2.1.2.
Condition (a) implies (c) as L () always has the o-Fatou property. Conversely,
suppose that L'(v) has the o-Fatou property. Let (f;) C L'(v) such that
0 < fr 1 and sup||f,]], < oo. Since L'(v) is order continuous, from [34,
Theorem 113.4], it follows that there exists f = sup f, in L'(v). Moreover,
If = fello L0 as £ — fr 4 0. Since 0 < fly — el < If = Foly, we have
that || f|l, = sup||f-|l.. So, L'(v) actually has the Fatou property. Then,
[L'(v)], = L'(v) and, from Remark 2.3.2, we have that L'(v) = L} (v). So, (c)
implies (a) and the last part of the proposition holds. O

It is an open question if in general L} (v) has the Fatou property. Compar-
ing with the proof of the o-Fatou property for L. (v), the problem is that for an
upwards directed system 0 < f, 1 such that (f,) C L. (v) with sup ||f; ||, < oo,
if we consider the pointwise supremum f = sup f,, firstly f may not be mea-
surable and even if f € L°(v) may be f, 1 f does not hold, that is, f may not
be the lattice supremum of (f;).

However we can give sufficient conditions for L1 (v) to have the Fatou
property. First, in the following proposition we will see that v being o-finite
is a sufficient condition. This result will be the starting point to obtain a

generalization of itself.

Proposition 2.3.5. If v is o-finite, then Ll (v) has the Fatou property. More-
over, in this case, [L'(v)], . = LY (v) = [L'(V)],-

Proof. If v is o-finite, we can take a measure of the type |zfv| (with 2§ € Bx~+)
having the same null sets as v, see [15, Remark 3.4]. From [34, Theorem 113.4],
the space L!(|z§v|) has the Fatou property and is super Dedekind complete. In
particular, L'(|z3v|) is order separable (see [27, Definition 23.1 and Theorem
23.2.(iii)]), that is, if 0 < f, 1+ f in L!(|z§v|) then there exists a sequence (f,,)
such that f. 1 f.

Let (f,) C L. (v) be an upwards directed system 0 < f, T with sup || f- |, <
oo. Then, (f;) C L'(|zfv|) is such that 0 < f; 1 and sup [ |f;|d|zjr| <
sup || f- |l < oo. Since L!(|z§v|) has the Fatou property, there exists f = sup f,

in L'(|zjv|) and, since L'(|zfv|) is order separable, we can take a sequence
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fr, T fin LY(|zgv|). Then, f,., 1 f |zjv|-a.e. (equivalently v-a.e.) and so |z*v|-
a.e. for all z* € X*. By using the monotone convergence theorem, we have
that

[191da vl =t [ 17, e < o*]) - sup Il < oc,

and so f € L*(|z*v|) for all z* € X*. Hence, f € L. (v) and | f|, < sup, || f+||.-

Since the |z{v|-a.e. pointwise order coincides with the v-a.e. one and 0 <
f- 1t fin LY(|zgv]), it follows that 0 < f, 1 f in Ll (v). Indeed if g € L} (v)
is such that f, < g v-a.e. for all 7, then g € L} (Jzfv|) is such that f, < g
|xgv|-a.e. for all 7, and so f < g |zfv|-a.e. or equivalently v-a.e. Moreover, since
Il f-ll. < |Ifll, for all 7, we have that || f|, = sup, ||f-||,. Therefore, L. (v) has
the Fatou property.

From Theorem 2.3.1 and Remark 2.3.3, it follows that [L'(v)], . = L. (v) =
(LM (@)];.- 0

Note that from Proposition 2.3.5, we have that Ll (v) has the Fatou prop-
erty for every vector measure v defined on a o-algebra. We will give now a more
general condition than the o-finiteness of v under which L. (v) has the Fatou

property.
Definition 2.3.6. A vector measure v will be said to be R-decomposable if we
can write Q = (UpeaQq) U N where N € RI°¢ is a v-null set and {Q, : a € A}
is a family of pairwise disjoint sets in R satisfying that

(i) if Ay € RN 2% for all a € A, then Uyea A, € RI°¢, and

(ii) for each z* € X*, if Z, € RN2% is |z*v|-null for all @ € A, then Uyen Z,

is |z*v|-null.

Note that condition (ii) implies that if Z, € RN2% is v-null for all « € A, then
Uaen Zg is v-null. Also note that N can be taken to be disjoint with Uaea Q4.

Remark 2.3.7. There always exists a maximal family {Qq : o € A} of non
v-null sets in R with Qq N Qﬂ v-null for @ # B (see the comments just before
Proposition 2.2.10). If this family satisfies (i) and (ii) of Definition 2.3.6, then
by taking Q, = Qa\(UﬂEA\{a}Qg) we obtain a disjoint decomposition of €2 as
in Definition 2.3.6.
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There are plenty of R-decomposable vector measures, for instance o-finite
vector measures and discrete vector measures are so. The o-finite case is obvi-
ous. For the discrete case (see Lemma 2.2.6), for instance, we can write @ =
Uwea{w}. Recall that {A C Q: Ais finite} C R C {A C Q: A is countable}.
Note that R!°¢ = 2% so condition (i) holds. Given z* € X*, denoting N, =
{w e Q: z*v({w}) = 0}, we have that A C Qis |z*v|-null if and only if A C Ny~
Indeed, if A is |z*v|-null, for every w € A it follows that {w} € RN 24 and so
r*v({w}) = 0. Conversely, if A C N,«, for every B € RN24 it follows that B =
Uwep{w} where the union is countable. Then, 2*v(B) = )z z*v({w}) = 0.

Therefore, condition (ii) holds.

Theorem 2.3.8. If v is R-decomposable, then L. (v) has the Fatou property.

Proof. Suppose that v is R-decomposable and take a v-null set N € R"¢ and
a family {Q, : « € A} of pairwise disjoint sets in R satisfying conditions (i)
and (ii) in Definition 2.3.6 such that Q = (UaeaQq) U N with disjoint union.
For every finite set I C A, consider 25 = Uyerq € R and the vector measure
vr: R — X defined by v(A N Q) for all A € R, Given f € M(R!°°), by
using a similar argument as in the proof of (c¢) implies (a) in Lemma 2.1.1, it
follows that f € L. (v;) if and only if fxq, € L. (v), and in this case | f||,, =
| fxa;|lv- Note that, if f € L} (v) then fxq, € L, (v) and so f € L. (v7). From
Proposition 2.3.5 we have that Ll (v7) has the Fatou property as vy is defined

on a o-algebra.

Let (f;) C Ll (v) be such that 0 < f, 1 and sup|/f,||, < oco. Since
Ll (v) € L} (vr) and every Z € R!°¢ v-nullis vy-null (as ||v7]|(Z) = ||v]|(ZN0Q)),
then 0 < f- 1 in Ly, (v1). Moreover, sup || f-[|o, = sup || frxe, [lv < sup ||f-, <

oo. By the Fatou property of LL (), there exists f! = sup f, in L. (vr) and
10w, = sup (12l -

Now we consider I = {a} for each @ € A and construct the function
f:Q = Ras f(w) = flo}(w) when w € Q, and f(w) = 0 when w € N, which
is well defined since €2 is a disjoint union of (4 )aea and N. By (i), we have
that f~1(B) = Usea(f1*)~1Y(B) N Q, € R for every Borel subset B of R
such that 0 ¢ B. If 0 € B, we add to the union the set N to get f~!(B). So,
[ € M(RYe).
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Let us see that f € LL (v). First note that for each finite set I C A and
a € I, it follows that fi*tyq. < fIxq. v-a.e. and g = gxq, V{a}-a.e. for every
g € M(R"). Indeed, frxq., T fi®xq, in L}U(V{a}) as fr 1 flot in L}U(V{a}).
Since frxq. < f'xq. vi-ae. and so also vygy-a.e. and fIxq, € Li,(v{a}) as
fxa. < f'xa, € LL(v), we have that f{®xq, < flxq, vi.-ae. (except
on a vyay-null set Z) and so v-a.e. (except on the v-null set Z N Q,). Then,
fxer = Xaer I xa. < fxa, v-ae.

Fix * € X*. For every finite set I C A, it follows

> [irhecdatl = [ 17y davl < [ 17, diav)

acl
<l 1 xe e = N2l 17

[ - sup ([ frlloy < [l - sup [ 7]l < oc.

Then, there exists a countable set J C A such that [|f|xq, d|z*v| = 0 for
all @ € A\J and so fxq, = 0 |z*v|-a.e. (except on a |z*v|-null set Z, € R
which can be taken such that Z C Q,) for all & € A\J. Hence, f =3 ., fxa.
|z*v|-a.e. (except on the set Uyeay s Za UN € R'¢ which, by (ii), is |2*v|-null).

By the monotone convergence theorem we have that

/ fldav) =3 / Flxa, diz*v] < [l2*]) - sup |l < oo.

acJ

So f € L}u(l/) and || f|l, < sup ||f-].-

Let us see now that f, 1 f in L. (v). Fixing 7, for each a € A, there exists
a vap-null set Z, € R!¢ such that f(w) < flet(w) for all w € Q,\Z,. Then,
Z = UgeaZo N Qy is v-null and fr(w) < f(w) for all w € Q\(Z U N), that
is, fr < f v-a.e. Suppose that h € Ll (v) is such that f, < h v-a.e. (except
on a v-null set Z € RI°°) and so vi,j-a.e. (except Z which also is v{,;-null)
for each 7. Since h € L}, (v{a}), we have that fled <p V{a}-a.e. (except on
a viqy-null set Z, € RI°¢). Therefore, f < h v-a.e. (except on the v-null set

(UaeaZa NQa)UN € RY). So, f- 1 f and || f]l, = sup || £+, N
The converse of Theorem 2.3.8 does not hold as the next example shows.

Example 2.3.9. Following [21, p. 12, Definition 211E], a measure space (X, 3, u)
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is decomposable (or strictly localizable) if there is a disjoint family {X, : o € A}

of measurable sets of finite measure such that X = Uy,ea X, and
Y={FCX: ENX,€X forall a€A}

with p(E) = > ca m(E N Xy) for every £ € 3. In [21, p. 50, 216E], Fremlin

constructs a measure space which is not decomposable as follows.

Let C be an abstract set of cardinal greater than the cardinal of the con-
tinuum, £ = {K C 29 : K is countable} and X the set of all functions
f:29 — {0,1}. For each v € C, write f, for the function in X defined by
f4(A) = xa(y) for all A € 2¢ and F, x = {f € X : fix = fyx} for every
K € K, where g/ denotes the restriction of a function g to the set K. Consider
the o-algebra ¥ = N,ccX,, where

Y, ={FCcX:3KeKwith F,x CE or 3K € K with F, x C X\E},

and the measure p: ¥ — [0,00] defined by u(E) = t({y € C : f, € E})
for all E € ¥, where f denotes the cardinal of a set. Then, (X, u) is not

decomposable.

Taking the §-ring R = {E € ¥ : u(FE) < oo}, we will show that the measure
f: R — [0,00) given by the restriction of p to R is not R-decomposable.

Let us see first that
R =¥, (2.3.1)

If A € X, then obviously ANE € R for every E € R, that is A € R!c.
Conversely, suppose that A € R!°. For a fixed v € C, consider the set Gy =
{f € X: f({7y}) = 1} which is in ¥ and u(G(yy) = $({v}) = 1 (see [21,
216E.(c)]). Then, G,y € R and thus ANG,y; € R C X C %,. If there exists
K € K such that F, x C ANG(,y C A, then A € ¥,. If there exists K € K such
that F., k C X\(ANGy,}), then, since F, gugyy C Fy ik and Fy gugyy € Giays
it follows that F, gugy} C X\A and so A € ¥,. Therefore, A € ¥ and (2.3.1)
holds.

Moreover, for N € R!°¢ we have that

N is p-null if and only if N is p-null. (2.3.2)
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Indeed, if NV is g-null, for every E € RN2Y we have that i(E) = u(E) < u(N) =
0 and so N is p-null. Conversely, suppose that N is g-null. If u(N) > 0, then
there exists v € C such that u(N N Gy,y) = 1 (see [21, 216E.(h)]), this is a
contradiction as N NG,y € RN2Y and so u(N N Gyyy) = (N NGyyy) = 0.

Suppose that 1 is R-decomposable, that is, we can write X = (UaeA Xa) U
N where {X,, : a € A} is a family of pairwise disjoint sets in R satisfying that

(i) if A, € RN2% for all a € A, then Uyen A, € RYC,
(i) if Z, € RN 2% is fi-null for all a € A, then Uyea Z,, is f-null,

and N € R!¢ is a p-null set disjoint with each X,. From (2.3.1) and (2.3.2),
N € ¥ is g-null. Then, {X, : « € A} U{N} is a disjoint family of sets in X
with p(N), u(X,) < co. Let us see that

Y={FCX: ENNeXand ENX, € X for all a € A}.

If F € ¥, then obviously ENN € ¥ and ENX, € ¥ for all & € A. Conversely,
if E C X is such that ENN € ¥ and EN X, € X for all @« € A, since
ENX, € RN2X« by (i) and (2.3.1), we have that Up,eaE N X, € . So,
E=ENX = (UseaENX,)U(ENN) € . Moreover, u(E) = > A p(ENX,)
for every E € X. Indeed, if 3~ . p(E N X,) < 00, then u(E N X,) = 0 for all
a € A\T for some countable I' C A. Since, by (ii) and (2.3.2), Upea\r£ N X4

is p-null,

WE) = p(UaerENXa) = > u(ENXa) = Y (BN Xo).
ael aEA
If > pea (BN Xy) = oo then p(E) = oo, as sup sca Yoacs MENX,) < p(E).

Therefore, (X, 3, ) is decomposable which is a contradiction.

So, fi is not R-decomposable. However, since L'(f1) = L. (1) as [ takes
values in R, we have that L) (i) has the Fatou property (see Proposition 2.3.4).

Now we can say that there is no relation between the main properties used
in this chapter, R-decomposability and local o-finiteness. Indeed, the vector
measure given in the example above is locally o-finite (see Remark 2.2.5) but
not R-decomposable, while the vector measure given in Example 2.2.1 is R-

decomposable as it is discrete but not locally o-finite.
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2.4 Example

We end this chapter by showing that there exist R-decomposable vector mea-

sures v which are not o-finite nor discrete.

Let I' be an abstract set. For each v € I', consider a non null vector measure
vy: Xy —+ X, defined on a o-algebra 3, of subsets of a set 2, and with values
in a Banach space X,,. Consider the set Q = Uyer ({7} x ), that is

Q={(y,w): 7T and we Q,}.

In a similar way, we denote Uyer{7} x A, = {(7,w) : y €T and w € A,},
where A, C Q, for all v € I'. For every I C I' we write Uycr{7y} x A, =
Uyer{7}x A, whenever A, = ) for all v € T'\I. Note that if A, = U,er{v}xAJ
forn >1,

U= U< (UJaz) ana N a,= U< (N 47).
n>1 yell n>1 n>1 ~erl n>1
Also, if A =Uyer{y} x Ay and B = U er{v} x B,,
B =} % (4\By).
yel’

Then the family R of sets U,er{y} x A, satisfying that A, € 3, forally € T
and there exists a finite set J C I' such that A, is v,-null for all y € T'\J, is a
d-ring of parts of €.

Moreover,
Rloe = {Uyer {7} x4, : A, €X, forall y eT}.
Indeed, given A € R!¢, if we take B, = {w € Q, : (y,w) € A} we have that
A =Uyer{v} x By,

where {v} x By = AN ({7} xQ,) € R (as {7y} xQy € R). So, By, € ¥,.
Conversely, take A = Uyer{y} x A, with A, € ¥, for every y € T. If B =
U"YGF{’Y} X B'Y € R,

ANB=|J{7} x (4,NB,) € R
yel
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and so A € Rloc.

Note that given a function f: 2 — R, considering for each v € I' the
sections f(v,-): ©, — R, we have that

FHB) = Uyer{"} x f(7,)7(B)

for every Borel set B on R. Then, f is R'*°-measurable if and only if f(v,-) is
> -measurable for all v € T'.

Denote by ¢o (I, (X5 )+er) the Banach space of all families (2. )er such that

z, € X, for every v € T' and (||x7\|xw) € ¢o(T'), endowed with the norm

yel’
[(zy)verll = sup,er [|24[[x . Note that the topological dual co (T, (X’y)'yel‘)*
can be identified with the Banach space ¢ (T, (X*),cr) of families (2% )er such
that 2 € X7 for every v € I and ([l X;)wer € (1(T'), endowed with the norm
1@2)rerll = Syep 22l - The action of any #* = (2%)yer € £1(T, (X2)ser)

on & = (x)yer € co(T, (X;)yer) is given by z*(z) = > er T (Ty)-

Consider the finitely additive set function v: R — ¢o (T, (X,)yer) given by

v(Uyer {7} x 4,) = (V'Y(A’y))yer'

Let us see that v is a vector measure. Given A, = U,er{y} x A} € R forn > 1

mutually disjoint sets such that U, >1 A4, € R, we have that

U= Ut (U )

n>1 yel n>1
where Un21 A% is a disjoint union for every v € I' and there exists a finite set
J C I' such that {J,5; A} is vo-null for all v € I'\J. Since for each v € I" the
sum ), -, vy (AD) converges to v, (U,>1A4%) in X, and moreover if v € '\ J we
have that [|vy(UjsnA2)||x, = 0 for all n, we have that

(U )]sl (U )

yel

oo )

n

() S

j=1

Xy

— 0.
X’Y

yeJ

Note that for each A = U er{y} x A, € R and 2* = (2)1er € co (T, (X,y)’yer‘)*,

we have that 2*v(A) = 37 cp #3v,(A,). Then, aset A =Uer{v} x A, € Rlee
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is |z*v|-null if and only if A, is |23, |-null for all v € I'. Also, we have that A

is v-null if and only if A, is v-null for all v € I.

It is routine to show that:

(a) v is R-decomposable.
(b) v is o-finite if and only if T' is countable.

(c) v is discrete if and only if v, is discrete for all v € T

In order to describe the space L. (v), let us prove that for every z* =
(z%)yer € co(T, (X;)’yel‘)* and f € M(R!¢), we have that

/ fldav] =Y / £ dlavs | (2.4.1)

yel’

Given v € T' it is direct to check that |z*v|({v} x A,) = |z3v,|(Ay) for
all A, € ¥, (note that z*v({y} x A,) = 2Zv,(A,)). Then, if we take A =

Uyer{v} x 4, € Rlo¢ for every finite set J C T', we have that

Sl (A) = Y e wl({rd x Ay) = vl (U 1} % 4) < Je*vl(A).

yeJ yeJ yeJ
That is, > o [23v4[(A,) < |z*v|(A). The converse inequality follows routinely.
Therefore, [z*v[(A) = > o [23v4](A,) < oo for every measurable set A =
Uyer{v} x A, € R Given an R-simple function ¢ = Z?Zl a;jxa; where
A; = Uyer{y} x AZ'Y are pairwise disjoint, we can take a finite set J C I' such
that for each v € T'\J we have that AZ/ is vy-null for all j, and so, noting that
o(v,) = Z?zl QX 45, We have that

/ ol dlz*v]

n

> laglla™vi(4;) = Z i Y |y 1(AD)

Jj=1 yel

= D lasl Dol l(4]) = 37 3 layla i (AD)
Jj=1 veJ veJ j=1

B Z/ e )ldlazvn] =3 / (7, ) dla s -
veJ ~er

Then, (2.4.1) holds for R-simple functions. Let now ¢ € S(R!°°). Since
OX{yixn, € S(R) for every v € T, noting that ©x(yyxa, (7,-) = ¢(7,-), we
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have that
/ elx iy, dizv] = 3 / Xt (8| dlaus] = / lo(r, )l dlzt o).
Berl
Then,
> [letioldisgmnl = X [ lelximea, diav]
yeJ yeJ

/ 01X, ey (v x, dlz™ V|

/ ol dlz*y]

for every finite set J C T, and so >-_ p [ (v, )| dlz%v,| < [|p|dlz*v|. On the
other hand, note that [ |¢|d|z*v| = super [, @] dlz*v|, see [28, Lemma 2.30].

IN

Given A = Uyer{y} x A, € R, since pxa € S(R), noting that pxa(y,:) =
©(v,)x4,, we have that

/Iw\d\m v = Z/ oy, ) dlz V7|<Z/\<p% ) dja .

yel’ yel’

Therefore, (2.4.1) holds for f € S(R'"°), and so also for all f € M(R!°¢) by

using the monotone convergence theorem.

Now we can see that L., (v) is the space of functions f € M(R!¢) such that
f(v,+) € Ly,(vy) for all v € T with (|[f(7,-)|lv,)yer € £°(I'), and moreover,
1£1ly = supyep [1£(v; ), for all f € Ly, (v).

Let f € L,,(v) and fix 8 € T. Given 2} € X, define the element z* =
(2%)yer in £'(T, (Xj)vep) by 23 = xj if v =  and 25 = 0 in other case.
Then, from (2.4.1), we have that [|f(8,-)|d|z}vs| = [[f|d|z*v| < oo and so
F(B.+) € Ly, (vg) with [[£(8,) s < Ifllv- Thus, ([f(v, )]l )yer € £°(I') and
super [£(0: v, <A lo-

Let now f € M(R!"¢) satisfying that f(v,-) € Ll (v,) for every v € I and
(L)l Jyer € £2°(T). Given a* = (a%)yer € £1(T, (X})yer), from (2.4.1),



32 Chapter 2. Banach lattice properties of L. (v)

we have that

Jisidars = % [1aldiase) < 3 sl 17600,

verl ~yel

IN

sup £y, ), D lla5]
yerl

yel

Then, f € Ly, (v) and || fll, < sup,ep [£(7, )l -

xx < Q.

Therefore, L, (v) is order isometric to ¢>°(I, (L}, (v4))yer) via the map

which takes f to (f(%'»»yer'

For describing the space L'(r) we need to prove that for every z* =

*

(‘Tj‘y)’yef‘ € Co (Fa (X:)’yel") and f € Ll(l’*u),

/Afdx*z/zz

yel

[ e dzn (2.4.2)
A'Y

for all A =U,er{y} x 4, € Rl

By (2.4.1), we have that f(v,-) € L'(z%v,) for every v € T and more-
over [|f(v,)|d|zvy] = 0 (and so f(v,-) = 0 except on a |z}v,|-null set
Zy) for all v € I'\J with J being some countable subset of I'. Then, f =
XU er(ryxq, T¥v-a.e. (except on the [z*v|-null set U,cr\ {7} X Z,) and so
Ixa = X0, ertyixa, |z*v|-a.e. By using the dominated convergence theorem,

we have that

Noting that f{v}wa fdx*v = fA7 f(7,+) daZv,, holds for R'°“-simple functions
and so for any f € L*(2*v) by density of the R-simple functions in L!(z*v), we
conclude that (2.4.2) holds.

Now we can describe L!(v) as the space of functions f € M(R!°¢) such
that f(v,-) € L*(v,) for every v € I with (|| f(v, v, )yer € co(T).

Indeed, if f € L*(v) we can take (¢,) C S(R) converging to f in L'(v).
For each v € ', we have that f(v,:) € LL(v,) (as f € LL(v)) and (p,(v,")) C
S(2,) € Li(vy). Then, since [|f(7,:) = ¢n(7, ), < [If — @nll, and Lt (v,
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is closed in L} (v,), it follows that f(v,-) € L*(v,). On the other hand, for
each n, we can write ¢, = 37", a;xa, with A; = Uyer{7} X AJ and take
a finite set J C T such that for each v € T'\J we have that AZ'Y is vy-null
for all j. Then, @,(v,:) = E;"Zl ajxyy = 0 vy-ae. for all v € T'\J, and so
(a3 Ml e € eo(). Since (1 (. ), Jer € £<(T) and

sup | [|F(vs My = lln (s )y | < sp [1£(757) = 003 )y, = I1f = @nllvs
~yel ~el

it follows that (||f(,-)[lv, ) er € co(I).

Conversely, suppose that f € M(R!"¢) is such that f(v,-) € L'(v,) for all
vy €T and (| f(7, )|l )yer € co(T). In particular, f € L, (v). Given an element

z* = (22)yer € co(T, (X2)yer) and A = Uyer{y} x A, € R', we note that

(Lo £y din) o € colT, (X )er) as [ [y Fr)dlx, < £, for
each v € I'. Moreover, by (2.4.2),

2 (( / w f(%~)dvfy>wer>

Sai( [ fenn,)

vyel’

>/ RCRLETE [ sasv

yel

So, f € L'(v) and [, fdv = (wa flv, ) dyﬁy)ver.

Therefore, L' (v) is order isometric to ¢ (T, (L (v4))yer) via the map which
takes f to (f(7, '))weF'

Note that if v is locally o-finite, since h = > . mx{,y}m7 eLL(v)
and supp(h) = Q, from Proposition 2.2.9, it follows that v is o-finite. So, in this

case v is locally o-finite if and only if v is o-finite if and only if I" is countable.

In particular, consider a non atomic measure space (0,3, 1) and an order
continuous B.f.s. X related to p which does not contain any copy of ¢y and such
that xo € X, for instance X = LP|0, 1] related to the Lebesgue measure for
p > 1. The finitely additive set function n: ¥ — X defined by n(A) = xa for
all A € ¥, is a vector measure as X is order continuous, and it is non discrete
as 4 is non atomic. For every ¢ € S(X) we have that [ ¢dn = ¢ and, since n
is positive, ¢l = || f el dnllx = llellx. In particular, [v](4) = [xallx = 0
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if and only if u(A) = 0. Since S(X) is dense in L'(n) and also in X (again by
the order continuity property), then we deduce that L!(n) = X. Even more,
L} (n) = L'(n) = X. Taking I" uncountable and ., = for all v € I, we obtain
an R-decomposable vector measure v which is not o-finite nor discrete. In this
case, L (v) = (T, X) and L'(v) = co(T, X).



Chapter 3

Spaces of p-integrable
functions with respect to a
vector measure defined on a
O-ring

The spaces LP(v) and L2 (v) of p-integrable functions and weakly p-integrable
functions are nowadays well-known when the vector measure v is defined on a
o-algebra. In fact, all the relevant (geometric, lattice, topological) properties of
the spaces LP(v) of a vector measure v on a o-algebra with 1 < p < co has been
already studied (see [19, 31, 32]), when this is not the case for the d-ring case.

The aim of this chapter is to study the main properties of the spaces LP(v)
and LP

w

operators and the inclusion relations between the spaces LP(v) and L2 (v).

(v) of a vector measure v on a d-ring, the natural sets of multiplication

Section 3.1 is devoted to the study of the main Banach lattice properties
of the spaces LP(v) and LP (v). The general case 0 < p < oo is considered,
although for 0 < p < 1 these spaces are not necessarily Banach spaces, for

instance this is the case when the vector measure is a scalar measure. However,

35
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completeness is proved also for this case but under a quasinorm.

In Section 3.2 the spaces of multiplication operators between spaces of
p-integrable functions and spaces of integrable functions with respect to the
same vector measure are computed, and compactness type properties of these
operators are studied, generalizing in this way what is known in the case of

o-algebras (see [13]).

Finally, Section 3.3 deals with the analysis of the spaces LP(v) and L?,(v) as
intermediate spaces of L>(v) N LY(v) and L*(v) + L!(v), providing the vector
measure version of the classical inclusions that hold for the Lebesgue spaces
L?[0, oo].

Let us recall that each vector measure v defined on a o-algebra satisfies
that xo € L'(v) and so [|V||(Q) = |xall, < oo, that is, v is bounded. It is
relevant for this chapter that this does not hold in general for vector measures
defined on d-rings ([15, Example 2.1]). Indeed, for the general case, bounded

functions may be not integrable and this fact is crucial.

3.1 The spaces of p-integrable functions with
respect to a vector measure on a /-ring

Recall that we are dealing with a vector measure v: R — X defined on a J-ring

R of subsets of an abstract set €2, with values in a real Banach space X.

First, we introduce and study the main properties of the corresponding
spaces of p-integrable functions, that is the p-power spaces LP(v) and LP (v)
of L'(v) and L. (v), respectively. We show some fundamental topological and
lattice properties of the spaces LP(v) and LP (v). Although in some cases our
arguments follow the lines of the ones that prove the corresponding results for
vector measures on o-algebras (see [31, Ch.2, Ch.3] and [19, 32]), there are

several technical details that make the proofs slightly different as we are not
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working in the setting of the LT-B.f.s.”. So, we will write all the proofs for the

aim of completeness.

Given 0 < p < oo, the p-power space of L} () is defined as
Lh(w)={f e L’w): |[fI” € Ly,(v)}.

A function in L (v) will be called weakly p-integrable with respect to v. Simi-

larly, the p-power space of L!(v) is defined as
LP(v)={f¢€ L°(v): |fIP € Ll(y)}.
A function in LP(v) will be called p-integrable with respect to v.

The following well-known inequalities involving positive real numbers will

be necessary through the section (see for instance [31, Section 2.2]).

Lemma 3.1.1. Let a,b € [0,+00). Then the following inequalities hold.

(a+b)" <a"+b" and |a" =b"| <|a—0b|", for 0 <r < 1. (3.1.1)
a” +b" < (a+b)" <27 Ha" 4+ b"), for r > 1. (3.1.2)
la” —b"| <7 -la" " 0" - |a — b|, for r > 1. (3.1.3)

From (3.1.1) and (3.1.2) we have that L2 (v) and LP(v) are linear spaces
and it is clear that LP(v) C LP (v).

For each f € LP (v), we denote

e = P17 = sup ( f1oraevl)”

Since || - ||, is a norm, straightforward calculations using the previous lemma
show that || - ||, is a quasi-norm, that is, it satisfies the same properties as a
norm except by a constant in the triangular inequality (i.e. there exists K > 0
such that [|f + gllp < K(||fllpw + |9llp.) for all f,g € L2 (v)). Note that

both LP(v) and LP (v) are solid subsets of L°(v) and the quasi-norm | - ||, is
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compatible with the v-a.e. pointwise order, that is, || f]

pv < 19llp,r whenever
= 19| € also use € notations N LP () all - || r(»y when an explici
< We al the notati o vy and o) wh it

reference to the space is convenient.

Actually, given a B.f.s. X related to u, the p-power space given by XP =
{f € LOu): |fIP € X} satisfies all the above properties for || f[|x» = [[[f|P||%-
If 1 <p, then || - || x» is actually a norm and the space X? is a B.f.s. related to
. To prove this result we need first the following lemma, that will be useful

also in next sections.

Lemma 3.1.2. Let q,r,s > 0 such that % = %—i—% and let f € X" and g € X°.
Then, fg € X9 and | fgllxa < || fllx-|lgllx

Proof. Without loss of generality, it suffices to assume that || f||x- = ||g||x- = 1.
Note that since 4 4 4 = 1, the Young’s inequality says that ab < %(ﬁ + %bi
for all a,b € [0, +00). From this it follows that |fg|? < 4|f|" + |g|* € X. So,
fg € X7 and

1£9l% = 17917l < TN x + gl = TIN5 + gl = 2 +2 =1,

O

If p < 1, we will see that X? is a quasi-Banach function space (briefly,
q-B.f.s.) related to p, that is, it satisfies the same properties as a B.f.s. but
replacing norm by quasi-norm. Note that in this case, XP is a quasi-Banach
lattice with the p-a.e. pointwise order and the convergence in the quasi-norm

|| - lIx» of a sequence implies p-a.e. convergence of some subsequence.

Proposition 3.1.3. The space XP is a ¢-B.f.s. Even more, XP is a B.f.s.

whenever p > 1.

Proof.  'We only have to prove that X? is complete for the quasi-norm ||-|| x» and,
in the case when p > 1, that || - ||x» is a norm. Let (f,,) be a Cauchy sequence
in X?. Due to the equality |a —b| = |at —b"|+|a~ —b~| for all a,b € R (where
a®™ and a~ denote the positive and negative parts of a respectively) and the
compatibility of the quasi-norm || - || x» with the v-a.e. pointwise order, we can

assume that f, > 0 for all n.
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Suppose that p < 1. Applying inequality (3.1.1) in Lemma 3.1.1 to f,, and

fm and taking norm || - || x, we have that

”fq]; - fﬁlHX < H|fn - fm|pHX = ”fn - fm||§(p

Therefore, (fP) is a Cauchy sequence in X and so there exists f € X such
that (fP) converges to f in norm | - || x. Note that f > 0 (as convergence in
norm || - ||x of a sequence implies p-a.e. convergence of some subsequence) and
f% € XP. By (3.1.3) in Lemma 3.1.1 for r = % and Lemma 3.1.2 for ¢ = p,

r= 1%} and s = 1, it follows that

[ =17 = NUDT =17 ] < H( P 15 (= Dl

IN

H<f”>”1+frlH R = Al

le

([(OA R e ke P 9

"VI=B I

If t£5 < 1, applying first (3.1.1) for r = ;£ and then (3.1.2) for r = 1;%, we
have that

I3+ )55 < [+ £ < (2l + 171x)
< 2T + L)

If t£5 > 1, applying first (3.1.2) for r = ;£ and then (3.1.1) for r = 1;%, we
have that

(4 )™ 5 < 2<~1 S V7 o
< (||fpux+uf||x)T”
< (IIfPHX +||fo )-

Then it follows that

£ = 17|

IA

1 1-2p
—max{2 » ,2
p

}(Ilf”llx A ez =1l

1 max{2 S ,2 e
p

IN

}(Sup Ilie? + 1A sz =1l

where supy> || fk||;,p is a finite constant as (f,,) is a Cauchy sequence in X?.

Hence (f,) converges to f% in X? and so X? is a ¢-B.f.s.
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Suppose now that p > 1. Let us see first that in this case || - || x» is a norm.
Given f,g € XP, by using Lemma 3.1.2 for g =1, r = p and s = ﬁ, we have
that

If +9lkr = [1F+aPllx = lI(F+9)-1F +9" |«

< 71w gl i llg - 17+ gl
< N fllr - IF + 9P| oy + lgllcn - 1 + 977 ey

11+ 9P o zp - (I xe + lgllxr)

17+l - (1l + gl xe)
— U+ gl (1 e + lgllxe)

and so [|f + gllxr < [|flx» + llgllx-

Let us see now that (f,) converges to some function in XP. Applying

inequality (3.1.3) in Lemma 3.1.1 and Lemma 3.1.2 with ¢ = 1, r = p% and
s = p, and noting that || - ”Xﬁ is a norm as p’%l > 1, we have that
172 = folly < plGE + 7 - (o= fdllx
< p Hf’rzi_l + frI;z_luxﬁ : ||fn - meX”
-1 -1
< (I s M ozr) I = Frnllxo
= p (Il + 1 FmllZ") N fn = fmllxo
<

2p (sup || fill5") - 1 fn = Finllxo-
k>1

Therefore (f?) is a Cauchy sequence in X and so there exists f € X such that
(fP) converges to f in norm || - ||x. Note that f > 0 and f% € XP. From (3.1.2)
in Lemma 3.1.1 it follows that |a — b|" < |a" — b"| for every r > 1 and a,b > 0.
Applying this inequality for » = p we have that

e = 17 = Il = £3175 < 112 = 1|2

Hence (f,,) converges to f% in X? and so X? is a B.f.s. O

Therefore, from Proposition 3.1.3, the spaces LP(v) and L? (v) are B.f.s.
related to v for p > 1 and q-B.f.s.” for p < 1.

Note that S(R) C LP(v) as the p-power of any R-simple function is also
R-simple. Even more, S(R) is dense in LP(v). Indeed, if 0 < f € LP(v),
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then fP? € L'(v) and by the density of S(R) in L'(v) there exists a sequence
(pn) C S(R) converging to fP in L'(v). Note that for a general B.f.s. X and
g,h € XP? from the proof of Proposition 3.1.3 it follows that

1
lg = hllxr < g = PPk, ifp>1
lg = hllxe < K- (llgla? + I1817) - llg? = hPllx, iftp<1

1—2p

where K = %maX{Q » 722,3;1}. Then, for X = L'(v), g = f and h = \<pn|%,

we have that

1 z s .
1f = lenl?llpw <7 =lenlle < 1P —eulle, ifp=1
1 ~ ~ :
1f = lenl?llpw < KNP = lenl [l < KNP = nlly, ifp<1
~ 1-p
where K = K (||f]|;,? + sup, 1 [¢nll,” ) is a finite constant. In any case it

follows that (|g0n|%) C S(R) converges to f in LP(v). The extension to a general
f € LP(v) is obtained by taking positive and negative parts of f.

The spaces L, (v) and LP(v) are p-convex, as for every fi,..., f, € LP (v)
it follows that

H(ifﬂpf

1 1
Moreover, since ||(|f|p)5||py = |fllp., = (IflI2,)* for all f € LE (v), that is,
the inequality above is an equality for n = 1, both spaces have p-convexity
constant M® (L2, (v)) = MW (LP(v)) = 1.

] = (e = (i)
' j=1 j=1 1

j=

Let us see that for p < 1, certain convexity property makes the spaces
L? (v) and LP(v) to be B.f.s.”. Actually, this holds for the p-power X? of any
B.fs. X.

Proposition 3.1.4. Let 0 <p < 1. If X is %-convem, then XP is a B.f.s. with
the norm

IFlp = inf O3 1fllxe = [f1 <D 1f5] with fr,es fo € X7, n 215,
j=1

j=1

which is equivalent to the quasi-norm || - | x». If moreover M(%)(X) =1, the

norm || - ||, coincides exactly with || - || x».
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Proof. It is direct to check that || - ||, is a norm on X? compatible with the
order. Let us see that || - ||, and || - || x» are equivalent. From the definition of
Il -l it is clear that || f]l, < ||fllx» for all f € XP (just taking f1 = f). On the
other hand, given f € X? and € > 0, we can choose fi,...f, € XP such that
[f1 < 0o 1l and 320 (1 fillxe < I fllp + €. Since X is J-convex, it follows

el < (190" =H<i1w>

2 (ZHWHX) 2 %anjnm

MG (X)7 - (Ifll, + €)-

1
P

1f 1l

IN
m

| |
’!ﬁ

IN

As e is arbitrary, we have that || f]l, < || fllx» < M(%)(X)%mfmp Hence, X? is a
B.f.s. with the norm ||-||,. Note that ||f]l, = ||f||x» whenever M(%)(X) =1. O

Therefore, for p < 1, if L1 (v) (vesp. L*(v)) is %—convex, then LP (v) (resp.
LP(v)) is a B.f.s. with an equivalent norm to || - ||,

Note that in the case when p < 1, the spaces of p-integrable functions
are quasi-Banach lattices. The analogous definitions related to Banach lattices

apply to this case.

Proposition 3.1.5. The following statements hold:

(a) The space LP (v) has the o-Fatou property.

(b) The space LP(v) is order continuous.

Proof. (a) Let (fn) C L (v) be asequence such that 0 < f,, Tand sup || fn|lp,. <
co. Then (f2) C Ly, (v) is such that 0 < f2 and sup || f2||, = sup||fa}, < oc.
The o-Fatou property of Ll (v) assures the existence of g = sup f? in L. (v)
with [lgl, = sup | f£]l,. Then f = g¥ € Lf,(v) is such that f, 1/ (as /£ 1 9)

and | £llp. = g7 lp. = lgll¥ = sup 172112 = sup [ fullp.v-

(b) Let (f;) C LP(v) be a downwards directed system f, | 0. Then, f? |0
1
in L'(v) and since L'(v) is order continuous, ||fP||, 1 0. So, || f-]lp.. = [If21I2 |

0. O
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It is easy to find examples of LP(v) spaces which have not the o-Fatou
property and LP (v) spaces which are not order continuous. For instance, con-
sidering the vector measure v : R — ¢o(I') given in Example 2.2.1, we have
that L'(v) = ¢o(T') and L (v) = £>°(T). Then, LP(v) = (") which does not
have the o-Fatou property and L2 (v) = £°°(T") which is not order continuous.
However, if the same v takes values in £}(T") (Example 2.2.4) instead of in ¢o(T),
then L'(v) = L. (v) = ¢}(T) and so LP(v) = L (v) = ¢P(T") which is order con-
tinuous and has the o-Fatou property. This is just what happens in the case

when p = 1. In fact, we can extend Proposition 2.3.4 as follows.

Proposition 3.1.6. The following statements are equivalent:

L'(v) = Ll (v).

v) is order continuous.

v) is order continuous.

L'(v) has the o-Fatou property.

L?(v) has the o-Fatou property.

If (a)-(f) hold, then Ll (v) and so LE (v) has the Fatou property.

Remark that the lattice properties of a B.f.s. involved in the previous propo-
sition are preserved by its p-powers, so the proof is a routine. By the same

reason, we have the following result.

Proposition 3.1.7. The following statements hold:
(&) (L, (v))a = (LE,(V))an = LP(v).
(b) LP(v) is order dense in LE,(v) (also in L°(v)).
(c) If LL (v) has the Fatou property, so has L2 (v).

3.2 Multiplication operators

Let p > 1 and suppose that v is defined on a o-algebra, in which case ||v||(Q) <
co. It is routine to check that L2 (v) c L (v) with ||f]l, < [[v]|(Q)Y'|f

p,v
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where p’ is the conjugated exponent of p, and so, by density of the simple
functions on LP(v) and since L!(v) is closed in L. (v), it follows that LP(v) C
L'(v). A subtler inclusion LP (v) C L'(v) is established (see [19, Proposition
3.1 and Corollary 3.2.]). Moreover, in [19, Proposition 3.3] is proved that the
inclusion is an L-weakly compact operator (and so a weakly compact operator).
However, for vector measures on J-rings these inclusions are not necessarily
true. For instance, we only have to think that LP[0,00] is not included in
L0, 00]. It is well-known that for a positive o-finite measure p, the inclusions
LY (p) N L>®(p) C LP(u) C LY(p) + L°(u) substitute for many purposes the
inclusions L>(u) C LP(u) C L'(u) which hold for p finite. In Section 3.3 we
analyze the similar inclusions for the spaces L2 (v) and LP(v). For this aim, we
will need first to study some inclusion relations of the multiplication operators

involving spaces of p-integrable functions.

The multiplication operators between LP(v) spaces have been studied re-
cently in a series of papers for the case when v is defined on a o-algebra (see [31,
Ch.3], [13], [14], [20] and [5]). In particular, the equality L2 (v)- L? (v) = L'(v)
and the compactness properties of the multiplication operators are nowadays
well-known in this case. In what follows we will study multiplication operators
and some of their properties in the context of vector measures defined on a

d-ring.

Lemma 3.2.1. Let p,p’ > 1 be conjugated exponents. Then
(a) LE,(v)- Lt (v) = Ly, (v), and
(b) L) - IV (v) = LE,(0) - 1% (v) = LA (0),
Proof. (a) Taking into account Lemma 3.1.2 we have that L2 (v) - LE (v) C

LL(v). Now if f € L, (v), writing f = sign(f)|f| = (sign(f)|f|?)-|f|»" we have

the converse inclusion.

(b) First, we will prove that L2 (v)-LP (v) = L(v). Let f € L? (v) and g €
L”/(V). We can suppose without loss of generality that f,g > 0. Since g7’ is in
LY(v) there exist (A,) C R and a v-null set N such that supp(g) = supp(g?’) =
(UA,) UN (see the comments before Proposition 2.2.9). Take a sequence ()
in S(R'°) such that 0 < ¢, 1 g and define ¢, = Pnxur_,4; € S(R). Then
0 < & 71 g and by order continuity of L¥ (1), it follows that (&,) converges
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to g in norm. On the other hand, take a sequence (¢,) in S(R'") such that
0 < 4, 1 f. Note that ¥,&, € S(R) C L'(v) and fg € L2 (v) - L2 (v) = L (v),
so it suffices to prove that |[1n&, — fgll, — 0 as L*(v) is closed in L} (v). Since
0< %fnxsupp(f) <¢, € LP/(I/), from Lemma 3.1.2 we have that

”wngn - fg”V

Hszupp(f)(%fn - 9)

v

IN

Yn ’
I ABRY (SR pemre) B

Since 0 < %gnxsupp(f) 1 9Xsupp(f), again by order continuity we have that

H(Tgn B g)XS“pp(f)HLp’(u)

Remark that L?(v)-L? (v) € LP,(v)- L (v) C L'(v) and by using the same
arguments as in (a), we obtain L!(v) C LP(v) - L¥ (v). O

Remark 3.2.2. Note that in general L2 (v) - LE (v) ¢ L*(v). To see this, just
consider a vector measure v such that L!(v) # Ll (v) and take a function f in
LY (v)\ L*(v). Then f can be written as f = sign(f)|f| = (sign(f)|f|?) - |f|ﬁ,
but f ¢ L'(v). For instance, if v is the vector measure given in Example 2.2.1
for which L1 (v) = £°(T') and L'(v) = ¢o(T), we have that L2 (v) - LE (v) =
2(T) > LY(v).

Lemma 3.2.1 can be rewritten in terms of multiplication operators as fol-
lows. Given g € L(v) we denote by M, : L°(v) — L°(v) the multiplication
operator by g, that is M,(f) = gf for all f € L%(v). Given two B.f.s" X,V
related to v, if My : X — Y is well defined then it is automatically continuous.
Indeed, consider gt and g~ the positive and negative parts of g respectively.
Since g, g~ < |g] we have that My = M+ — M - where M+, M,- are positive

operators between Banach lattices and so they are continuous.

Lemma 3.2.3. Let p,p’ > 1 be conjugated exponents and g € Lp,(y). Then
(a) M, € B(L?(v), L'(v)), and
(b) M, € B(LY,(v), L (v)).

In any case || M| coincides with ||g|[ 10 (-
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Proof. Note that M, is always well defined from Lemma 3.2.1. Moreover, by
Lemma 3.1.2, we have that || My(f)llz1w) = llafllro) < HgHLp/(y) . ”f”L{’U(z/) for
all f € L%, (v), thus in both cases |[M|| < |||l (.- For the converse inequality,

—p'/p

Lp’(u)‘9|p//p € Bre(y) for which [|gfollri) =

O

just take the function fo = |¢g||
HQHLP’(V)-

The arguments used in the proof of the previous lemma also gives the next

result.

Lemma 3.2.4. Let p,p’ > 1 be conjugated exponents and g € L{j; (v). Then
() My € BLL (W), Ly () with [ My < gl and
(b) M, € BLA(v), L} (1) with [ My = gl .

In the remainder of this section we will require L} (v) to have the Fatou
property (e.g. if v is R-decomposable). Recall that in this case LP (v) has the
Fatou property.

Theorem 3.2.5. Let p,p’ > 1 be conjugated exponents and let g € L°(v). If
v is such that L} (v) has the Fatou property, then the following statements are

equivalent:
(2) g € L (v).
(b) M, € B(LP(v), L} (v)).
(¢) My € B(LP(v), Ly, (v)).
(d) My € B(LE, (), Ly, (v)).

Proof. By Lemma 3.2.4 we have that (a) = (b). Implication (b) = (c) is
obvious. Let us see (¢) = (d). Let 0 < f € LP (v). By order density of LP(v)
in L%(v) we can take (f,) C LP(v) such that 0 < f. 1 f in L°(v). By (3)
we have that 0 < |g|f, € LL(v). Moreover, |g|f; 1 |g|f in L°(v). Indeed, if
h € L°(v) is such that |g| f; < h for all 7, then f; = frXsupp(g) + fr X\ supp(g) <

h h j
Tl Xsupp(g) T fXe\supp(g) for all 7. So f < Tl Xsupp(g) T fXe\supp(g), that is,
lglf < h. On the other hand, for every 7 we have

gl £+l 11 oy = 1Mg(F)lls, o) < IMgl - I frllzoy < MMl - N1F N2 -



3.2 Multiplication operators 47

The Fatou property of L} (v) yields that there exists h € L} (v) such that

lg|f+ + hin LL(v). Then |g|f < h as |g|fr 1 |g|f in L°(v) and so |g|f € LL (v).
Note that actually |g|f = h. For a general f € LE (v), by taking positive and
negative parts of f, it follows that fg € Ll (v).

Finally, let us see (d) = (a). Let M, € B(LE (v), L. (v)). By order density
of L' (v) in L°(v) there exists (f,) C L¥ (v) such that 0 < f, 1 |g| in LO(v).
Moreover, by Lemma 3.2.4.(b) and noting that || f-h[/z1 ) < [lghl/Ls .y for all
h € LP (v), we have that

sup [l 1y ) = sup 1My || < 1M

The Fatou property of LE (1) ensures that there exists f = sup f, € LP (v).
Then f, 1 |g| in LO(v) and f, 1 f in LE (v) yield f = |g| and so g € L?, (v). O

Theorem 3.2.6. Let p,p’ > 1 be conjugate exponents and let g € L°(v). If
v is such that L. (v) has the Fatou property, then the following conditions are

equivalent:

(a) g € L¥ ().

(b) My € B(LE, (v), L' (v)).-
Proof. By Lemma 3.2.3 we have that (a) = (b). Let us see (b) = (a).
Suppose that M, € B(LE (v), L'(v)). Then also M, € B(L?(v), L'(v)) and so,

by Theorem 3.2.5 we have that g € L? (v). Hence |g[?' = € L2 (v). Therefore,
lg|”" = 1g| - |gI” ' € L}(v), that is g € L¥ (). m

We finish this section by analyzing the compactness properties of the mul-

tiplication operators.

Theorem 3.2.7. Let p,p’ > 1 conjugate exponents and let g € L°(v). If v is
R-decomposable then the following statements are equivalent:

() g€ I¥(v),

(b) My € B(LE,(v), L'(v)).
(c) My € L(LE,(v), L' (v)).
(d) My € L(LP(v), L (v)).
(e) My € L(LE,(v), Ly, (v)).
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Proof. The equivalence (a) < (b) is precisely Theorem 3.2.6. The implication
(¢) = (b) is evident. Let us see (b) = (c). Let M, € B(LE (v),L'(v)). We
want to see that My(Bpr(,)) is an L-weakly compact set in L'(v), that is,
|hnllzry — O for every disjoint sequence (h,) contained in the solid hull of
My(Bpg,,y)- Note that the solid hull of My (B (,)) is itself, since My(Bpz (,))
is solid in L'(v). In fact, let h € L'(v) such that |h| < |gf| with f € Bz (,).

Then,
B <
Jl Xsupp(g) < [fXsupp(g) < |

|
and so %Xsupp(g) € L (v) and

h
H ey <L

;Xsupp(g)

, <11

Lﬁy(l’

Hence h = Q§Xsupp(g) € My(Bpr,()). So we can take (h,) C My(Bpr (,)) and
define A,, = Uj>psupp(h;). Then, (A,) is a decreasing sequence with NA,, =
as (hy) is a disjoint sequence. On the other hand, for every n there exists
Jn € Brp ) such that h, = My(fn) = gfn = gfnxa,- Noting that g € LY (v),
by Lemma 3.1.2,

1hnllziey < fallzewy - laxallee o) < loxallLe o)

Since gxa, | 0 in the order continuous space L¥ (1), then ||gx 4, e ) = 0

The implication (¢) = (d) is clear since B(LP(v)) C B(L? (v)). Let us
show now (d) = (a) and close the equivalences from (a) to (d). Let M, in
L(LP(v), L' (v)). In particular, M, € B(L?(v), L' (v)) and Theorem 3.2.5 yields

’

that g € L% (v).

Let us show that g € Lp/(V). Since v is R-decomposable, we can take a
v-null set N € R and a family {Q, : a € A} of pairwise disjoint sets in R
satisfying conditions (i) and (ii) in Definition 2.3.6 such that Q = (UpeaQq) UN
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with disjoint union. For every finite set I C A, we consider Q; = Uy € R
and the vector measure v7: R'°¢ — X defined by v(ANQ;) for all A € RYe. Tt
follows that f € L}, (v7) if and only if fxq, € Lj,(v) and in this case | f[,, =
|lfxa,llv, see the proof of Theorem 2.3.8. Even more, f € L'(v;) if and only
if fxq, € L*(v). Indeed, let f € L'(v;) and take (¢,) C S(R'°) converging
in L'(v;) and vr-a.e. pointwise (except on a vy-null set Z). Then, (¢,xq,;) C
S(R) converges to fxq, v-a.e. (except on the v-null set Z N ;). Moreover,
lenxa, — emxa:lly = llen — @mlly; — 0, as n,m — oo. So, there exists
h € L'(v) such that (¢, xq,) converges to h in L'(v). By taking a subsequence
converging v-a.e. to h, it follows that fxq, = h € L'(v). For the converse

implication a similar argument works.

Define now B, = {w € © : 0 < |g(w)| < k} for £k € N and consider
(l9lxBy) (k1) C L¥ (1) as each gx g, is bounded and v is defined on a o-algebra.
Then |g|xB,xa, € L¥ (v) and it follows that |g|xs,xa, T lg| in LO(v). We
claim that the upwards directed system (|g|x B, Xxa;),r) is a Cauchy system in
) (v). Otherwise, there would exist a number € > 0 and an increasing sequence

(l91x By, X2, ) such that |||g\XJ_fgkn+1XQIn+1 - lglxB., xau, HLP/(V) > ¢ for all n,
i.e. such that ||[g|xc, [l () > € where C, = (Bg, ., NQr,,1) \ (Be, N Q) are

n+1
pairwise disjoint. Let f, = a|g|?'/?xc, € Bro(y) where a = |[|g| ;f/(/f). Then
|My(fr)llzr )y — O due to the L-weakly compactness of M, whereas

HMg(fn)”Ll(y) = H|g|p/XCnHL1(V)a = |||g|XCnHZI)1p/(V)OZ > Ep/a

which gives a contradiction. Therefore (|g|x s, ),r) is convergent in norm to
some h € L¥ (v). By Theorem 100.8 in [34], we have that |g|xp,xa, T h in
L¥ (v) and so g = h.

Clearly, (c) = (e) since L*(v) is continuously included in L. (v). The im-
plication (e) = (f) follows by the same argument as the one used to prove
(¢) = (d). We will show now that (f) = (d). Assume M, € L(LP(v), L. (v)).
In particular, M, is in B(LP(v),LL(v)) and so, Theorem 3.2.5 yields that

M, € B(LP(v),L'(v)). Hence M, € L(LP(v),L'(v)). We already have the

equivalences (a) to (f).

Since every L-weakly compact operator is weakly compact, (¢) = (g). Im-

plication (g) = (i) holds again since L!(v) C L. (v). The same argument for
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(¢) = (d) gives (i) = (j). In the same way that (f) = (d), we obtain () = (h).

Finally, let us see (k) = (a) and so the chain will be closed. Let M, in
W(L?(v), L' (v)) and so by Theorem 3.2.5, g € L2 (v). For every k € N, let
Ay ={w e Q:k—1<|gw)” <k} and consider (|g|” xa,) C L*(v1) (we
follow the notation in the proof of (4) = (1)). Then |g|” xa,xa, € L'(v).
Define

Stn,1) = Z/Igl”’xAka, dv.
k=1

Writing fe,,r) = sign(g) > p_; 9] ~'xa,xa, € LP(v), we have that Stn,r) =
J9fmnydv =TI, o Mg(f(n))- The ideal property of the weakly compact op-
erators gives that I, o M, € W(LP(v),X). Since |f,, n|P < lg|”", we have
that [|[fo.n|PllLie) < 1917 110e ) and so, || fonllirw) < ||9||il,ﬁy)- Hence,
(fon,n))(n,1) C ||g||L%/ ) ‘Bry(,) and then the upwards directed system (S, 1)) (n,1)
is contained in a relatively weakly compact subset of X. Consequently, there

exists a subsystem (S, 1.))a C (S(n,1))n,1) weakly convergent to some zo € X.

Since |g”'| € LL(v), we can consider the element zf] € X** defined by
zf(z*) = [ |lg|P" da*v for all z* € X*. Noting that 9ftn,n) T lg|P" in LO(2*v) and
so in L*(z*v), due to the order continuity of L!(z*v), we have that

x*(s(n,l)) = /gf(n,f) dx*y—>/|g|p’ dx*y:x*(x’o/).

Hence, (S(n,1))n,r) converges in the weak* topology of X** to xy. Since the
weak* topology of X** coincides in X with the weak topology of X, it follows
that zj = 29 € X. Therefore, |g|"" € L'(v) and we conclude the proof. O

Remark 3.2.8. Following the results in [13], the previous theorem can be
extended to the corresponding cases of semi-compact and M-weakly compact
operators. For the definitions we refer to [30, Definition 3.6.9] and for the proof
check Theorem 7 in [13].
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3.3 LP(v) and L?(v) as intermediate spaces

It is well-known that for a positive o-finite measure p, the inclusion relation
LY(u) N L>®(p) € LP(u) C LY(u) + L°°(u) substitutes for many purposes the
inclusions L>°(u) C LP(u) C L'(p) which hold for p finite. In this section we
analyze the similar inclusions for the spaces LP(v) and LP (v). Note that all
the inclusions involving spaces of integrable functions are continuous as we are

dealing with Banach lattices (see Preliminaries).

Denote by L*°(v) the space of (classes of) v-a.e. bounded functions. Of

course, L (v) is a B.f.s. related to v for the supremum norm || - ||co-

Proposition 3.3.1. Let p > 1. The following inclusions hold.
(a) LL(v)NL>®(v) C LP(v) C LL(v) + L>=(v).
(b) LY (v)NL>®(v) C LP(v) C L*(v) + L*>=(v).

Proof. (a) Consider the B.f.s.” Ll (v) N L*°(v) and L. (v) + L*°(v) with the

usual lattice norms
12y ey = max {{| £l L1 w)s [ Flloo }s
IPllr )4 noey = f {1 fllo o) + gl = b= f+g, f € LL(v), ge L>(v)}.

For every f € LL (v)NL*>(v) we have that |f| < || f||co- Then since p—1 > 0,
we have that |f[P~1 < [|f[[55" and so |f[P < [[f]|5" - |f]. Hence [f[P € Ly, (v),
that is, f € LP (v).

For the second containment, let f € LP (v) and define the measurable set
A={w e Q:|f(w)] > 1}. Note that x4 < [f[" and so [[xall, < [Pl =
I£]12.,- Then x4 € LL(v) and thus x4 € LE (v). Writing f = fxa + fxo\a.
clearly fxa\a € L*(v). Moreover, since L% (v) - L¥ (v) = L}

w

(v) with p,p’
conjugate exponents (see Lemma 3.2.1) we have that fxa € L. (v). Hence
feLyw)+L>).

The inclusions L(v) N L*(v) € LP(v) C L*(v) + L*°(v) in (b) follow by

the same argument. O
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In general these relations cannot be improved in the sense L} (v)NL>(v) C
LP(v) and LP(v) C L'(v) 4+ L*®(v). For instance, the example 2.2.1 shows
that the first inclusion may fail. The following example shows that the second

inclusion also may fail.

Example 3.3.2. Let (0,3, 1) be a finite non atomic measure space and con-
sider the vector measure 7: ¥ — L (1) given by n(A) = x4 for all A € ¥. Given
an uncountable abstract set I', we construct the vector measure v as in Section
2.4 for vy, = n for all v € I'. Then, L}, (v) = ¢>(I', L' (1)) and so L? (v) =
¢>°(T', LP(p)). Moreover, we have that L'(v) = co(I, L*(p)) and L*>®(v) =
¢>°(T', L>°(p)). Taking f € LP(u)\ L>(p), we have that (f)yer € (T, LP(1))
but it cannot be written as a sum of elements (h,)yer € co((I', L' (v)) and
(gy)ver € £2°(T,L>=(v)), since h, = 0 except on countable many . Conse-
quently, L2 (v) ¢ L'(v) + L (v).

However, an improvement of L? (v) C Ll (v) + L*(v) is possible by using

a larger space than L'(v) + L*°(v). Namely,

L ov) = T A=) .
Remark that L'(v) C Ly, o(v) C Ly, () since S(R) € L;,(v) N L>(v) and S(R)

is dense in L!(v).

Proposition 3.3.3. Let p > 1. The inclusion LE,(v) C Ly, o(v) + L>(v) holds.

Proof. Let f € LP(v) and consider the set A = {w € Q : |f(w)| > 1} for
which y4 € LP (v) and f = fxa + fxava € Li,(v) + L>®(v) (see the proof of
Proposition 3.3.1). For every n € N, define B,, = {w € A : [f(w)| < n} and
fn = fxs,- Notethat |f,| < nxp, € LL(v)NL>®(v) and so f,, € L (v)NL>®(v).
By Lemma 3.1.2,

||fXA - fn|

o) < N fllee o) - lIxa — xs,

w

o) = [f(xa —xB,)

LY (v)

where p’ is the conjugate exponent of p. Remark also that |[x4 — x5, ||Lp/(y) =

1
7

a1
Ixavsall e ) = Ixavs, 71 ) = IVI(A\BL)? . Since xa\5, < 31/, we have

1
that [v[[(A\Bn)? = [xa\s,llep,0) < 5 1fllep0) = 0and so [ fxa—fullryw) =
0. Hence, fxa € L, o(v). O
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Remark 3.3.4. Consider the case when the vector measure is defined on a
o-algebra. Then, L (v) N L>®(v) = L*>°(v) C L'(v) which is closed in L} (v).
Hence, Ly, (v) = L'(v) and the inclusion in the previous proposition gives

LP (v) C L*(v). Therefore, Proposition 3.3.3 is a generalization of [13, Proposi-
tion 3.1].



Chapter 4

Representation of Banach
lattices as L., spaces of a
vector measure defined on a
O-ring

The interplay among the properties of a vector measure v, its range and its
integration operator allows us to understand the behavior of the space L!(v)
of integrable functions with respect to v. This makes desirable to know which

spaces can be described as such L!-spaces.

As it was already mentioned in the Introduction, in [7, Theorem 8], Curbera
proves that every order continuous Banach lattice E with a weak unit is order
isometric to a space L'(v) where v is a vector measure defined on a o-algebra
(see also [31, Proposition 3.9] for the complex version). The result remains true
if F has not a weak unit but for v defined on a dé-ring. This was stated in [6,
pages 22-23] but the proof there is just outlined. We present here a proof of
this fact in full detail.

95
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If we think now about the space L. (v) of weakly integrable functions with
respect to v, in [10, Theorem 2.5], Curbera and Ricker show that every Banach
lattice E satisfying the o-Fatou property and with a weak unit belonging to the
o-order continuous part E, of E is order isometric to a space L1, (v) for a vector

measure v defined on a o-algebra.

The aim of this chapter is to prove the corresponding result in the case
when E has not a weak unit by using a vector measure defined on a é-ring. We
prove in Section 4.1 that every Banach lattice having the Fatou property and
having its o-order continuous part as an order dense subset, can be represented
as the space Ll (v) of weakly integrable functions with respect to some vector

measure v defined on a d-ring.

In Section 4.2 we also establish a representation theorem for the class of
o-Fatou Banach lattices ¥ with the o-order continuous part as a super order
dense ideal in F, using again vector measures on d-rings. In this case E is order

isometric to the o-Fatou completion of L!(v).

Section 4.3 deals with a concrete example in order to remark the differences
which can be exist when the representation of a Banach lattice is possible, by

using vector measures defined on either a o-algebra or a J-ring.

Similar representation theorems for p-convex Banach lattices as L? and L?,

spaces is also given in Section 4.4.

Finally, in Section 4.5 we will see that if a Banach lattice having an algebra
structure can be represented as a space of integrable functions, then this space

inherit in some way the algebra structure.

4.1 Representing Fatou Banach lattices

The starting point of this section is a concrete vector measure which always
can be associated to an order continuous Banach lattice. This vector measure

makes possible all the representations theorems appearing in this chapter.
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4.1.1 Vector measure associated to an order continuous
Banach lattice

Let E be an order continuous Banach lattice. We will prove in Section 4.1.2
that there exists a vector measure v defined on a d-ring and with values in
E, such that the space L!(v) of integrable functions with respect to v is order
isometric to E. More precisely, the integration operator I,: L'(v) — E is an

order isometry.

The key for constructing our vector measure is the following result of Lin-
denstrauss and Tzafriri [26, Proposition 1.a.9]: E can be decomposed into an
unconditionally direct sum of a family of mutually disjoints ideals {Eqs}acn,
each E, having a weak unit. That is, every e € E has a unique representa-
tion e = ) ca €a With eq € Ey, only countably many eo # 0 and the series

converging unconditionally.

Each E, is an order continuous Banach lattice with a weak unit. Then,
from [7, Theorem 8], there exist a o-algebra ¥, of parts of an abstract set €2,
and a positive vector measure v, : 3, — F, such that the integration operator

I, : L'(vy) — E, is an order isometry.

Consider the set Q = Uypea{a} x Q4 and the §-ring R of subsets of ) given
by the sets Usea{a} X A, satisfying that A, € X, for all @« € A and there
exists a finite set I C A such that A, is v,-null for all & € A\I. Then,

Rloc — { Uaea {a} x Ay 0 Ay €3, for all a € A}

(see Section 2.4 for the computations).

Define the finitely additive set function v: R — E as
V(Uaca {a} x 40) = va(Aa).
aEA
Let us see that v is a vector measure. Given A4,, = Upea{a} x AZ € R forn > 1

mutually disjoint sets such that U, >1 4, € R, we have that

U A, = U{a}x(UAg)

n>1 a€A n>1
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where | J,,~; AL is a disjoint union for every oo € A and there exists a finite set

I C A such that (J,5, 43 is vo-null for all & € A\I. Since for each a € A the
sum ), 5 va(Aq) converges to v4(Un>1A47) in E, and so in E, then we have

that

y( U An> - Zya( U Ag) =Y vl = 303 a4 = Y w4y,

n>1 acl n>1 acln>1 n>1acl n>1

Note that v is positive as every v, is so. Also note that {{a}x Qs : o € A}
is a family of pairwise disjoint sets in R satisfying that if {a} x 4, € RN2{a}*%a
for all & € A, then Upen{a} x 4, € R . Moreover, given z* € X*, if
{a} x Z, € RN 2{ebxQ s |z y|-null for all @ € A, then Z = Upea{a} x Z,
is [x*v|-null. Indeed, taking A = Ugea{a} x Ay, € RN 2%, we have that
2*v(A) = 25 ( X pen Valda)) = X oea 2Va(Aq) (note that the sum is finite).
Since {a} x A, C {a} x Z, it follows that z*v,(A,) = z*v({a} x A,) =0, so
2*v(A) = 0 and then Z is |z*v|-null. Hence, v is R-decomposable. Moreover,
aset A = Uqgen{a} x A, € Rlo¢ is v-null if and only if A, is ve-null for all
a € A

Remark 4.1.1. Let f € M(R"°). For each a € A, we denote by f, the
sections f(a,-): Qa4 — R. Note that fo € M(Z,) and, if o = 37 a;xa; with
Aj = Ugenf{a} x Al € RI¢ then ¢, = D=1 @5X a5 € S(Za)-

The following lemma will allow us to give useful description of the spaces
L'(v) and L. (v).

Lemma 4.1.2. Let f € M(R'°) and o € A. Then,

(a) fX{a}XQa € L}”(l/) Zf and OTLly Zf fO/ € L}zz(ya)‘

() fX{arxo. € LY(v) if and only if fo € L' (va). In this case

/ o / fodva.

Proof. Let 2* € E* and 2}, € E be the restriction of 2* to E,. For each
function ¢ = Y77, ajxa; € S(R') with A; = Usea{a} x AJ, we have that

o
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PX{a}x Q0 = 2jm1 X {0y as, € S(R) and o = > =1 a5X 45 € S(X4), then

[oxtaea, dr'v = S atulfal x 44) = S ajetva(4l)
j=1 j=1

> ajahva(Al) = /% dzlv,.
j=1

It is routine to check that |z*v|({a} X A,) = |2iva|(Aq) for every A, in
Y. Then, in a similar way as for z*v, we have that [ x{a}xa. dlz*v| =

[ padlzival.

Let (¢n) C S(R'"°) be a sequence such that 0 < ¢, 1 |f|. Then, 0 <

OnXfayxa T IfIXfarx, and 0 < (©n)a T |fa]- Using the monotone conver-
gence theorem, we have that

[ 18xara, disvl = tim [ eaxiareo, i (4.1.1)
= tim [ (o dizival = [ 1fal diatval
Then, f, € L. (v,) implies IX{ayx. € LL(v).

Let now y* € E}, and define §*: E — R as §*(e) = y*(eq) fore = > o €a-
Then, §* € E* and the restriction of §* to E, coincides with y*. So, by (4.1.1),

[1aldlyvel = [ 17xt01c0, i

Hence, fx{a}x0. € Ly(v) implies f, € Ll (va). Therefore, (a) holds.

In the case when [ |f|x{a}xq, dlz*v] < oo, that is, fxja1xa. € L'(z*v),
there exists a sequence (p,) C S(R) such that ¢, — fXx{arxo, in L'(z*v)
and S0 ©nX{a}x0. — fX{a}xQ. ID L'(x*v). Also, by (4.1.1), we have that
(on)a = fo in LY(z%v,). Hence,

/fX{a}xga dz*v = hin/spnx{a}XQa dr*v (4.1.2)

= lim/(apn)a dxlve :/fa dxlvg.
n

Suppose that fX{a}x0. € L'(v). In particular, IX{a}xa. € L} (v) and so,
by (a), fo € LL (V). On the other hand, taking a sequence (p,) C S(R) such
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that ¢, = fX{a}x0. In L' (v) and s0 ©n X {a}x0. = fX{a}x0. in L' (v), we have
that [ ©nX{axa, dv converges to [ fx{aixa, dvin E. Since [ ©nXiatxa, dv =
J(@n)adra € Eq and E, is closed in E, we have that [ fx{a}xq, &V € Eq.
Given y* € E% and §* € E* defined as above, it follows

v ([ e, ) =7 ( [ Fetereo,dv) = [ areo, ditv = [ fadyive,

where we have used (4.1.2) in the last equality. Hence, f, € L'(v,) and
ffadl/a = ffX{(x}XQa dv.

Suppose now that f, € L'(v,). In particular, f, € Ll (v,) and so, by a),
[X{ayxa. € Li,(v). Since [ fodve € Eq C E, for every * € E* we have that

x*(/fa dua) :ac;(/fadva> :/fa dx} Ve :/fx{a}xgw dz*v,

where z}, € EJ is the restriction of 2* to E,. Then, fxjaixa., € L'(v).
Therefore, (b) holds. O

Let us give a description of the space L'(v) which will be needed to prove

that F is order isometric to L!(v).

Proposition 4.1.3. The space L' (v) can be described as the space of all func-
tions f € M(R'¢) such that fo € L*(vo) for alla € A and Y- cp [ |faldva
is unconditionally convergent in E, where f, is defined as in Remark 4.1.1.
Moreover, if f € L*(v) we have that

/fdz/: Z/fadz/a.

aEA
Proof. Let f € L'(v). Then, for every v € A, we have that fx{a}x0, € L'(v)
and so, by Lemma 4.1.2.(b), fo € L' (v4). Let (¢,) C S(R) be a sequence such
that ¢, — f in L'(v) and v-a.e. (except on a v-null set Z). Since each ¢, is
supported in R, we can write supp ¢, = Usea{a} x A% where A? is v,-null
for all & € A\I,, with I, C A finite. Then,

@\ 2) nsupp £ < | supp e = |J [ {ad x 45 = U da} < (U 43).

n>1 n>1a€A aEA n>1

Note that Up>1 A% is vo-null for every o ¢ I = U,I,,. Consequently, we have
that Uyeays{a} x (Up>1 A2) is v-null and thus

f= fXUaeI{a}X(UnzlAZ) v-a.e.
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For every o € A\I, from Lemma 4.1.2.(b) and since fX{a}xqo, = 0 v-a.e., we
have that

/|fa‘d’/a:/‘f|X{a}><Qa dv = 0.

Write I = {aj}j21 and gn = Z?:l |f|X{aj}><Qaj' Note that 0 < In T |f| S
L'(v). Then, since L'(v) is order continuous, g, — |f| in L*(v) and so

Z/|faj|dyaj :Z/Ifb({aj}xﬂaj dV:/gndV_}/UcldV in E.
j=1 j=1

Therefore, 3~ o a [ |fal dvg is unconditionally convergent in E.

Conversely, let f € M(R!°°) be a function such that f, € L'(v,) for all
acAand Y A [|faldrs is unconditionally convergent in E. From this and

since v, is positive, we have that there exists a countable set N C A such that

Ifallo, = | [ 160l dve

That is, fo = 0 ve-a.e. for all & € A\N. So, for each o € A\N, there exists a
vo-null set Z, such that

E:0 for all &« € A\N.

falw) =0 for all w € Q,\Z,.

Note that the set Upea\n{a} x Zs € Rlo¢ is y-null, then
F=3 IX{ayxa, v-ae
aeN

Write N = {a;};>1 and take f, = >0, fX{a;}x9., which belongs to L'(v)
from Lemma 4.1.2.(b). Then, for m < n,

/|fn_fm|dyHE
_ Zn: /|f|X{aj}XQﬂj dVHE

Jj=m+1

S [ 15,

j=m+1

an - fm”u

— 0
E

as m,n — oo. Since f, — f v-a.e., it follows that f € L'(v). Moreover, f, — f

in L'(v), so
/fdy:lirrln/fndy: Z/fadua.

a€A
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We finish this section by showing a description of L., () which will be used

in Section 4.1.3 for the representation of Fatou Banach lattices.

Proposition 4.1.4. The space L., (v) can be described as the space of all func-
tions f € M(R'¢) such that fo € LY (va) foralla € A andy cx [ |fal dlz*va]
converges for all x* € E*, where f,, is defined as in Remark 4.1.1. Moreover, if
feLl(v) and z* € E*, then

/fdx*V: Z/fadx*l/a and /fd|x*1/|: Z/fad|x*ua|.

acA a€EA

Proof. Let f € L (v). Then, fXx{a1xa. € L, () and so, by Lemma 4.1.2.(a),
fo € LY (v,) for every a € A. Take z* € E*. For every I C A finite, by (4.1.1),
we have that

3 / faldizval = 3 / Flxterxa, diz*v]

acl acl

/ | Xouer e, Azl < 1]

S0, > wen [ Ifaldlz*vy| is convergent.

Conversely, let f € M(R'°) be such that f, € L. (v,) for all @ € A and
> wen [ Ifaldlz*vs| converges for all 2* € E*. Fix z* € E*. There exists a
countable set N C A such that

/Ifa\ dlz*ve| =0 for all o € A\N.
Then, for every o € A\N, there exists a |*v,|-null set Z, such that
fa(w) =0 for all w € Q,\Z,.
Noting that Usea\n{a} x Zy is [z*v|-null, it follows

= Z [X{ayxa. |2"v|-ae.

aEN

Write N = {a;};>1 and take f,, = 37, fX{a;}x9.,, which, by Lemma 4.1.2.(a),
is in L} (v). Then, for m < n, by (4.1.1),

J1s=taldiavl= Y [ 1tweon, divi= S [ lfoyldlava] 0

j=m+1 Jj=m+1
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as m,n — oo. Note that f, — f |z*v]-a.e. So, f € L'(|z*v|) and f,, — f in
LY(Jz*v|). Therefore, f € L} (v) and, by (4.1.1) and (4.1.2),

/fdx*uza;/fa da*vg

and

/fd\x*z/| = Z /fa dlz*v,| forall z* € E*. O

acA

4.1.2 Description of an order continuous Banach lattice as
an L'(v)

Let E be an order continuous Banach lattice and v the associated vector measure

constructed in Section 4.1.1. Let us show that L!(v) and E are order isometric.

Theorem 4.1.5. The space L'(v) is order isometric to E. Even more, the

integration operator I,: L'(v) — E is an order isometry.

Proof. The integration operator I,: L'(v) — E is a positive (as v is positive)
continuous linear operator satisfying that |1, (f)||gz < || f||. for every f € L*(v).
Let us see that I, is an isometry. Fix f € L'(v). From Proposition 4.1.3, it

[ funa], = s ()] s
x*(()%/famua)
X (flae)

follows

1£1

sup
r*EBp*

sup
r*EBp*

Let z* € E*. Note that 2* o I, € L'(v,)* for all @ € A (recall that
I, : L'(vy) — E, is an order isometry). Take &, = X{f,>0} — X{f.<0} and
note that |fo| = &4 « fo. Define 2*: E — R by

B (e) =Y a* ol (€l (ea))

aEA
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for all e € E with e = EaeA e, such that e, € E, and the sum is uncondi-
tionally convergent. Let us see that Z* is well defined and belongs to E*. Take

an element e = eo € E as above. Then, |e| = Y A |ea| where the sum

aEA
is also unconditionally convergent. Let N C A be a countable set such that
ea =0 for all @ € A\N. Then, &1, (eq) = 0 and so % o I, ((al; M (ea)) =0

for all @ € A\N. Writing N = {¢;};>1 we have that

‘ i z*o IVaj (5%' Iu_alj <eaj))) = | ( i I”%‘ <£°‘j I”_alg <eaj))> ‘

j=n j=n

ux*l-\\;§%1>Qj< ol ea))|

IN

Note that, since I, is an order isometry, |1, (h)| = I, (|h]) for all h €
L'(vy) and I, (h) < I, (h) whenever h < h € L'(v,) (the same holds for Ih.
Then,

[, (80 1 (€0

g

I

DIRACHE I C)] B
Jj=n

<
Il
3

L., (|60, It (ea)))

“j

I
.MS

<
Il
3

Iv(,j (‘I;al] (604_7')|)

I

I
3

I
hE

Iuaj (I;alJ (|eaj |)) = Z ‘eaj |-
Jj=n

n

<.
Il

Therefore,

—0

m m
>t o L (60,2 ()| < 7l [ D lea ],
j=n j=n

as n,m — 0o. So, Z* is well defined, obviously linear and continuous as |Z*(e)| <
llz*]| - lelle for all e € E, that is, Z* € E* and ||Z*| < ||z*|.

Moreover,

x*(/ |fa| dVa) =z*o Iva(|fa|) =z oly, (gafa) =z*o I, (fal;(,l (Iva(fa)))
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for all & € A. From Proposition 4.1.3, we have that I, (f) = >°_ ca fv. (fo) and

S0,

P 0) = X o b (Gl () = 3 o ([ Ufaldva)

aEA aEA
Hence, we have proved that for every z* € Bpg- there exists £* € Bpg- such

that > ca x*(f |fa|dVa) = &*(1,(f)). Then, from (4.1.3), ||fll, < |L.(f)||&.
Therefore, I, is a linear isometry.

Let us see now that I, is onto. Let e = A o € E. Since each e, € E,,
there exists h, € L*(v,) such that e, = I, (hy). Define f: Q — R by f(a,w) =
ho(w) for all (a,w) € Q. Then, f € M(RY°) (as f~1(B) = Upea{a} x h31(B)

for every Borel set B on R), fo, = ho € L*(v,) for all @ € A and

S L (f) =Y b)) = Y ea

acA acA a€A
is unconditionally convergent in E. So, by Proposition 4.1.3, we have that
feL'(v)and L,(f) = > e Iv. (fa) = e. Note that if e > 0, that is, e, > 0
for all « € A, then h, > 0 for all & € A and so f > 0. Hence, I} is positive.

So, I,, is positive, linear, one to one and onto with I} positive. Then, by

[26, p. 2], I, is an order isomorphism. O

As an example of an order continuous Banach lattice without weak unit
which can be represented as an L'(v), we have £*(I") where I is an uncountable
abstract set I'. By Theorem 4.1.5, ¢}(T') is order isometric to L!(v) for some
vector measure v defined on a §-ring, via the integration operator. The vector
measure v can be taking as the one in Example 2.2.4. That is, v: R — ¢1(T') is
given by v(A) = x4 for all A € R, for the é-ring R = {A CT': A is finite}. In
this case, the integration operator is the identity map. Note that ¢1(I") cannot

be represented as L'(v) with v defined on a o-algebra, as it has no weak unit.

4.1.3 Description of a Fatou Banach lattice as an L! (v)

Until now, we have considered an order continuous Banach lattice FE. If we

forget about the order continuity property, descriptions of E by means of a
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vector measure could exist. For instance, if E is a Banach lattice satisfying the
o-Fatou property with a weak unit belonging to the o-order continuous part F,
of F/, then there exists a vector measure v defined on a o-algebra such that E is
order isometric to L. (v), see [10, Theorem 2.5] (see also [31, Proposition 3.41]
for the complex version). In this case, E, is actually order continuous and then
E, = E,, (following the same argument as the one in the beginning of Section
2.1). The proof of the representation of E as an Ll (v) consists in taking a
vector measure v such that L!(v) is order isometric to E, via the integration
operator I,,, and extending I, to Ll (v). The result is that this extension is an
order isometry from L. (v) onto E. Our question now is if a similar result is
possible if we forget about the weak unit and consider vector measures defined

on a §-ring, as it happens in the case when FE is order continuous.

In order to prove the desired result, we will need the next Lemma. Let F be
a general Banach lattice. Recall that the order continuous part F,, of E can be
decomposed into an unconditionally direct sum of a family of mutually disjoints
ideals {E2% }aea, each E2 having a weak unit u,. That is, every e € E,,

e, with e, € B¢

has a unique representation e = 3 o

wEA only countably many

eq # 0 and the series converging unconditionally (see [26, Proposition 1.a.9]).

Lemma 4.1.6. Suppose that E,, is order dense in E. Then, for every 0 < e €
E it follows

e(n,1) = Ze A (nug) T e (4.1.4)

ael
where the indices (n,I) are such that n € N and I C A is finite. Moreover, in
the case when 0 < e € E,,, there exists a countable set {a;} C A such that
e (nuq) =0 for alln and a € A\{e;}, and

e = lim Z e A (nug;) in norm. (4.1.5)

Proof. Let 0 <e € E and e(, 1) as in (4.1.4). Then 0 < e, ) T and e, ) < e
for all (n, I). Note that {nu, : o € A} is a set of pairwise disjoint elements, so
€(n,I) = Z e (nug) =eAN (Znua> (4.1.6)

aecl acl

(see [27, Theorem 12.5]). Let z € E be such that e, ;) < z for all (n,I). Let

us see that e < z. Suppose first that e € E,, and write e = Zj>1 €q,; where
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€a; € Eui and the series converges unconditionally. Note that, since e > 0
and {eq,} is a set of pairwise disjoint elements, e, > 0 for every j. Then
Z;"Zl ea; T e in the lattice order (see [34, Theorem 100.4.(i)]). For a fix j we
have that eq; A (nuq,;) T eq, (see [26, pp. 7-8]). Then, for each m it follows that
Doy €a; A (nua,) T 3072 eq; (see [27, Theorem 15.2]). Since eq, < e for all j,
taking I, = {aq, ..., } we have that Z;ﬂ:l ea; N (NUa,) < em,1,,) < z for all
n and so Z;nzl €a; < z. Hence e < 2. Note that actually we have proved that
> ie1 eA(nug;) T e where the indices are (n,m). Then, by the order continuity
of Eqp, it follows that e = lim,, ,, 377", € A (nug;) in norm. Hence, (4.1.4) and

(4.1.5) hold if e € E,y,.

In the general case, since E,, is order dense in F, there exists (e;) C Eqpn
such that 0 < e; 1 e. We now know that > .;e; A (nua) T e, for every 7.
Then, since ) ;er A (nua) < e,y < 2, we have that e, < z for every 7, and
soe< z. O

Consider the vector measure v associated to E,, as in Section 4.1.1, then
I,: L*(v) — E,, is an order isometry (Theorem 4.1.5). The question is if it is
possible to extend I, to the space L} (v) in a way that the extension is an order
isometry between Ll (v) and E. Note that if this extension is possible, £ must
have the Fatou property since Ll (v) has (recall that v is R-decomposable).
Even more, since L!(v) is always order dense in L} (v) (Theorem 2.2.2), E,,

must be order dense in E. So, we will require E to have these properties.

Now we can prove our main result by using Lemma 4.1.6. Remark that if
FE has the Fatou property, E has in particular the o-Fatou property and then
E., =E,.

Theorem 4.1.7. If E has the Fatou property and E, is order dense in E, then

E is order isometric to L}, (v).

Proof. Let us extend I, to L} (v). First, consider 0 < f € L1 (v) and choose
(pn) C S(R™°) such that 0 < ¢, T f. For each n and I C A finite, we define
End) = PnXUncr{a}xa € S(R). Then, (§,.1)) C L'(v) is an upwards directed
system 0 < &,y T f in L} (v). Indeed, let g € L! (v) be such that ) < 9
for all (n,I). For each n and 8 € A, there exists Z, g € R!°® v-null such that



68 Chapter 4. Banach lattices as L! (v)

En,gsh) (o, w) < gla,w) for all (o, w) € Q\Z,, 5. Note that U, Z, s N{B} x Qg is
v-null and then Z = Ugea Uy Z, s N{B} x Qp is v-null as v is R-decomposable.
Moreover, for every (a,w) € Q\Z, we have that ¢, (a,w) = @ 1oy (a,w) <
g(a,w) for all n, and so f < g. A similar argument gives that 0 < Eny TS
in Ly, (z*v). Since I, is positive, (I,(§n,1))) C Ea C E is an upwards directed
system 0 < I,,(§(n,1)) T and sup, 1) (|11 (§n.0) lE = sup(n, 1) 1. lle < [1£l-
Then, by the Fatou property of E, there exists e = sup, ) [, ({(n,1)) in E and
lellz = sup(,. 1y 1o (§n,1) | 2. We define T'(f) = e.

Using a similar argument to the one in [10, Theorem 2.5], we will see that T'
is well defined. Take another sequence (¢,,),>1 C S(R!°¢) such that 0 < ¢, 1 f.
Denote 0,1 = YnXUacs{a}x0. a0d 2 = supg, py L (Nwm,1)). Let 0 < 2* € B
be fixed. Then, z*(e) > z* (I, (§(n,1))) = [Em,nda*v foralln >1and I C A
finite. Since 0 <&, 1) T fin L' (2*v) which has the Fatou property, we have that
Sup (. 1) [ &n,ry da*v = [ fdx*v. Note that [ [h|d|z*v| = [|h|dz*v for all h €
LY(z*v) as a*v is positive. Consequently, z*(e) > [ fdz*v > z* (I, ({(n,1))) for
allm > 1 and I C A finite. In a similar way, 2*(2) > [ fdaz*v > «* (L, (nn,1)))
for all n > 1 and I C A finite. In particular, 2*(e) > z*(I,(9(,,1))) and
a*(z) = 2*(Iy({n,ny)) for all n > 1 and I C A finite. Since this holds for all
0 < 2* € E*, we have that e > I,,(1(,,,1)) and z > I,,(§(n,1)) for all n > 1 and
I C A finite. Then, ¢ > z and z > ¢, and thus e = z. So, T is well defined.

Moreover,
1Tl = llelle = sup 110 ()| = sup 1€, lle = 11w,

where in the last equality we have used that L. (v) has the Fatou property.

Let us see now that T(f A g) = Tf A Tg for every 0 < f,g € Ll (v).
Consider sequences (¢,,), (¥n) C S(R!°¢) satisfying that 0 < ¢, 1 f and 0 <
Yn T g, and denote §(n, 1) = ©nXUnc;{a}xQ A0 N0, 1) = VnXUac;{a}xQq - Lhen,
Tf = sup(y, ) L (§m.ry) and Tg = sup,, 1) L, (1n,1)). Note that (¢, A h,) C
S(R!¢) satisfies that 0 < ¢, A, T f A g (see [27, Theorem 15.3]) and also
(©n ANn)XUaer{a}xQa = &n.1) A Nn,1)- Then, since I, is an order isometry, we
have that

T(fNg)= (sug L&, 1) A (ny1y) = (Sll% L,(§m,n) AN L(Nn,ry) =Tf NTg.
n, n,
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For a general f € L1 (v), we define Tf = Tf* —Tf~ where f* and f~ are
the positive and negative parts of f respectively. So, T': L. (v) — E is a positive
linear operator extending I,,. For the linearity, see for instance [27, Theorem
15.8]. Moreover T is an isometry. Indeed, for f € L. (v) , since f* A f~ =0,
we have that Tf* ATf~ = T(f* A f7) = 0. Then, it follows that |Tf| =
Tft—Tf| = Tf* +Tf =TIf|, and so, [T(H)llx = IT(Dlle = |l

Let us prove that T is onto. Let 0 < e € E. Since F, is order dense in F,
from Lemma 4.1.6 we have that e, 1) = >, c;e A (nua) Te. Fixnand g€ A.
Since e A (nug) € Ef as 0 < e A (nug) < nug, there exists 0 < g, 5 € L'(v3)
such that e A (nug) = I,,(gn,p). Define f, 3: @ — R by f, s(a,w) = gn s(w)
if @ = g and f,g(e,w) =
we have that f, 5 € L'(v) and I,(fn,3) = Iu,(gns) = € A (nug). Taking
) = Daer fra € L'(v), we have that 0 < Sy T as € = Il,_l(e(mj))
and sup(,, ) (.0l = sup(, e, nlle < llelz. By the Fatou property of

0 in other case. Then, from Proposition 4.1.3,

Ll (v), there exists f = SUpP(y,, 1)y §(n,1) 11 Li(v).

If we prove that z*(e) > [ fda*v for all 0 < 2* € X*, by the same argu-
ment used to see that T is well defined, we will have that T'f = e. Fix a € A,
since 0 < &,y T f in Ly, (v), it follows that 0 < £ )X {a}x0n T fX{a}x20
in L}, (v). Indeed, if g € L}, (v) is such that &, /)x{a}x0. < g for all (n,I),
then {1y = {mnX{a}x. T DX\ {a}x2) < 9+ fXO\({a}x.) for all
(n,I), and so f < g+ fxo\{ayxa.)- Hence, fXraixo. < 9X{a}xQa < 9-
Since §(n,nX{a}xQ = 2ger [n.8X{a}x2 = [fnaX{a}xq., actually we deals
with a sequence. Writing hy = fn aX{a}x0., We have that 0 < Ay T fx{a1xa.
in L (v) and so v-a.e. (note that I,(fu.a) = L, (gna) = €A (nus) < e A
((n + Dua) = L(fint1),0)). Fix now 0 < 2" € X*. Since hyy T fX{a}x0.
x*v-a.e., applying the dominate convergence theorem (see [28, Theorem 2.22]),
we have that [ fx{a}xq, dez*v = lim [hQ dz*v. Noting that [hgdz*v =
21, (fr,aX{ayx0.) < 271, (fn,a) = 2%(e A (nuq)), we obtain that

Z/fx{a}xga dz*v = limZ/hﬁdx*l/glimZx*(e/\(nua))

acl acl ael
lim 2™ (e, 1)) < 2" (e)

for all finite I C A. Therefore, by the description of L. (v) given in Proposition
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4.1.4 and (4.1.2),

/fdac*u => /fx{a}xga dz*v < z*(e).

aEA

For a general e € E, consider et and e~ the positive and negative parts
of e. Let g,h € LL(v) be such that Tg = et and Th = e~. Then, taking
f=g—heLl(v) we have that Tf = e. Note that 7! is positive. So, T is
positive, linear, one to one and onto with inverse being positive, then T is an

order isomorphism (see [26, p. 2]). O

Note that the conditions required in this theorem are necessary and suffi-
cient for the extension of I,,: L*(v) — E, to L} (v) to be possible in the desired

way (see the comments just before Lemma 4.1.6).

Finally, remark that although the converse of Theorem 2.3.8 does not
hold, if L} (¥) has the Fatou property, since Theorems 2.1.2 and 2.2.2 assure
that L1 (V) satisfies the conditions in theorem above, then there exists an R-

decomposable vector measure v such that Ll () is order isometric to L} (v).

We end the section by showing two examples of the representation of Ba-

nach lattices as L. (v) spaces.

Example 4.1.8. Consider an uncountable set I' and the J-ring R of finite
subsets of I'. The space £>°(I") has the Fatou property and its o-order continuous
part ¢o(T") is order dense. Then, from Theorem 4.1.7, £°°(T") is order isometric
to L} (v) for some vector measure v defined on a §-ring. The vector measure
v: R — ¢o(I') can be defined as in Example 2.2.1 and in this case, the order
isometry is the identity map, see [15, Example 2.2]. Note that £>°(T") cannot be
represented as Ll (v) with v defined on a o-algebra, as its o-order continuous

part has no weak unit.

Remark that if we consider a non atomic measure space ({2, %, 1), the space
L (p) can not be represented as an Ll (v) of any vector measure v defined on

a d-ring, as the order continuous part of L>°(u) is the trivial space.
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Example 4.1.9. Also, we can find Banach lattices without weak unit satisfying
the requirements of Theorem 4.1.7. Let I' and A be disjoint uncountable sets
and consider the Banach lattice ¢! (') x £>°(A) endowed with the norm ||(z,y)|| =
lzller 0y + 1yl (a) and the order (z,y) < (Z,9) if and only if # < Z and y < g
for x,% € (1(T') and y,§ € £°(A). This space has the Fatou property and its o-
order continuous part £1(T') x c¢g(A) is order dense. In this case, taking the é-ring
R ={ACTUA: Ais finite}, the vector measure v: R — ¢1(I') x co(A) can
be defined as v(A) = (11 (ANT),2(ANA)) for all A € R, where vy and v are
the vector measures defined in Example 2.2.4 and Example 2.2.1 respectively.
Indeed, (¢*(T) x cO(A))* is identified with (¢! (I‘))* X (Co(A))* in the way z* =
(x3,x3) such that z*(a,b) = zj(a) + x5(b) for all (a,b) € (1(T') x co(A) and
with ||z*|| = max{||z3||, [|[z5]|}. So, z*V(A) = 2511 (ANT) + 25 (AN A) for all
A € R and thus

lz*v|(B) = |z |(BNT) + |z3ve|(BNA) for all B € RY.

Then, for every f € M(R'"¢) we have that

[1n1davi = [ \fxe disiol + [ 1fixa diaspa.

Noting that L} (1) x L} (v2) = £1(I') x £>°(A) isometrically, it follows that the
operator T: LY (v) — (1(T) x £°(A), defined by T'f = (fxr, fxa) for all f €
L} (v), is an order isometry. Note that T restricted to L'(v) is the integration

operator I, which is and order isometry between L!(v) and ¢1(T') x co(A).

4.2 Representing o-Fatou Banach lattices

We have represented Banach lattices E having the Fatou property and such that
FE, is super order dense in E. What about if we consider the same properties
but for sequences? That is, if F is a Banach lattice with the o-Fatou property
and such that FE, is super order dense in F, is it possible to give a description
of E to represent F as some ideal of an space L} (v)? We will give a positive

answer by means of the o-Fatou completion of L!(v).

Note that since L' (v) C [L'(v)],, C Ly, (v), then ([L'(v)], ), € (Ly,(v)),
and so, from Theorem 2.1.2, we have that ([Ll(’/)]a,p)a = L'(v) which is super
order dense in [L!(v)]_ . (see the last part of the proof of Theorem 2.3.1).
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The following result is proved following the same arguments as the ones in
Theorem 4.1.7, but without the difficulty which the nets imply and so the proof
is clearer and has an easier lecture. For this reason and for aim of completeness,

we include it.

Proposition 4.2.1. FEvery Banach lattice E with the o-Fatou property such
that E, is super order dense in E is order isometric to [L*(v)],,. for some

vector measure v defined on a d-ring.

Proof. Let FE be a Banach lattice with the o-Fatou property such that E, is
super order dense in E and consider the vector measure v defined on a §-ring
such that the integration operator I,: L'(v) — E, given by I,(f) = [ fdv
for all f € L'(v), is an order isometry, see Theorem 4.1.5. Let us extend I,
to [L'(v)], . First, consider 0 < f € [L'(v)],.,. and take (f,) C L'(v) such

that 0 < f, T f, this is always possible since L!(v) is super order dense in

o-F

[L'(v)], . as we have noted above. Since I, is an order isometry, the sequence
(I.(fn)) C Eq C E satisfies that 0 < I,,(f,,) 1T and sup |1, (fn) ||z = sup || full, <

lfll. < co. Then, as E has the o-Fatou property, there exists e = sup I,,(f,,) in
E and |le||g = sup || I, (frn)||g. We define T'(f) =e.

Take another sequence (g,) C L'(v) such that 0 < g,, 1 f and denote z =
supl,(gn). Let 0 < 2* € E* be fixed. Then, z*(e) > z* (I, (f,)) = [ fodz*v
for all n. Since 0 < f, T f v-a.e. and so z*v-a.e., by using the monotone
convergence theorem, we have that «*(e) > [ fdz*v > 2*(I,(f,)) for all n. In
a similar way, z*(z) > [ fdaz*v > 2*(I,(g,)) for all n. Thus, it follows that
z*(e) > z*(I,(gn)) and z*(2) > x*(I,(fn)) for all n. Since this holds for all
0 < z* € E*, we have that e > I,(g,) and z > I,(f,) for all n. Then, e > z

and z > e, and so e = z. So, T is well defined. Moreover,

IT(N)le = llelle = sup (|1, (fo)lle = sup [|full, = [ £]],

where in the last equality we have used that [L!(v)],_. has the o-Fatou property.

Let us see now that T preserves the lattice structure, that is T(f A g) =
Tf ATg for every 0 < f,g € [L'(v)], .. Consider sequences (f,), (gn) C L*(v)
satisfying that 0 < f, 1 f and 0 < g, T g. Then, Tf = supl,(f,) and
Tg = supl,(g,). Note that if z, T = and y, 1 y in a Banach lattice then
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TnAYn T Ay, see for instance [27, Theorem 15.3]. Then, since 0 < f,, Agn T fAg
with (fn A gn) C L*(v) and I, is an order isometry, we have that

T(fAg)=supL,(fnAgn) =sup L(fn) AL (gn) =Tf ANTg.

For a general f € [L' (V)] ., we define Tf = Tf* —Tf~ where f* and f~
are the positive and negative parts of f respectively. So, T': [L}(v)], . — E is

o-F?

a positive linear operator extending I,,. For the linearity, see for instance [27,
Theorem 15.2]. Moreover T is an isometry. Indeed, TfTATf~ =T(ftAf7) =
Oas fTAf~=0,and so [Tf|=|TfT —Tf | =TfT+Tf =T|f|, see [27,
Theorem 14.4]. Then, | T(f)||z = |T(|fDlle = || f|l, for all f € [L*(v)], ..

o-

Let us prove that T is onto. Let 0 < e € E. Since F, is super order dense
in F, there exists (e,) C E, such that 0 <e, te. Let (f,) C L'(v) C [L*(v)],.»
be such that e,, = I,(f,). Since I ! is an order isometry, we have that 0 < f,, 1
and sup || full, = supllen]le < |le]|le < oco. Then, by the o-Fatou property of
(L' (v)]

have that Tf = supI,(f,) = supe, = e. For a general e € E, consider e*

there exists f = sup f,, in [L'(v)], .. From the definition of 7', we

o-F?

and e~ the positive and negative parts of e. Let g,h € [L'(v)],. be such that
Tg = et and Th = e~. Then, taking f = g — h € [L'(v)]

Tf = e. Note that T~ is positive. So, T is positive, linear, one to one and onto

.. We have that

with inverse being positive, then T is an order isomorphism (see [26, p.2]). O

Note that Proposition 4.2.1 generalizes [10, Theorem 2.5] where every Ba-
nach lattice F with the o-Fatou property having a weak unit belonging to E,
is represented by means of spaces Ll (v) for a vector measure v defined on a
o-algebra. Indeed, if 0 < u € E, is a weak unit, then 0 < e Anu 1T e for each
0 < e € F where e Anu € E,, and so E, is super order dense in E. What

happens in this case is that [L(v)], . = L1 (v) as v is defined on a o-algebra.

4.3 Identifying Banach lattices

In view of the representation theorems studied in the previous sections, there
are Banach lattices which can be seen as a space L!(v) or L. (v) in two different
ways by considering v defined on a o-algebra or on a é-ring. In this section we

analyze the difference between this two points of view.
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Let X be an order continuous B.f.s. related to a measure space (Q, %, u),
with a weak unit g. We already know that there exists an order isometry

T: X — L'(v) for some vector measure v defined on a o-algebra.

Suppose that g = xq (i.e. L (p) C X). In this case, S(X) is dense in X as
X is order continuous. Taking v: ¥ — X defined by v(A) = x4 for all A € &,
which is a vector measure by the order continuity of X, we have that L!(v) = X
with equal norms, since |||, = || [ |¢|dv]x = ||¢|x for all ¢ € S(X) and S(X)
is dense in both L'(r) and X. So, the order isometry between X and L!(v) is
the identity map.

If xq is not a weak unit of X (i.e. L*(u) ¢ X), we can not define v as
above. However, we can consider the space X, = {f € L(u) : fg € X}, which
is an order continuous B.f.s. related to p with the norm || f||x, = ||fglx. Since
xa € X4, we have that X, = L'(v) with equal norms, where v: ¥ — X, is
defined as above. Furthermore, the multiplication operator My-1: X — X, is
an order isometry. Hence, the order isometry between X and L!(v) is just to

multiply by ¢g~*.

Now, consider the d-ring R = {4 € ¥ : x4 € X}. We can take the vector
measure v: R — X defined by v(A) = x4 for all A € R. Let us see that S(R)
is dense in X. Since g is a weak unit of X, we have that = (UA,) UN where
N is a p-null set (or equivalently, v-null) and 4, = {w € Q: g(w) > 1/n} eR
(as x4, < ng), that is, v is o-finite. Then, if 0 < f € X and (¢p,) C S(X)
is such that 0 < 4, 1 f, taking ¢ = tnxur_ 4, € S(R), we have that 0 <
©n T f. By the order continuity of X, it follows that (p,) converges to f in X.
Therefore, L' (v) = X with equal norms, since |||, = || [ |¢|dv|x = ||| x for
all p € S(R) and S(R) is dense in both L!(v) and X. So, the order isometry
between X and L!(v) is the identity map.

The conclusion is that every order continuous B.f.s. with a weak unit can be
represented as a L'(v) with v defined on a o-algebra, but the representation is
an identification only in the case when xo € X. In other case, the representation
is a multiplication operator, whereas we can get an identification by considering

v in a §-ring.
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Let now X be a B.f.s. having the o-Fatou property and a weak unit g
belonging to its order continuous part X,. Then, we know that there exists an

order isometry T': X — L1 (v) for some vector measure v defined on a o-algebra.

If g = xo (ie. L®(u) C X,), then L'(v) = X, with equal norms, where
v: ¥ — X, is given by v(A) = xa for all A € ¥. Noting that for every
0 < f € L) there exists (p,) C S(¥) C LY(v) = X, such that 0 < ¢, 1 f
and ||¢nll, = ||¢nl/x for all n, since both spaces L. (v) and X have the o-Fatou
property, it follows that L (v) = X with equal norms. So, the order isometry

between X and L. (v) is the identity map.

In the case when xqo ¢ X, (i.e. L®(u) ¢ X,), we can not define v as just
above. However, since xq € (X,)y = (Xy)a, we have that L. (v) = X, with
equal norms, for v: ¥ — (Xj), given by the characteristic of sets. Then, since
M,

g-1: X — X, is an order isometry, it follows that the order isometry between

X and L} (v) is just to multiply by ¢~ *.

Considering the d-ring R = {A € ¥ : xa € X,}, we have seen that
X, = L*(v) with equal norms, where v: R — X, is o-finite. Then, it follows
that X, is super order dense in X and L!(v) is super order dense in L. (v) and
so X = L} (v) with equal norms. Hence, the order isometry between X and

L} (v) is the identity map.

Now, the conclusion is that every B.f.s. having the o-Fatou property and a
weak unit belonging to its order continuous part can be represented as a L’ (v)
with v defined on a og-algebra, but the representation is an identification only
in the case when yq € X,. In other case, the representation is a multiplication

operator, whereas we can get an identification by considering v in a d-ring.

Example 4.3.1. Let ([0,00), B[0,00),m) be the measure space where B0, c0)
is the o-algebra of the Borel sets of [0,00) and m is the Lebesgue measure on
[0,00). The space L*(m) is an order continuous B.f.s. related to m which does
not contain X[p ) and so there is no vector measure v on a o-algebra such that
L'(m) = L'(v). However, for instance g = =% is a weak unit in L*(m), and

then we can represent L'(m) as an L' () where v is defined on B[0, 00) via M,
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or as an L' (v) where v is defined on the é-ring R = {A € B[0,00) : m(A) < oo}

via the identity map.

Consider now the B.f.s. E related to m given by

n

E = {fELO(m): Sgp/

n—1

(@)l dz < o0}

with norm || f||g = sup,, " | |f(2)| dz,. Note that E can be identified with the
space £ (N, (Ll(mn))neN),
the map which takes f into (fX[n—l,n)) (see Section 2.4). The order continuous

n

where m,, is the restriction of m to [n — 1,1), via

part of E¥ can be described as
B, = {feE: lim/ \f(x)|dx=0},
n n—1

which can be identified with the space ¢ (N7 (Ll(mn))neN).

It can be checked that E has the o-Fatou property. Although x[p ) is a
weak unit in F, we have that X[0,) ¢ F, and so there is no vector measure v
on a o-algebra such that £ = L} (v). However, g = > %X[nﬂ,n) e E,isa
weak unit of . Then, we can represent E as an Lb(y)iwhere v is defined on
B[0,00) via My-1 or as an Ly, (v) where v is defined on the §-ring R defined by
R = {A € B[0,00) : lim, m(A Nn-—1, n)) = O} via the identity map.

4.4 Representing p-convex Banach lattices

We can go far away into the representation problem by means of spaces of
integrable functions if we think about the spaces L?(v) and L2 (v) defined in

Chapter 3. The key will be the convexity of these spaces.

Note that every p-convex Banach lattice E' can be renormed equivalently
in a way that F with the new norm and the same order is a p-convex Banach

lattice with p-convexity constant equal to 1 (see [26, Proposition 1.d.8]).
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Theorem 4.4.1. Let p > 1 and E be a p-convex order continuous Banach
lattice with p-convexity constant equal to 1. Then there exists a positive vector
measure v defined on a §-ring and with values in E such that LP(v) and E are

order isometric.

Proof. Since F is order continuous, there exists a vector measure v; defined on a
§-ring R and with values in E, such that the space L (1) is order isometric to E.
More precisely, the integration operator I, : L*(v1) — E is an order isometry
(see Theorem 4.1.5). Consequently L!(v;) is p-convex with p-convexity constant

equal to 1 and so by Proposition 3.1.4, the space Ll/p(ul) is a B.f.s.

Consider the finitely additive set function v : R — LY?(1;) given by by
vo(A) = xa, for all A € R. Let (A;) C R be a pairwise disjoint sequence such
that UA; € R, then by order continuity of L'(v1) we have that

n

HV2(UAJ') =y wa(4))

j=1

va(UA;) — va(Uf_1 Aj)

1

1
Pl Feigt

p

1
= VQ(UjZnAj)H ., = H|XujznAj|P
Y1 vy

= [ XUj>nA4; -0,
> "

as n — oo. Hence, vy is a countably additive vector measure. It is direct to

check that a set is vq-null if and only if is vs-null.

Consider now the integration operator I, : L' () — LY/P(v;). Given f in
L'(vy), we can take (¢,) C S(R) converging to f in L'(15) and vp-a.e. Then,
I,(¢n) — L,(f) in L'?P(vy). Taking a subsequence converging to I, (f) vi-
a.e., since I, (¢) = ¢ for every ¢ € S(R), it follows that I,,(f) = f. Moreover,
since |1,,,(f)| = |f| = L,,(|f]) and vy is positive, we have that [|1,,(f)|+,, =
||L,2(|f\)||%,l,1 = ||f|l,,- Hence, I,, is the identity map and L' () = Llp/p(yl)
with equal norms. Therefore, LP () = L'(v1) with equal norms and so LP(vs)

is order isometric to E. O

Note that the previous theorem generalizes [19, Proposition 2.4] in which
p-convex order continuous Banach lattices having a weak unit are represented
as an LP(v), with v defined on a o-algebra (see also [31, Proposition 3.30] for

the complex version).
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Fatou and order density properties allow to represent a p-convex Banach
lattice even it is not order continuous as an space of p-integrable functions as

in the non-convex case.

Theorem 4.4.2. Letp > 1 and E be a p-convexr Banach lattice with p-convezity
constant equal to 1, having the Fatou property and such that its order continuous
part E, is order dense in E. Then there exists a E,-valued vector measure v on

a 0-ring such that E and LP (v) are order isometric.

Proof. The hypothesis on E gives an R-decomposable vector measure v; on
a 0-ring R and an order isometry T : E — L (1) (see Theorem 4.1.7). The
B.fs. Li,/p(yl) has the Fatou property and L'/?(v;) is order dense in L}U/p(yl)
(see Proposition 3.1.7). Take the vector measure vy : R — L'/P(v) given by
v2(A) = xa, A € R for which the integration operator I, : L' (o) — L'/P(1y)
is the identity map and L'(vy) = L'/P(v;) with equal norms (see the proof of
the previous theorem). Noting that 14 is R-decomposable and v; and v have
the same null sets, by the construction of R in Section 4.1.1 and since vy is
defined in the same R, it can be checked that v5 is R-decomposable. Hence,

L} (1) has the Fatou property.

Let us see now that Ll (1p) = qui,/p(ul) with equal norms. Take 0 < f €
LY (v5). Since L!(1) is order dense in L°(15) (see Remark 2.2.3), there exists an
upwards directed system (f,), in L!(v2) such that 0 < f, 1 f in L%(v»). Then
0< fr 1 in Laf" (1) and sup |13, = 50D |~ llvs < [If]lv,- Therefore, the Fa-
tou property of Li/? (1) gives h € Li/?(v1) such that Al ,, =sup, IfrllL,,-
Since for each 7 we have that f, < h vy-a.e. or equivalentl; vg-a.e., then f pﬁ h
and so f € qul,/p(ul). On the other hand, f; < f p-a.e. (i.e. v1-a.e.) for all 7
and thus i < f. Therefore, || fl|x ,, = [Ihll1,, = sup, | frll2 ., = sup, [[frlli.s
where the last equality is due top the Fatmf property of L}u?ug) asa0< f, 1 f
also in L} (). By taking positive and negative parts of a general f € Ll (1),

we have that L}U (va) C L%U/p(yl) with equal norms.

The converse inclusion follows by the same arguments. Therefore, the
equality L1 (5) = Li/?(v1) holds with equal norms. Consequently LP, (1) =

L} (v1) with equal norms and hence E and LP (v5) are order isometric. O
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A similar proof as the one in the previous theorems allow us to represent
p-convex Banach lattices (whit p-convexity constante equal to 1) having the
o-Fatou property and such that E, is super order dense in E. In this case, F
is order isometric to [L?(v)],_. for some vector measure v defined on a J-ring.
This result generalizes [12, Theorem 4] where E has a weak unit in E, (for the

complex version see [31, Proposition 3.41]).

4.5 Representing Banach quasi-algebras

In [1, Remark 1.10] the authors introduce the notion of quasi-normed algebra,
that is an algebra A with multiplicative law ® 4 endowed with a quasi-norm ||-|| 4
satisfying that there exists a constant K > 0 such that |[a®4b|| 4 < K]||a|| 4]0l 4,
for all a,b € A. In our setting, || - || 4 will be a complete norm and we will say

that A is a Banach quasi-algebra (Banach algebra if K = 1).

Let E be a representable Banach lattice, that is, a Banach lattice for which
there exists a B.f.s. X related to u such that F and X are order isomorphic. If
E is a Banach quasi-algebra with the algebra product ©®g and T : E — X (u)
is an order isomorphism, then X endowed with the algebra product ®,, defined
by

fOLg =TT '(f)opT '(g), forall f,g€ X,

is a Banach quasi-algebra. If F is a Banach algebra and T is an order isometry,

then X is a Banach algebra (commutative if F is so).

Therefore, if we apply the representation theorems established in the pre-
vious sections to a Banach lattice which is also a Banach quasi-algebra, we can

endow the corresponding space of integrable functions with an algebra structure.

Corollary 4.5.1. Let E be a Banach lattice which is also a Banach quasi-

algebra with multiplicative law OF.

(a) If E is order continuous, then E is order isometric to an L'-space which

becomes a Banach quasi-algebra.
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(b) If E has the Fatou property and its order continuous part E, is order dense
in E, then E is representable by means of an L. -space which becomes a

Banach quasi-algebra.

(¢) If E has the o-Fatou property and its order continuous part E, is super
order dense in E, then E is order isometric to the o-Fatou completion of

an L'-space which is also a Banach quasi-algebra.

Note that if in the previous corollary F is actually a Banach algebra, since
the representation operators are order isometries, the corresponding space of

integrable functions is also a Banach algebra.

Consequently, the class of Banach quasi-algebras inside the broad class of
order continuous Banach lattices is exactly the class of the L'-spaces which are
also Banach quasi-algebras. Furthermore, the class of Banach quasi-algebras
inside the class of Banach lattices having the Fatou property with order contin-
uous part dense coincides with the class of Banach quasi-algebras in the broad
class of L) -spaces, Also, the class of Banach lattices having the o-Fatou prop-
erty and with order continuous part as super order dense ideal which are Banach
quasi-algebras is exactly the class of the Banach quasi-algebras in the class of

the o-Fatou completion of L'-spaces.

In the case of the p-powers, it is also possible to endow the spaces LP(v),
L? (v) and the o-Fatou completion of LP(v) with an algebra structure if these

spaces are representable by means of a Banach quasi-algebra.

Corollary 4.5.2. Let 1 < p < oo and let E be a p-conver Banach lattice which

18 also a Banach quasi-algebra.

(a) If E is order continuous, then E is order isomorphic to an LP-space which
becomes to be a Banach quasi-algebra.

(b) If E has the Fatou property and its o-order continuous part E, is or-
der dense in E, then E 1is representable by means of an LY -space which
becomes to be a Banach quasi-algebra.

(¢) If E has the o-Fatou property and its o-order continuous part E, is super
order dense in E, then E is order isomorphic to the o-Fatou completion

of an LP-space which is also a Banach quasi-algebra.
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In Corollary 4.5.2, the representation operators are order isometries when-
ever F has p-convexity constant equal to one. So, in this case, if F is a Banach
algebra, the corresponding space of p-integrable functions is also a Banach al-

gebra.

Again, the class of Banach quasi-algebras inside the broad class of order
continuous p-convex Banach lattices is exactly the class of the LP-spaces which
are also Banach quasi-algebras. The class of Banach quasi-algebras inside the
class of p-convex Banach lattices having the Fatou property with order contin-
uous part dense coincides with the class of Banach quasi-algebras in the broad
class of LP -spaces. The class of p-convex Banach lattices having the o-Fatou
property and with order continuous part as super order dense ideal which are
Banach quasi-algebras is exactly the class of the Banach quasi-algebras in the

class of the o-Fatou completion of L'-spaces.

Denote by v and ®, the corresponding vector measure and multiplicative
law in the corollaries above. Remark that in all the cases, v take values in a

Banach quasi-algebra and ®, depends on Of.
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