Accurate workload design for
web performance evaluation

RAUL PENA ORTIZ

EDITORIAL
UNIVERSITAT POLITECNICA DE VALENCIA

UNIVERSITAT
POLITECNICA
DE VALENCIA

DEPARTAMENT D’INFORMATICA DE SISTEMES I
COMPUTADORS

Accurate workload design for web
performance evaluation

Thesis submitted in partial fulfillment of the requirements
for the degree of Ph.D in the subject of Computer Science

Presented by:

Ratl Pena-Ortiz

Supervised by:

Dr. Ana Pont Sanjuan
Dr. José Antonio Gil Salinas
Dr. Julio Sahuquillo Borras

Valencia, Spain. January, 2013

UNIVERSITAT
| POLITECNICA
DE VALENCIA

This editorial is member of the UNE, which guarantees
- the diffusion and commercialization of its publications at
. national and international level.

[RENTI
Usivenrsy

© Raul Pefia Ortiz, 2013

© of the present edition:
Editorial Universitat Politécnica de Valencia
www.editorial.upv.es

ISBN: 978-84-9048-025-0 (printed version)
Re. editorial: 5613

Any unauthorized copying, distribution, marketing, editing, and in general
any other exploitation, for whatever reason, of this piece of work or any
part thereof, is strictly prohibited without the authors’ expressed and
written permission.

” Education is the passport to the future, for tomorrow
belongs to those who prepare for it today.”

Malcolm X.

7If today were the last day of my life,
would I want to do what I am about to do today?

The only way to do great work is to love what you do.
Don'’t settle.

You have to trust that the dots will somehow
connect in your future.”

Steve Jobs,

conference at Stanford University.

”But we’re talking about an objective doctoral thesis.”

Marathon Man, the film.

”Stay Hungry. Stay Foolish.”

The Whole Earth Catalog,

back cover of final issue.

Acknowledgments

These pages are dedicated to those who have given me their unconditional support in
tackling this challenge, especially to my advisors, colleagues, friends and dear family.

Abstract

The new web-based applications and services, which are becoming more and more
popular every day, have completely changed the way users interact with the Web.
In less than half a decade the role of users has changed from passive consumers of
information to active and dynamic contributors to the contents offered. Moreover,
this trend is expected to rise in the incoming Web.

This user’s behavior is a major concern when defining web workloads in order to
precisely estimate system performance for the current Web. However, the intrinsic
difficulty to represent the user’s dynamism in a workload model has led many research
works to still use workloads non representative of the current web navigations.

This dissertation focuses on characterizing and reproducing more realistic work-
load for web performance by mimicking the behavior of the real web users.

The state-of-the-art in modeling and generating workloads for web performance
studies presents several lacks in models and software that represent the different levels
of user’s dynamism. This fact motivates us to propose a more accurate workload
model and to develop a new workload generator based on this model. Both of them
have been validated against a traditional workload generation approach. To this end,
a new testbed with the ability of reproducing traditional and dynamic workloads
has been developed by integrating the proposed generator with a commonly used
benchmark.

In this Ph.D dissertation we also analyze and measure for the first time, to the
best of our knowledge, the impact of using representative dynamic user workloads
on web performance metrics instead of traditional workloads. Experimental results
demonstrate that the use of an accurate workload model that considers user’s dy-
namism when navigating the Web clearly affects system performance metrics as well
as the stress borderline of the server.

Finally, we explore the effect of considering the User-Browser Interaction as a part
of user’s dynamic behavior on web workload characterization. The study proves that
representing user’s dynamic interactions with the provided contents allows users to
achieve their navigation goals sooner thus increasing the productivity of their navi-
gations. In addition results demonstrate that this type of navigations also affects the
stress borderline of the server and system resources utilization.

Resumen

Las nuevas aplicaciones y servicios web, cada vez mas populares en nuestro dia a
dia, han cambiado completamente la forma en la que los usuarios interactian con la
Web. En menos de media década, el papel que juegan los usuarios ha evolucionado de
meros consumidores pasivos de informacién a activos colaboradores en la creacién de
contenidos dindmicos, tipicos de la Web actual. Y, ademas, esta tendencia se espera
que aumente y se consolide con el paso del tiempo.

Este comportamiento dindmico de los usuarios es una de las principales claves en la
definicién de cargas de trabajo adecuadas para estimar con precision el rendimiento
de los sistemas web. No obstante, la dificultad intrinseca a la caracterizacién del
dinamismo del usuario y su aplicaciéon en un modelo de carga, propicia que muchos
trabajos de investigacién sigan todavia empleando cargas no representativas de las
navegaciones web actuales.

Esta tesis doctoral se centra en la caracterizacion y reproduccion, para estudios
de evaluacién de prestaciones, de un tipo de carga web mas realista, capaz de imitar
el comportamiento de los usuarios de la Web actual.

El estado del arte en el modelado y generacién de cargas para los estudios de
prestaciones de la Web presenta varias carencias en relacién a modelos y aplicaciones
software que representen los diferentes niveles de dinamismo del usuario. Este hecho
nos motiva a proponer un modelo mas preciso y a desarrollar un nuevo generador
de carga basado en este nuevo modelo. Ambas propuestas han sido validadas en
relacién a una aproximacion tradicional de generacion de carga web. Con este fin, se
ha desarrollado un nuevo entorno de experimentacién con la capacidad de reproducir
cargas web tradicionales y dindmicas, mediante la integracién del generador propuesto
con un benchmark de uso comun.

En esta tesis doctoral también se analiza y evalia por primera vez, segin nuestro
saber y entender, el impacto que tiene el empleo de cargas de trabajo dindmicas
en las métricas de rendimiento de los sistemas web, con respecto al uso de cargas
tradicionales. Los resultados experimentales demuestran que usar modelos de carga
m&s precisos, en los que se considera el comportamiento dindmico de los usuarios
cuando navegan por la Web, afecta claramente a las métricas de rendimiento de los
sistemas, asi como a su frontera de estrés.

il

Finalmente en este trabajo se explora el efecto de considerar la interaccién del
usuario con el navegador web como parte de su comportamiento dindmico en la car-
acterizacién de la carga. El estudio muestra un aumento de la productividad de las
navegaciones del usuario cuando se considera su interaccién con los contenidos web a
través de las facilidades que ofrecen los navegadores. Los resultados demuestran que
los usuarios alcanzan antes sus objetivos generando nuevos patrones de navegacion,
que a su vez afectan al rendimiento de los sistemas web, tanto a sus fronteras de estrés
como a la utilizacién de sus recursos.

iv

Resum

Les noves aplicacions i serveis web, cada vegada més populars en el nostre dia a
dia, han canviat completament la forma en que els usuaris interactuen amb la Web.
En menys de mitja decada, el paper que juguen els usuaris ha evolucionat de mers
consumidors passius d’informacié a actius col-laboradors en la creacié de continguts
dinamics, tipics de la Web actual. I, a més, aquesta tendencia s’espera que augmente
i es consolide amb el pas del temps.

Aquest comportament dinamic dels usuaris és una de les principals claus en la
definicié de carregues de treball adequades per a estimar amb precisio el rendiment
dels sistemes web. No obstant aixo, la dificultat intrinseca a la caracteritzacié del
dinamisme de I'usuari i la seua aplicacié en un model de carrega, propicia que molts
treballs d’investigacié seguisquen encara emprant carregues no representatives de les
navegacions web actuals.

Aquesta tesi doctoral se centra en la caracteritzacié i reproduccio, per a estudis
d’avaluacio de prestacions, d’un tipus de carrega web més realista, capag d’imitar el
comportament dels usuaris de la Web actual.

L’estat de 'art en el modelatge i generacié de carregues per als estudis de presta-
cions de la Web presenta diverses caréncies en relacié a models i aplicacions programari
que representen els diferents nivells de dinamisme de I'usuari. Aquest fet ens motiva
a proposar un model més precis i a desenvolupar un nou generador de carrega basat
en aquest nou model. Ambdds propostes han sigut validades en relacié a una aprox-
imacié tradicional de generacié de carrega web. Amb aquest fi, s’ha desenvolupat un
nou entorn d’experimentacié amb la capacitat de reproduir carregues web tradicionals
i dinamiques, per mitja de la integracié del generador proposat amb un benchmark
d’ds comd.

En aquesta tesi doctoral també s’analitza i avalua per primera vegada, segons el
nostre saber i entendre, 'impacte que té ’ocupacié de carregues de treball dinamiques
en les metriques de rendiment dels sistemes web, respecte a I'tis de carregues tradi-
cionals. Els resultats experimentals demostren que usar models de carrega més pre-
cisos, en els que es considera el comportament dinamic dels usuaris quan naveguen
per la Web, afecta clarament les metriques de rendiment dels sistemes, aixi com a la
seua frontera d’estrés.

Finalment en aquest treball s’explora ’efecte de considerar la interaccié de I'usuari
amb el navegador web com a part del seu comportament dinamic en la caracteritzacio
de la carrega. L’estudi mostra un augment de la productivitat de les navegacions
de l'usuari quan es considera la seua interaccié amb els continguts web a través de
les facilitats que oferixen els navegadors. Els resultats demostren que els usuaris
aconseguixen abans els seus objectius generant nous patrons de navegacio, que al seu
torn afecten el rendiment dels sistemes web, tant a les seues fronteres d’estrés com a
la utilitzacié dels seus recursos.

vi

Contents

[L_INTRODUCTIONI 1
(1.1 Motivation and main goals|. 2
(1.2 Contributions of the thesisl. 3
[1.3 Research context|, . 3
LA Outlind o o oo e e 3

[_EVALUATION| 5
2.1 Workload models and the current Webl 5
[2.2 Web workload generators overview| 9

[2.2.1 Software tools study| o0 10
[2.2.2 A survey on reproducing user’'s dynamism| 22
.................................. 26

[—ZATION] 27
[3.1 The user’s navigation|. o 27
B.2 Theusersrolesl 31
.................................. 32

E_CUERNICA. A WORKLOAD GENERATOR FOR_CURRENT WER| 33
[4.1 The application suite]. L 33
[4.2 Testing phases| o 35
4.3 Architecturel. 38
4.4 Main featured o 39
[4.5 Casestudy| 40
4.6 SUIMINATY] .« « v v v e e e e e e e e e e e e e e e e e 44

[_EVALUATION| 47
(b1 The TPC-W frameworkl 48
5.2 Testbed architecturelo o000 49

vii

CONTENTS

[6.1 Workload design| .

[6.1.1 Considering dynamism on user’s navigations|

16.1.2 One step ahead: evolving user’s profile using dynamic roles| . .

[6.2 Impact of the dynamic workloads on web system performance|

6. ummary|]

[_THE IMPACT OF USER-BROWSER INTERACTION ON WEB PERFORMANCE]

[7.1 Workload design| .

7.1.1 The back button: rapid return to recently visited pages

[7.1.2~ Optimizing user productivity: the parallel tab browsing Beﬁavmﬂ 79

63
63
64
66
69
76

77
7
78

[7.2" Tmpact of UBI on web performance].o oo v ..

.3 Summary|

viii

83

93
93
94
95

99

101

103

List of Figures

ix

2.1 Example of a simplified CBMG model |. 7
2.2 Example of a VBMG model for blurkers| 7
[2.3 Example of a simplified EFSM model for an e-commerce system| . . . 8
[2.4 Transition probability in the Clickstream Model for an OSN|. 9
2.5 WebStone architecturel oo oo 10
[2.6 Logical components of SPECweb2009 12
2.7 SURGE architecturelo Lo 13
2.8 5-Clients design|. L 15
2.9 TPC-W architecturel 16
2.10 How LoadRunner workdl 18
[2.11 LoadRunner scripting for Web 2.0 applications| 19
2.12 WeblLLOAD architecturel 20
[3.1 Google Search navigation pattern| 30
[3.2 User’s roles example: working and leisure behaviors|. 31
[4.1 Main applications of GUERNICA|. 34
[4.2 Testing phases in GUERNICA| 35
[4.3 Distribution of workload generation|. 37
4.4 Architecture of GUERNICA[.o ... 38
4.5 Web searcher and surfer user’s behaviors| 41
[4.6 A simple search in Google] Lo 42
[b.1 TPC-W reduced website map| 48
[5.2 Main software components of TPC-W Java implementation| 49
5.3~ Testbed architecturel. 50
(.4 Experimental setup|. L L 51
[5.5 CBMG model for shopping scenario in GUERNICA validation| 54
[5.6 Client metrics obtained for the shopping scenario in GUERNICA vali- |
Cdationl - -« v e e e e e 55
[5.7 Server metrics obtained for the shopping scenario in GUERNICA val- |
C A dation] -« o v v v vt e e e e 56

LIST OF FIGURES

[5.8 Client metrics obtained for the browsing scenario in GUERNICA vali- |

[daffonl o o 57
[5.9 Server metrics obtained for the browsing scenario in GUERNICA val- |
L idationl. 58
[5.10 Client metrics obtained for the ordering scenario in GUERNICA vali- |
[daffonl o o o 59
[5.11 Server metrics obtained for the ordering scenario in GUERNICA vali- |
[daffonl o 60

6.1 DWEB workload I - DW1: navigation for loyalty promotion behavior|. 65
6.2 DWEB workload Il - DW?2: characterization based on user’s dynamic |

6.3 Main performance client metrics values|. 70
6.4 Main performance server metrics values| 71

[6.5 CPU utilization by query cache status| 74
[6.6 Cummulative distribution for page response time| 75
7.1 LOY workload: loyalty promotion behaviors conducted by goals|. . . . 80
(7.2 LOYB workload: LOY workload considering the back button| 81
[7.3 Example of parallel tab browsing session|. 82
[7.4 LOY'T workload: parallel tab browsing behavior in LOY workload| . . 84
E.E) User’s productivity evolution| 85
[7.6 Total served pages| o o o i 86
[7.7 Mean served pages by typel oL 87
[7.8 Apache throughput|. o o0, 88
[9 CPUutilization] . . . - .« . o v v oo e 88
[7.10 MySQL Throughput| 90
[.11 Execution time per query typel 91

List

of Tables

[2.1 Main features and disadvantages of WebStone | 11
[2.2 Main features and disadvantages of SPECweb2009 (. 12
[2.3 Main features and disadvantages of SURGE | 14
[2.4 Main features and disadvantages of 5-Clients| 15
[2.5 Main features and disadvantages of WebJamma | 16
[2.6 Main features and disadvantages of TPC-W | 17
[2.7 Main features and disadvantages of Web Polygraph| 18
[2.8 Main features and disadvantages of LoadRunner| 20
[2.9 Main features and disadvantages of WebLOAD|. 21
[2.10 Main features and disadvantages of JMeter | 22
[2.11 Main features and disadvantages of testing scripts and tools| 23
[2.12° Web workload generators and grade in which main features are fulfilled| 25
[2.13 Web workload generators and how challenges of user’s dynamism are |
| fulfilledl o 26
[3.1 User’s navigation notation| 29
41 GUERNICA features|. 39
[4.2 Challenges of user’s dynamism fulfilled by GUERNICA| 40
[5.1 Performance metrics classification according to the evaluated resource| 53
[6.1 Cases of dynamism in the loyalty promotion behavior| 64
6.2 Cases of dynamism in the new pre-sales promotion behaviorf 67
6.3 CPU consumption (in jiffies) foreach application| 72
[7.1 Cases of dynamism in the loyalty promotion behaviors conducted by |

| goals| 79

[7.2 Extra cases of dynamism in the loyalty promotion behavior conducted |
| by goals to represent parallel tab browsing{. 83
[7.3 Mean user productivity considering 100 simultaneous users in the system| 85
[7.4 CPU consumption (in jiffes) for each application] 89

xi

LIST OF TABLES

(8.1 List of main publications|

xii

CHAPTER 1

Introduction

There are few technological success stories as dramatic as that of the Web. Originally
designed to share static contents among a small group of researchers, the Web is
being used today by many millions of people as a part of their daily routines and
social lives. Our society is progressively becoming more densely connected, and the
paradigm where users access the Web from a desktop computer is making way for a
new paradigm dominated by pervasive mobile devices like smart phones and tablets.

This incessant evolution has been possible thanks to the continuous changes in
technology that have introduced new features in the current and incoming Web, both
in its applications, users, and infrastructure [Rod09]. For instance, e-commerce sys-
tems, on-line social networks, blogs, wikis or service oriented architectures are some
examples that manifest how websites are evolving from typical hypermedia informa-
tion repositories of the First Web Generation (Web 1.0) to hypermedia distributed
applications and services representative of the Second Web Generation (Web 2.0)).
With the emergence of this kind of applications and services, users are no longer pas-
sive consumers, but they become participative contributors to the dynamic content
accessible on the Web [CKO08|. Nowadays, web contents and services are even more
dynamic [Ore(7], which consequently increases the number of changes over time in
user’s interactions with the Web [RSD*12|. Therefore, a new user’s dynamic behavior
can be distinguished. Moreover, this user’s behavior is expected to be more relevant
and meaningful in the incoming Web, also referred to as Web 3.0 [Hen09] or Future
Internet [TGG™09].

As a system that is continuously changing, both in the offered applications and
infrastructure, performance evaluation studies are necessary in order to provide sound
proposals when designing new web-related systems [BC98], such as web services, web
servers, proxies or content distribution policies. As in any performance evaluation pro-
cess, accurate and representative workload models must be used in order to guarantee
the validity of the results. Regarding web systems, the user’s dynamic behavior makes
difficult the design of accurate web workload representing realistic users’ navigations.

In general, there are three main challenges that must be addressed when modeling
the user’s dynamic behavior on representative workloads:

CHAPTER 1. INTRODUCTION

Challenge I: The dynamism in user’s behavior when surfing the Web must be taken
into account [BC98|. That is, users’ behaviors as they interact with
web contents and services have to be characterized, modeling the dif-
ferent aspects that determine users’ navigation decisions. For instance,
personal preferences, navigation goals, visited resources or connectivity
conditions.

Challenge II: The different user’s roles when navigating a website must be identified
and defined as user’s behaviors [WOHMOG]. For instance, searcher
and surfer roles refer to users who start navigations with a query
in a given searcher engine, or navigate the web by following direct
hyperlinks, respectively [PP99].

Challenge III: Continuous changes in these user’s roles during the same navigation
session must be modeled and considered [GBGP10]. That is, changes
in users’ behaviors over the time have to be characterized.

This thesis focuses on modeling and analyzing representative workloads for perfor-
mance studies with the aim of accurately estimating systems performance indexes in
current and incoming Web. To this end, the three main challenges mentioned above
are analyzed and addressed in a progressive way in order to provide a new and more
representative web workload for performance evaluation.

1.1 Motivation and main goals

Although web evolution has introduced significant changes on user’s behavior, many
performance studies still check their approaches with traditional workloads, which are
typical of the early Web 1.0 and do not represent current web trends. Three main
shortcomings can be observed in the open literature about both commercial products
and academic research results:

1. To date, web workload models do not consider user’s dynamism in an appro-
priate and accurate way because they only take partially into account the men-
tioned challenges.

2. There is a lack of web workload generators that can reproduce representative
traffic of Web 2.0 applications and services.

3. The effect of using dynamic workloads on web performance evaluation, instead
of traditional workloads, has not been analyzed and measured yet to the best
of our knowledge.

These shortcomings define the main objectives of this thesis and encouraged us to
propose a new model to cover the main gaps found in current web workload character-
ization research. Based on this model, in this Ph.D dissertation a new web workload
generator and testbed are proposed, validated and used for performance evaluation.

1.2. CONTRIBUTIONS OF THE THESIS

1.2 Contributions of the thesis

This thesis presents three main contributions:

e The first contribution is the proposal of a new workload model that permits
to define accurate workloads for performance evaluation studies in current and
incoming Web. This model takes into account the three mentioned challenges by
introducing progressively different levels of dynamism in user’s behavior when
characterizing web workload.

e Based on this model, a web workload generator has been developed in order
to reproduce user’s dynamism in web performance studies, which is the second
contribution of this thesis.

e Finally, the last main contribution is the analysis of using representative dy-
namic workload on the web performance metrics. To this end, we provide a
new testbed for web performance evaluation by integrating our generator with
a commonly used benchmark with the aim of contrasting performance metrics
for traditional and dynamic workloads.

1.3 Research context

Part of this thesis has been developed in the context of the research project GENER-
ICA, which was led by the iSOCO S.L company in collaboration with the Web Ar-
chitecture Research Group (Universitat Politécnica de Valéncia) and the Institute of
Computer Technology. This project was partially supported by the Spanish Gov-
ernment Grant (FIT 340000-2004-236) and the Regional Valencian Government and
IMPIVA Grant (IMIDTD 2004/92, and IMIDTD 2005/15).

The global goal of GENERICA was the development of a methodology to evaluate
performance and functionality of web applications typical in [Webh 2.0l by using a new
workload generator with the ability to generate representative dynamic workload.

GENERICA was managed by the author of this Ph.D dissertation, who worked ac-
tively in the project results, both software development and several technical reports,
and co-authored in some international and national publications.

1.4 Outline

The remainder of this thesis is organized as follows. First, Chapter [2] presents the
current state of the art in characterizing and generating workloads for web perfor-
mance evaluation. It reviews the most relevant perspectives to define web workloads,
and classifies a representative subset of software tools proposed in the open litera-
ture according to their main features and their ability to generate workloads for the
dynamic Web.

CHAPTER 1. INTRODUCTION

After that, Chapter [3] proposes a new web workload model with the aim of char-
acterizing a more realistic workload to evaluate the performance of current web appli-
cations. The chapter describes the main concepts of this model and introduces some
examples of user’s dynamism representation.

Next, Chapter [4] propounds a new web workload generator based on the model.
This chapter describes the main features, applications, and architecture of the genera-
tor. It also introduces an example of web performance evaluation using this software,
that has been appropriately validated against a traditional workload generator. Then,
with the aim of providing a more flexible tool to evaluate web performance, a new
testbed with the ability of reproducing dynamic user workloads has been developed.
Chapter [5| presents both testbed design and validation.

Chapters[6land [fanalyze for the first time, to the best of our knowledge, the impact
of considering user’s dynamism on web workload characterization in performance
studies. Chapter [6] proves that the web user’s dynamic behavior is a crucial point
that must be addressed in web performance in order to accurately estimate system
performance indexes. On the other hand, Chapter [7] measures the effect of modeling
the User-Browser Interaction as a part of user’s dynamic behavior on web workload
characterization.

Finally, Chapter [§|summarizes the main contributions of this thesis, presents some
concluding remarks and the open research lines derived from this dissertation.

CHAPTER 2

Characterizing and generating workload for
web performance evaluation

Web workload characterization studies that help us to model and reproduce users’
behaviors grow in importance with the massively use of web applications and services
[BCI8]. Moreover, both types of applications are developed using new technologies
that have a strong impact on the system performance. Some previous attempts have
been published to reflect this fact. For instance, Cecchet et al. [CMZ02] investigate
the effect of different application deployments on the performance scalability of
application servers. Schneider et al. [SAAF0S| point out that the use of and
mashups generates more aggressive and bursty network usage compared to the overall
HTTP traffic. Similar conclusions but considering server performance are presented
in [ONUIO9] by Ohara et al. Unfortunately, these studies only consider specific web
paradigms, thus the workload used is not representative enough of current users’
navigations.

This chapter presents the current state of the art in characterizing and generating
workloads for web performance evaluation. First, Section [2.1|reviews a representative
subset of the most relevant perspectives to define web workloads, and analyzes the
main drawbacks that we have to tackle in order to obtain representative workloads
for current web applications. Moreover, we go over different approaches to represent
user’s behavior on web workload characterization. After that, Section evaluates
and classifies the most commonly used software tools proposed in the open literature
according to their main features and ability to generate workloads for the dynamic
Web. Finally, Section [2.3| presents some concluding remarks about this work, which
motivate the main contributions of this dissertation.

2.1 Workload models and the current Web

Web workload models are abstractions of the real workload that reproduce users’
behaviors and ensure that a particular web application performs as it would do when

CHAPTER 2. CHARACTERIZING AND GENERATING WORKLOAD FOR
WEB PERFORMANCE EVALUATION

working with real users. To this end, the model represents a set of users of the web
application and avoids those characteristics that are superfluous for a particular study.
Workload models can be classified into two main groups: trace-based and analytical
models.

Traces log the sequence of HT'TP requests and commands received by a web appli-
cation during a certain period of time under given conditions. Traces are obtained for
a particular environment; that is, specific server speed, network bandwidth, browser
cache capacity, etc. This means that if any system parameter varied, the obtained
trace would be different. Therefore, the main challenge of trace-based models is
to achieve a good representativeness, especially when requests received by different
servers exhibit a large variability. Consequently, trace based models are not appro-
priate to model changes in the user’s behavior.

The analytical approach uses mathematical models to simulate the user’s behavior
or the characteristics of specific workloads. These models allow us to consider different
scenarios by setting some input parameters that specify the main characteristics of the
workload to be characterized. Analytical models are a flexible approach for modeling
changes in the user’s behavior.

Some studies [FP0T, [SCK03] confirm how difficult is to model and generate rep-
resentative web requests, especially when trying to model the characteristics of the
dynamic Web and its users. In this dissertation, the main difficulties when model-
ing the user’s behavior on realistic web workload have been summarized in the three
challenges reported on page

There have been few but interesting efforts to model user’s behavior in order to
obtain more representative users workloads for specific web applications. Menascé et
al. [MAQQ] introduced the Customer Behavior Model Graph (CBMG)) that describes
patterns of user’s behavior in the workloads of e-commerce websites by using an
approach based on Finite State Machines (FSMk). The [CBMG] model consists of all
pages of an on-line bookstore and the associated transition probability. For illustrative
purposes, Figure 2.1 depicts an example of for a search process, showing that
users may visit several pages and move among these pages according to the arcs
weight. Numbers in the arcs indicate the probability of taking that transition. For
example, the probability of going to the Product Detail page from the Search Results
page is 60%. This value means that after a search, regardless of whether the search
returns a list of books or a void list, the Product Detail page will be visited 60% of
the times.

Duarte et al. [DMAT08| introduced the Visitor Behavior Model Graph (VBMG))
for workload definition of the blogspace by extending Blog visitors can be
grouped into different categories according to their visiting patterns. These categories
are characterized by different [VBMGE in terms of the state transition probabilities.
For example, Figure shows the typical behavior of who tend to read
a lot of blogs but never post any comments. This behavior only considers that a
blurker can start reading a new blog or can continue reading the same blog. Notice

2.1. WORKLOAD MODELS AND THE CURRENT WEB

100 100
Home

100 35 5 100

Product Search
Detail 60 Results

Figure 2.1: Example of a simplified CBMG model

[99% 9
7 s

start reading continue reading
a new blog the same blog
43%
=
Figure 2.2: Example of a VBMG model for blurkers

[oma o8l

Source

that, if a blurker reads the same blog at least twice, he can also leave the blog with
a probability of 43% (exit transition).

Shams et al. [SKF06] proposed an application modeling methodology to han-
dle inter-request and data dependencies. The methodology relies on Extended Fi-
nite State Machines (EFSME) that can model applications with higher-order request
dependencies without encountering the state explosion problem [LY96], typical in
[FSMlbased approaches. Consequently, is better suited for modeling web ap-
plications than [CBMG] and [VBMGl Figure depicts and example of [EESM] for
an e-commerce system, where nodes are states in the user’s navigation and arcs are
requests to the web application. Two request dependency state variables are used
to enforce inter-request dependencies. The items_in_cart is an integer variable that
indicates the number of items in the shopping cart and the signed_on is a boolean vari-
able that states whether a user has signed on or not. For example, the items_in_cart
variable is incremented by 1 when the user executes the Add request type (transition
from Ss to S3), and it is decremented by 1 when the user executes the Delete request
type (transition from S3 to S4). So that, the Checkout request type (transition from
Sy to S5) is only allowed when the previous sequences of requests have resulted in at
least one item in the shopping cart (items_in_cart > 0).

Benevenuto et al. [BRAMCAQ9] introduced the Clickstream Model to characterize
user’s behavior in On-line Social Network (OSN]). This approach identifies and de-
scribes representative users’ behaviors in [OSNk by characterizing the type, frequency,
and sequence of their activities. The modeling of the system implies two steps: i) to

CHAPTER 2. CHARACTERIZING AND GENERATING WORKLOAD FOR
WEB PERFORMANCE EVALUATION

Sign in
Az signed _on=True
Browse rowse
Browse

Browse :items_in_cart= items_in_carl +1

f
Checkout 87
Delete P:items_in_cart >0 | k&~
A: J’ft‘}}]\‘_ in cart= items in cart -1
Pitems in cart =0
54
Delete
Checkout
Pritems i cart >0 A:items _in_cart nem.‘ in_cart-1
: x sitems_in_cart -
S5

Purchase

e
P: signed on= True Sign in

A: signed _on=True
@?\
/ Purchase

Figure 2.3: Example of a simplified EFSM model for an e-commerce system

Source

identify dominant user’s activities in clickstreams, and ii) to compute the transition
rates between activities. For illustrative purposes, Figure [2.4] shows the transition
probability in the Clickstream Model for an [OSN

These four models only characterize web workload for specific paradigms or appli-
cations, but they either do not model user’s dynamic behavior for a general context
and in an appropriate and accurate way (Challenge I) or do not consider user’s dy-
namic roles (Challenges II and IIT).

On the other hand, there is an evidence of an important change of user interaction
with the Web. For instance, a recent study showed that 57.4% of web sessions involve
parallel browsing behavior [HWT10]. This behavior was originally found in the experi-
enced users, who surf the Web by using multiple browsers tabs or windows to support
backtracking or multitasking with the aim of enhancing their navigation productivity

2.2. WEB WORKLOAD GENERATORS OVERVIEW

0.09 0.08

7%?
’—0.86 ¥ 0,82
4—0.04—[Testimonials] [Photos] l Communities I
\ 0.04

(Fna)

Figure 2.4: Transition probability in the Clickstream Model for an OSN

(BRAMCAO9]

Source

[AJKO5, [Tha08]. Moreover, the history-back button, included in any current web
browser, is still one of the world’s most heavily used user interface components in the
web context, and accounts for up to 31% of all revisits [OWHMO07]. This important
change has been considered in several studies and tools to improve the website usabil-
ity [ASWOQG], to test web applications [DLDPO03] or learning user preferences [SZ00].
However, to the best of our knowledge, User-Browser Interaction (UBI]) have not been
taken into account when modeling user’s dynamism on workload characterization in
web performance studies yet.

2.2 Web workload generators overview

Workload generators are software products based on workload models to generate
HTTP requests sequences similar to real requests. They are designed and imple-
mented as versatile software tools for performing tuning or capacity planning studies.

Comparing web workload generators is a laborious and difficult task since they
offer a large amount and diversity of features. In this section we contrast genera-
tors according to a wide set of features and capabilities, focusing on their ability to
reproduce user’s dynamism in performance studies for current Web.

To this end, Section analyzes a representative subset of state-of-the-art work-
load generators as a first step, highlighting their main features as web performance
evaluation software and their main disadvantages when reproducing accurate work-
load for current Web. After that, in Section we evaluate and classify these
generators, concentrating on those that consider user’s dynamic behavior.

CHAPTER 2. CHARACTERIZING AND GENERATING WORKLOAD FOR
WEB PERFORMANCE EVALUATION

2.2.1 Software tools study

2.2.1.1 WebStone

WebStone [Min02bh] was designed by Silicon Graphics in 1996 to measure the perfor-
mance of web server software and hardware products. It was acquired by Mindcraft,
Inc. that improved its reliability and portability as well as the reproducibility of
performance tests. Moreover, new workloads for [CGI| [NSAPI| and [SAP]| tests were
provided. Nowadays, both executable and source code for WebStone are available for
free.

The benchmark generates a web server load by simulating multiple web clients
navigating a website as shown in Figure These clients can be considered as users,
web browsers, or other software that makes requests to the website files, which can be
classified in different categories according to their size. The simulation is carried out
using multiple clients running on one or more computers to generate large loads on
a web server. All the testings done by the benchmark are controlled by a webmaster,
which is a program that can be run on one of the client computers or on a different one.
The webmaster distributes the web client software and test configuration files to the
client computers. After that, it starts the execution and waits for the clients to report
the performance they measured. Finally, the webmaster combines the performance
results from all the clients into a single report.

The performance measured by WebStone depends on the set of files used by the
web clients. The set used by default is based on a model of the Silicon Graphics website
in 1995, although it is possible to change the file set to one that better simulates the
website of interest.

.

.
[wew cliend [eb cliend fweb cien]
[web clienf [web clien] fweb Client] WA e

e B B g{;
|

%00 g

% Web Server

Figure 2.5: WebStone architecture

Source [MIESPEY]

10

2.2. WEB WORKLOAD GENERATORS OVERVIEW

To sum up, WebStone is one of the first software products proposed to measure
the performance of web systems but it seems obsolete for the current Web. Table 2]
summarizes its main features and disadvantages.

Main features
e Parameterized workload.

e Distributed model for workload generation.
e Open performance reports.

e Open source solution.

Disadvantages
e Basic HT'TP protocol only.

e No users’ navigations characterization.

e No facilities to consider user’s dynamism.

Table 2.1: Main features and disadvantages of WebStone

2.2.1.2 SPEC’s Benchmarks for Web Servers

The Standard Performance Evaluation Corporation (SPEC]) has commercialized Bench-
marks for Web Servers [SPEQ9] from 1996 to the early 2012. This benchmarks’ family
is designed to measure the performance of systems offering services in the Web. The
last member of the family, named SPECweb2009, includes many sophisticated and
state-of-the-art enhancements to meet the modern demands of the current Web, such
as requests to static and dynamic content (ASP] [JSP] and [PHP]), simultaneous user
sessions, parallel HTTP connections to request page images or simulates browser
caching effects.

Figure shows the logical components of SPECweb2009. The prime client ini-
tializes and manages the other clients, sets up the web server and the back-end sim-
ulator, and stores the results of the benchmark tests. The web server handles the
requests issued by the clients by itself or by communicating with the back-end sim-
ulator in order to retrieve specific information needed to complete HTTP responses.
This simulator emulates the communication between a web server and a back-end ap-
plication server. Each benchmark client generates HT'TP requests according to certain
workloads that are defined by studying three representative types of web applications
(banking, e-commerce, and support).

Table presents the main features and disadvantages of SPECweb2009. As
observed, software is a mature benchmark that has evolved with the Web,
nonetheless it has not achieved to reproduce realistic workload in the performance
studies for the current Web because it does not consider user’s dynamism on workload
characterization.

11

CHAPTER 2. CHARACTERIZING AND GENERATING WORKLOAD FOR
WEB PERFORMANCE EVALUATION

<<component>> &l
Client 2

<<component>> #]

<<component>> £l
Client 1 i

Client n

<<component>>]
Prime Client <<component>> 8]
Web Server

<<component>> 8]
Back-End
Simulator

Figure 2.6: Logical components of SPECweb2009

Main features
e Parameterized workload.

e Different types of workloads according to the kind of
web application.

e Distributed model for workload generation.

e Full HTTP protocol (cookies, HTTPS, dynamic con-
tent, etc).

e Performance reports.

e Proprietary software.

Disadvantages
e No users’ navigations characterization.

e No facilities to consider user’s dynamism.

Table 2.2: Main features and disadvantages of SPECweb2009

2.2.1.3 SURGE

The Scalable URL Reference Generator (SURGEH) [Bar98] was developed by Barford
in 1998 with the goal of measuring the server behavior while varying the user load.
The need to develop SURGE] appeared with the difficulty to generate representative
traces for the Web because workloads generated by web users have a number of un-
usual features, such as the highly variable demands experienced by the web servers
or the self-similarity shown by the network traffic [BC98]. To tackle these drawbacks,
[SURGEI performs an analytical characterization of the user load and a set of math-
ematical models that generate the HTTP requests in the server [BBBC99]. These
models characterize:

e The distribution of sizes of unique files requested from web servers.

12

2.2. WEB WORKLOAD GENERATORS OVERVIEW

e The distribution of sizes of all files transferred from web servers.

The popularity of all requested files.
e The temporal locality of requested files.
e The active (ON) and inactive (OFF) periods of time for the emulated users.

e The number of documents transferred during an active period.

[SURGEl was designed as a scalable software framework where the previous models
are combined according to the various components of the Web [BC97]. The software
resides on a sets of clients that are connected to a web server as depicted in Figure
277 Each client executes a set of threads that request sets of documents which are
then transferred by the server (ON time). After receiving a set, the thread sleeps for
a some amount of time (OFF time) simulating the user’s think time.

In summary, was a step forward on modeling accurate workload for eval-
uating the performance of [Webh 1.0l Specifically, it was able to produce self-similar
network traffic under conditions of both high and low workload intensity. However, it
also seems to be obsolete for the current Web because its generation process is based
on analytical models that do not consider user’s dynamism, and it cannot model [34]
[tier architectures| for dynamic content generation. Table summarizes the main
features and disadvantages of SURGEL

SURGE Client
System

ON/OFF Thread

ON/OFF Thread

ON/OFF Thread
Web Server

System

SURGE Client

ON/OFF Thread
System

SURGE Client
System

o
o
o

Figure 2.7: SURGE architecture

Source [Mileexd]

13

CHAPTER 2. CHARACTERIZING AND GENERATING WORKLOAD FOR
WEB PERFORMANCE EVALUATION

Main features

e Workload generation architecture based on analytical
models.

e Distributed model for workload generation.

e Open source solution.

Disadvantages
e Basic HTTP protocol only.

e No users’ navigations characterization.

e No facilities to consider user’s dynamism.

Table 2.3: Main features and disadvantages of SURGE

2.2.1.4 S-Clients

Banga and Druschel proposed in their approach a new improved methodology for
HTTP request generation [BD99]. In this context, S-Clients was designed with the
aim of reproducing bursty traffic with peak loads exceeding the capacity of the server
as well as the modeling delay and loss characteristics of Wide Area Networks (WANE).

Figure shows the S-Clients design. It defines an architecture (Figure [2.8a] E
where a set of client machines are connected to the server machine being tested
through a router, which has sufficient capacity to support the maximum client traffic
specification. The purpose of the router is to simulate effects by introducing an
artificial delay and/or dropping packets at a controlled rate. Each client machine runs
a number of scalable client processes. S-Clients splits the process of generating traced
HTTP requests in two subprocesses: one for obtaining the connection and other for
recovering the content (Figure , so enabling a relative parallelism.

To sum up, S-Clients was an architecture devised to improve workload generators
or [Web 1.0 that is still interesting to be considered in [Web 2.0l Table presents
the main features and disadvantages of S-Clients.

2.2.1.5 WebJamma

WebJamma was a library to generate HT'TP traffic written by the Network Research
Group at Virginia Tech [CAJT99]. Tt is aimed at serving as baseline for developing a
full web workload generator.

This library works in a simple way by taking a URL file that provides the source
of the HTTP requests to be generated, so it cannot represent user’s dynamism. It
uses a multiprocessing architecture based on distributed generation nodes to test the
performance of web caching subsystems.

In summary, WebJamma was an interesting open source library to generate HT'TP
requests in a easy way. Table [2.5] shows its main features and disadvantages.

14

2.2. WEB WORKLOAD GENERATORS OVERVIEW

Pool of
Pending Connection .
Rquuests (restart // \\
Connection Establishment connection)
Process timeout?
.) 1
Web Client Machines |
1
1

\
established?
(start new N //
connection) SN/

f

-
S ——

Unix Domain Socket

’~ N
Router {)
N " 4
Connection Handling connection e

— data?—
Process closed? ~ —— data’

Pool of active
* connections
Web Server

(a) Basic architecture (b) A Scalable Client

Figure 2.8: S-Clients design

Source [MihEE]]

Main features
e Parameterized workload.

e A router to simulate [WAN] effects.

e A split generation process to avoid limits on HTTP
requests.

e Open source solution.

Disadvantages
e Only an architecture for workload generation.

e Basic HT'TP protocol only.
e No users’ navigations characterization.

e No facilities to consider user’s dynamism.

Table 2.4: Main features and disadvantages of S-Clients

2.2.1.6 TPC Benchmark™ W

TPC Benchmark™ W (TPC-W) is a transactional web benchmark defined by the
Transaction Processing Performance Council [Tra02a]. It models a representative
e-commerce system, specifically an on-line bookstore environment, with the aim of

15

CHAPTER 2. CHARACTERIZING AND GENERATING WORKLOAD FOR
WEB PERFORMANCE EVALUATION

Main features
e Easy to use as a baseline of other software generators.

e Open source solution.

Disadvantages
e Basic stressing functionalities.

e No users’ navigations characterization.

e No facilities to consider user’s dynamism.

Table 2.5: Main features and disadvantages of WebJamma

evaluating the architecture performance on a generic profile. To this end, the bench-
mark provides both models of business-client and business-business and examines real
features of e-commerce applications, such as: catalog, searcher, security, etc.

As shown in Figure [2.9] [TPC-Wl presents a client-server architecture. The remote
browser emulators are located in the client side and generate workload towards the
e-commerce web application, which is located in the server side (e-commerce server).
With the aim of reproducing a representative workload, the emulators simulate real
users’ behaviors when they surf the website by using the model, which is com-
posed of all pages of the on-line bookstore and the associated transition probability.
The server hosts the system under test, which consists of a web server and its storage
of static contents, and an application server with a database system to generate dy-
namic content. The payment gateway emulator represents an entity to authorize users’
payments. These three main architecture components are interconnected through a
dedicated network.

Payment
E-commerce Server

Web-Object Storage
HTTP Server

Clients Gateway
Emulator

Remote Browser Emulator 1

Application

Database

Remote Browser Emulator N

© O

Application Server

Server Under Test

Figure 2.9: TPC-W architecture

16

2.2. WEB WORKLOAD GENERATORS OVERVIEW

To sum up, [TPC-W] was the first benchmark for e-commerce considering the users’
behaviors on workload generation. To this end, [TPC-W] adopts model to
define web workload in spite of this model only characterizes user’s dynamic behavior
partially, as introduced in Section [2.1] The benchmark, which has been commonly
accepted by the scientific community in many research works [DMBOI] IACCT02,
GGO3]|, presents the main features and disadvantages shown in Table

Main features
e Parameterized workload.

e Different types of workloads according to the type of
scenario.

e Distributed model for workload generation.

e Full HTTP protocol (cookies, HTTPS, dynamic con-
tent, etc).

e Basic facilities to consider user’s behavior.
e Performance reports.

e Open source solution.

Disadvantages
e Basic users’ navigations characterization.

e No advanced facilities to consider user’s dynamism.

Table 2.6: Main features and disadvantages of TPC-W

2.2.1.7 Web Polygraph

Web Polygraph is a performance testing tool for caching proxies, origin server accel-
erators, content filters, and other web intermediaries. It was originally
developed at the University of California by Wessels and Rousskov in the context
of the IRCache project [RWC99|. Nowadays, it is copyrighted by The Measurement
Factory [ME12] that authorizes the use of Polygraph under the Apache License.
The benchmark consists of virtual clients and servers glued together with an ex-
periment configuration file [RW03]. Clients, named robots, generate HT'TP requests
for the simulated objects. These requests may be sent directly to the servers (e.g.
web servers), or through an intermediary (e.g. proxy cache or load balancer) using a
configurable mix of HTTP/1.0 and HTTP/1.1 protocols, optionally encrypted with
SSL or TLS. The benchmark can be configured to produce a variety of realistic and
unrealistic workloads based on a synthetic workload characterization. As Polygraph
runs, measurements and statistics are gathered for a detailed postmortem analysis.
In summary, Web Polygraph is a versatile tool for generating web traffic and
measuring proxy performance that was chosen for several industry-wide benchmarking

17

CHAPTER 2. CHARACTERIZING AND GENERATING WORKLOAD FOR
WEB PERFORMANCE EVALUATION

events. Table [2.7) shows its main features and disadvantages focusing on workload
generation.

Main features
e Synthetic workload characterization.

e Distributed model for workload generation.
e Full HTTP protocol.

e Performance reports.

e Successful industrial solution.

e Apache License.

Disadvantages
e No users’ navigations characterization.

e No facilities to consider user’s dynamism.

Table 2.7: Main features and disadvantages of Web Polygraph

2.2.1.8 LoadRunner

LoadRunner is one of the most popular industry-standard software products for func-
tional and performance testing. It was originally developed by Mercury Interactive,
but nowadays it is commercialized by Hewlett-Packard [HP12a].

Figure shows how LoadRunner works [HP12b]. As observed, it tests a web
application by emulating an environment where multiple users work concurrently.
Moreover, it accurately measures, monitors, and analyzes performance and function-

Real-time monitors capture
Z\ performance data across all
tiers, servers and network
resources and display
information on the Controller

9 Hundreds of virtual users —
perform real-life =
transactions to simulate
production traffic

\

Results are stored in a
database repository

| | allowing users to

] J generate reports and
@ o The Controller is a . 113105, | perform analysis
central console from
which the load tests are N

managed and monitored

[1=]1]

Figure 2.10: How LoadRunner works

Source

18

2.2. WEB WORKLOAD GENERATORS OVERVIEW

ality of the application while it is working under load. The testing process is controlled
by a central console.

LoadRunner supports the definition of users’ navigations, which are represented
using a scripting language, to characterize users’ families. Figure depicts the
sequential approach to scripting a application using LoadRunner [HP12c].
First the basic steps are recorded, creating a shell script. Next, this script is then
taken off-line, and undergoes further manual steps such as data parameterization
and correlations. Finally, the desired performance scripts are obtained after adding
transactions and any other required logic. LoadRunner scripting permits only to
partially reproduce user’s dynamism when generating web workload because it cannot
define neither advanced interactions of users, such as parallel browsing behavior, nor
continuous changes in user’s behaviors.

Record a Parameterize Do Add Add logic

script data Correlations transactions

Q3

Figure 2.11: LoadRunner scripting for Web 2.0 applications

Source

To sum up, LoadRunner is one of the most important software products to test
the functionality and performance of a web application. It presents some facilities
to consider user’s dynamism on the workload generation process, but only partially.
Table summarizes its main features and disadvantages.

2.2.1.9 WebLOAD

WebLOAD is a software for web performance commercialized by RadView
since 1997. It is oriented to explore the performance of critical web applications by
quantifying the utilization of the main server resources.

Figure depicts the WebLOAD architecture. The authoring environment is a
software tool to create scenarios that try to mimic the navigations of real users. To
this end, it provides facilities to record, edit and debug test scripts, that are used
to define the scenarios on workload characterization. The execution environment is
a console to manage tests execution, whose results are analyzed in the Analytics
application. Since WebLOAD is a distributed system, it is possible to deploy several
load generators to reproduce the desired load. Load generators can also be used as

19

CHAPTER 2. CHARACTERIZING AND GENERATING WORKLOAD FOR
WEB PERFORMANCE EVALUATION

Main features
e Parameterized workload.

e Different types of workloads according to the type
users’ families.

e Distributed model for workload generation.

e Full HTTP protocol (cookies, HTTPS, dynamic con-
tent, etc).

e Basic facilities to consider user’s behavior.

e Advanced reports during performance evaluation
studies.

e Multi-platform.

Disadvantages
e No users’ dynamic navigations characterization.

e No advanced facilities to consider user’s dynamism.

Table 2.8: Main features and disadvantages of LoadRunner

WebLOAD
\\4 Test Script
Authoring « Load
3 t .
environmen Coiraton Virtual
" users
—_—
‘ 503 | 3 —
L.\ o —_—
E < Statistics Eg —
» —
Execution —
environment Performance
. Data
Probing System Under Test
ﬁ Clients
E LW* single user 1= Single virtual user
= statistics E N - 9
Analytics .

Figure 2.12: WebLOAD architecture

Source

probing clients where a single virtual user is simulated to evaluate specific statistics
of a single user. These probing clients resemble the experience of a real user using
the system while it is under load.

20

2.2. WEB WORKLOAD GENERATORS OVERVIEW

In summary, WebLOAD is a commercial software that presents some capability
to generate user’s dynamic behavior, but only in a partial way, when evaluating
performance of a given web application. Table shows the main features and
disadvantages of WebLOAD.

Main features
e Parameterized workload.

e Different types of workloads according to the type of
scenario.

e Distributed model for workload generation.

e Full HTTP protocol (cookies, HTTPS, dynamic con-
tent, etc).

e Basic facilities to consider user’s behavior.

e Advanced reports during performance evaluation
studies.

e Multi-platform.

Disadvantages
e No users’ dynamic navigations characterization.

e No advanced facilities to consider user’s dynamism.

Table 2.9: Main features and disadvantages of WebLOAD

2.2.1.10 JMeter

JMeter |[ASF12] is an open source solution presented by the Apache Software Foun-
dation and designed to generate web workload with the aim of testing client/server
software, such as web applications and services.

The generator is written entirely in Java and provides an easily configurable and
visual API to define, execute and analyze web performance tests from the client
side. It presents partial capability to generate dynamic user’s workload by defining
a navigation test based on patterns (e.g. regular expressions). Additionally, JMeter
presents some facilities to check the functionality of a web application, such as test
scripts which use assertions to validate that the application returns the expected
results. Table summarizes its main features and disadvantages.

2.2.1.11 Testing scripts and tools

With the increasing popularity of web applications, some software and testing factories
or web developers have created several scripts and tools, which are usually basic and

21

CHAPTER 2. CHARACTERIZING AND GENERATING WORKLOAD FOR
WEB PERFORMANCE EVALUATION

Main features
e Parameterized workload.

e Different types of workloads according to navigation
tests.

e Full HTTP protocol (cookies, HTTPS, dynamic con-
tent, etc).

e Basic facilities to consider user’s behavior.
e Basic performance reports.
e Open source solution.

e Multi-platform.

Disadvantages
e No users’ dynamic navigations characterization.

e No advanced facilities to consider user’s dynamism.

Table 2.10: Main features and disadvantages of JMeter

open source approaches. These tools capture HTTP requests and reproduce them for
the purpose of stressing applications and testing their functionalities.

For instance, HTTPERF [MJ08] and Deluge [Bla05] were developed as tools for
measuring web server performance in Hewlett-Packard and Thrown Clear Produc-
tions, respectively. HTTPERF is not focused on implementing one particular bench-
mark but on providing a robust high-performance tool that facilitates the construc-
tion of both micro- and macro-level benchmarks [MJ9§]. In contrast, Deluge is a final
stressing tool that includes three main components: i) d1g_proxy that records HTTP
requests, ii) dlg_attack, which generates workload by reproducing recorded users’
requests, and iii) d1g_eval that elaborates statistics from the generated results.

On the other hand, HAMMERHEAD 2 [WDGI1I|, PTester [Eri99], Siege [Full2]
and Autobench [Mid04] are examples of scripts and utilities deployed by the open
source community to evaluate the quality of its developments.

Table summarizes common features and disadvantages for these tools.

2.2.2 A survey on reproducing user’s dynamism

In this section we classify the studied tools according to a wide set of features and
capabilities. Below, the twelve features and capabilities used are defined to ease the
understanding of the comparison study.

1. Distributed architecture. It refers to the ability to distribute the generation
process among different nodes. The distribution of the workload generation
significantly helps us to improve the workload accuracy.

22

2.2. WEB WORKLOAD GENERATORS OVERVIEW

Main features
e Kasy to use and introduce in both development and
testing processes.

e Simple reports for functional and performance tests.

e Open source solutions.

Disadvantages
e Basic stressing functionalities.

e No users’ navigations characterization.

e No facilities to consider user’s dynamism.

Table 2.11: Main features and disadvantages of testing scripts and tools

. Analytical-based architecture. This feature represents the capability to use an-
alytical and mathematical models to define the workload. These models allow
to improve the workload quality by using them as workload parameters (e.g.
user’s behavior models or simulation architectures).

. Business-based architecture. When defining a testing environment, the simulator
architecture should implement the same features as the real environment (e.g.
e-commerce architectures typically include a catalog, a product searcher or a
payment gateway), so it is quite important to model the business logic deployed
by the web application under test.

. Client parameterization. This is the ability to parameterize generators nodes
(e.g. number of users, allowed navigations set, or changes between navigations).
In general, web dynamism highlights the need for a workload characterization
based on parameters, and specially the related to user’s behavior.

. Workload types. Some generators organize the workload in categories or types,
each one modeling a given user profile (e.g. searcher or buyer user profiles).

. Testing the web application functionality (functional testing). This capability
permits to define functional tests related to a real web application. These tests
allow to guarantee the application correctness; that is, the application provides
the defined functionality, which fulfills the quality and assurance requirements.

. Multi-platform is referred to a software package that is implemented in multiple
types of computer platforms inter-operating among them.

. Differences between [LAN and Simulations usually run in Local Area
Network (LAN) environments. Most of the current simulators cannot model
differences between [LAN] and [WAN] where applications are usually located.

23

CHAPTER 2. CHARACTERIZING AND GENERATING WORKLOAD FOR
WEB PERFORMANCE EVALUATION

9. FEase of use. The generator should be a friendly application carrying out usabil-

ity guidelines, mainly in commercial products.

10. Performance reports. The elaborated results by the generation process are usu-

ally presented by using both on-line and off-line graphical plots.

11. Open source. This feature allows the open source community to develop exten-

sions or different generation alternatives over the generator architecture.

12. User’s dynamism. This is the main feature we are interested in, because the
dynamism in contents and users is the most relevant characteristic in the current

Web that makes workload generation difficult.

Table summarizes the studied software packages used to generate web work-
load as well as the grade (full or partial) in which they fulfill the features described
above. These software packages can be classified in three groups according to their

main application contexts:

o Group I: Benchmarks that model the client and server paradigm in web con-
text. In this case, among the five studied benchmarks, only [TPC-W] provides a
workload generation process that considers user’s dynamism, but only partially.
The others do not model user’s dynamism because: i) they are simulation ap-
proaches that do not reproduce real workload (WebStone and Web Polygraph),
or ii) they are based on analytical models that do not consider user’s dynamism

as a parameter (SPECweb and SURGE).

o Group II: Software products to evaluate performance and functionality of a given
web application, such as LoadRunner, WebLOAD and JMeter. All of them
provide abilities to generate web workload taking into account user’s dynamism

in a partial way.

o Group III: Testing tools and other approaches for traffic generation, that cannot

reproduce user’s dynamic behavior due to they are based on HTTP traces.

As observed, only four of the studied approaches (i.e. TPC-W, LoadRunner,
WebLOAD and JMeter) present some capability to reproduce user’s dynamism. Table
deals with the ability of considering user’s dynamism in depth, and explores how
each approach takes into account the three challenges. Notice that, the four generators
provide some capability to partially reproduce the dynamism of users when they surf
a website (Challenge I) but in a different way. For instance, [TPC-W] only considers
a probabilistic approach to define users’ navigations by using the model. On
the other hand, LoadRunner, WebLOAD and JMeter provide scripting languages that
permit to define users’ navigations considering conditional transitions between their
pages. Among these three generators, only the commercial products (LoadRunner
and WebLOAD) offer software artifacts to represent the different behaviors of users

(Challenge IT), but they do not mind continuous changes in these behaviors.

24

2.2. WEB WORKLOAD GENERATORS OVERVIEW

PoIILYINJ oIe soInjes] UrRUI YOIM Ul 9peId PUR SI0JRISUSS PRO[NIOM (OAA :ZT°C 9IqRL

yoddns [erjreg v

p10ddns (g ¢

[v[v[v]v]

||

|

wistTweuk(s, 19s)

0 0 ‘ 0 0 0 ‘ 0 v ‘ v 0 0 soanog ued()
v v v v v v ¢ ¢ ¢ ¢ ¢ ¢ v s310de}] 9OUBWLIONIS
K AK as() jo osery
AR AR IR AR I A A R A A I E A A K w0y yerd-mm N
L4 [NV pue MY
v v v v v ¢ ¢ Surysa], reuoouUn
vViée| e ¢ ¢ sodAT, peOrs{Iopm
\ v ¢ ¢ | 6| 0 ¢ v ¢ ¢ uorjeZIIojeWRIR] JUSI[D)
¢ | 6| ¢ ¢ v v 9INJ09YIYOIY Poseg-SSouIsne]
¢ ¢ RN N I Y 9IN309) YOIy POINQLIISI
v v v ¢ ¢ ¢ | ¢ ¢ 0INORIIYDIY pPoseg-[edlA[euy
>l | ez Y @ || o | o | o 'AvdvD/ NIVAL
mlﬁm%vmm_mmmmmwmmmmoﬁ:ﬁzmw
R ER I RS E B
g = R = E R Qs = | J|lm|2 |8
= = @ > | B = g | B
5| B 2 |E SIE| g :
= = S
= e
= =
wj
[\
I dNOoYD 11 dNOYD 1d0OYUD

25

CHAPTER 2. CHARACTERIZING AND GENERATING WORKLOAD FOR
WEB PERFORMANCE EVALUATION

TPC-W | LoadRunner | WebLOAD | JMeter
Challenge I © ® ® ®

Challenge 11 ® ®
Challenge 11T

© Analytical approach ~ ® Scripting © Software artifact

Table 2.13: Web workload generators and how challenges of user’s dynamism are
fulfilled

2.3 Summary

This chapter has analyzed state-of-the-art workload models and generators for web
performance evaluation, focusing on the capability to fulfill the three challenges that
have been introduced in Chapter

With the aim of improving workload models, few approaches (CBMG] VBMG]
[EESMland Clickstream Model) provided some capabilities to represent user’s behavior
on web workload characterization, but they do not offer an accurate solution to model
user’s dynamism.

Furthermore, among the studied software tools, only one benchmark for e-commerce
(TPC=W)) and three software solutions to evaluate functionality and performance of
a given web application (LoadRunner, WebLOAD and JMeter) provide mechanisms
to reproduce users’ navigations in current Web. However, these mechanisms do not
consider all challenges when reproducing user’s dynamic behavior, so they are not
enough to mimic real patterns of HI'TP requests.

These lacks in models and software motivate us to propose a more accurate work-
load model in order to develop a new workload generator with the aim of analyzing
the effect of using dynamic workloads on web performance evaluation, instead of
traditional workloads.

A first review of this state-of-the-art can be found in the context of the GENER-
ICA project as a technical report [GENERICA’04a). A summary of this work was
published in [WOSP’05 IJEB’05]. In [WEBIST'11], an updated state-of-the-art was
presented.

26

CHAPTER 3

DWEDB: modeling user’s dynamism on web
workload characterization

This chapter proposes the Dynamic WEB workload model (DWEB)) with the aim of
characterizing a more realistic workload when evaluating the performance of current
web applications.

[DWEDI tackles in a progressive way the three previously mentioned challenges
when modeling the user’s behavior on representative workloads. To this end, it de-
fines a couple of new concepts: user’s navigations and user’s roles. These concepts
characterize different levels of dynamism in the workload definition by means of mod-
eling web users’ behaviors.

The remainder of this chapter is organized as follows. Section [3.1] introduces the
navigation concept in general terms, describes its notation and provides an example of
modeling a first level of dynamism. Section [3.2]defines the concept of role and presents
an example of representing a second level of dynamism. Finally, some concluding
remarks are drawn in Section 3.3

3.1 The user’s navigation

The concept of user’s navigation defines a first level of user’s dynamism and satis-
fies the Challenge I by modeling user’s dynamic behavior when interacting with the
contents and services offered by the Web.

For instance, a typical navigation of a user searching for specific information,
usually begins with a query on a web finder. Queries are frequently cancelled when
the response time surpasses a certain value, which is characteristic for each user and
his current navigation conditions. In the case of obtaining results, users usually visit
the first site on the list or refine the search when receiving too much information.
Analyzing this simple example, one can see that each user request depends not only
on the response itself but also on other issues related to the quality of service (e.g.
response time length or content amount), and the users’ states. That is, users take

27

CHAPTER 3. DWEB: MODELING USER’S DYNAMISM ON WEB
WORKLOAD CHARACTERIZATION

their navigation decisions according to their personal preferences, navigation goals,
visited resources, network and connectivity conditions, etc.

The navigation concept is not just limited to reproduce human behavior, since it
can be further applied to any web client, such as software automatons, that are easier
to model than users because they follow a given navigation pattern. Nevertheless,
the strong point of the concept lies in the flexibility to represent dynamism in user’s
behavior when interacting with the Web.

Formally, a user’s navigation N is defined as a sequence of n URLs of HTTP
requests where each visited URL depends on the previously visited ones, as defined

in equation [3:1}

N = {urli,urls,...,url,} / Vi = 2..n : url; depends on urly for)
k < i and user’s-state; 1 (3.1)
where url; refers both to the content related to the resource ¢ and its associated char-
acteristics and, user’s-state;_; denotes the user’s state resulting from the interaction
with the previously visited resource.

A graph where nodes were pages of websites and arcs were transitions between
pages is not enough as a visual representation of a user’s navigation, because we need a
visual modeling language that allows us to define user’s state. Moreover, this language
has to provide mechanisms to easily model the user’s dynamism when navigating.

There are several successful extensions of Unified Modeling Language (UML) ap-
plied to web engineering. For instance, User eXperience diagrams [Con03] are in-
troduced to model the storyboards and the dynamic information of pages in build-
ing model-driven web applications. Moreover, these diagrams were extended to
rapidly develop and deploy public administration portals considering usability fac-
tors [FPZ07].

Due to these reasons, we decide to represent a navigation using a state machine
view of [UMIl In general, a state machine is a graph of states and transitions that
describes the response of an object to the events that it receives [RJB99]. We simplify
this model by considering only a reduced set of graphical elements where states are web
pages, as shown in Table [3I] The result has been adopted for visual representation
of the navigation concept.

For illustrative purposes, Figure [3.1] shows the visual navigation corresponding
to a Google search where some dynamic issues in the user’s behavior (e.g. dynamic
think time or conditional and parallel requests) are introduced. Two main parts can
be distinguished in this navigation:

1. The upper part of the diagram (before reaching branch b1) shows the two ways
in which the search can be initiated:

(1) On the left side, the user makes use of a search toolbar of a web browser
(e.g. Google toolbar for Mozilla Firefox) to make the query directly.

(2) On the right side of the figure, the user reaches branch b1 after the
Google. HOME node, where the user requests the main page to the web

28

3.1. THE USER’S NAVIGATION

Description

Notation Name
® Beginning
@ End
\ Page

internal action[guard condition]

Page

action [guard condition] - HTTP
i request

[Guard condition]

? true

false

If/else

v Vv

action [guard condition] Parallel
HTTP
request

\

End of
paral-
lelism

9 Extension

Call
@ other
naviga-
tion

States
set/get

The initial state in a state machine represents the
beginning of a navigation.

The final state in a state machine defines the end
of a navigation; that is, the user leaves the website.

Pages are states where a user can execute actions
(e.g. wuser’s think time) when their guard condi-
tions are true. These conditions can also consider
probabilities in the same way than

Transitions are HT'TP requests to pages that are
executed when their guard conditions are true.
These conditions can also consider probabilities in
the same way than [CBMGI

A simple condition is introduced to ease under-
standing of branches in user’s way.

A parallel request starts parallelism on navigat-
ing to execute n HTTP requests using n different
threads.

It transforms the parallel navigation in a sequential
navigation again by killing the threading.

It introduces a new extension point in the naviga-
tion (e.g. call to external constraints or functions),
that is used to highlight issues of dynamism.

It calls another navigation that is defined outside
the model.

It allows users to store (set) and recover (get) some
information at their states (e.g. cookies or visited
contents).

Table 3.1: User’s navigation notation

29

CHAPTER 3. DWEB: MODELING USER’S DYNAMISM ON WEB
WORKLOAD CHARACTERIZATION

searcher engine (www.google.com)). After that, he waits for a while (time
referred to as the user’s think time) and then the user makes the query.

2. In the bottom of the diagram, the user analyzes the results for a dynamic think
time, which depends on the number of results, and takes a decision (conditional
request):

(1) If the web search engine provides results (path from b1 to b2) the user
analyzes them. After that, he can refine the results by making a new
query, refined query in the figure (path from b2 to b1), or access the top
10 sites provided by using multiple browsers tabs (one for each result).
Finally, he finishes the navigation (path from b2 to black dot through
X_TH_RESULTS.HOME node).

(2) On the contrary, when no results are provided (path from bI to %), the
user can make a new query, other query in the figure (path from b3 to b1),
or finish the process (path from b3 to black dot).

GET (url=http://www.google.es/search?q="first_query")&

client=firefox-a GET(url=http:/www.google.com)

(Google.HOME]
LUserGaussianWait(:iSOO,1500) j

r_J GET (url=http://www.google.es/search?q="first_query")
GET(url=http://www.google.es/search?q="other_query")

[NO RESULTS ARE PROVIDED]

GET(url=http://www.google.es/search?q="refined_query")

[RESULTS ARE PROVIDED]

(Google.SEARCH_RESULTS) @oogle-NO_SEARCH_RESULTﬂ
L DynamicThinkTime(results) j [UserGaussianWai((1000,500)J

for x in {the top 10 search results}
GET(url=http://x_th_result_ HOME)

f X_TH_RESULTS.HOME \
L UserConstWait(5000))

Figure 3.1: Google Search navigation pattern

30

http://www.google.com

3.2. THE USER’S ROLES

3.2 The user’s roles

The [DWEB| model proposes the concept of user’s roles to fulfill the Challenges II and
III by introducing a second level of dynamism in user’s behavior. This level is related
to the roles that users play when navigating the Web. The continuous changes of
these roles defines users’ behaviors.

For instance, assume people at the Import and Export Department in a typical
multinational company who usually access the Web during their working time. As-
sume also that the company has got an intranet (Web which allows web access.
Most of the time, workers use Internet for professional purposes (e.g. intranet naviga-
tions, suppliers sites navigations, or professional web searches), but sometimes they
use the web for leisure purposes (e.g. reading the news with Google Reader, perform-
ing personal searches, or checking the mail). So we can distinguish between two roles
when a department member navigates the web: working behavior (professional navi-
gations), and leisure behavior (personal navigations). Figure defines the working
and leisure behaviors of the example, and the likelihood to change between behaviors
by using balanced arcs (the arc weight is the probability to change from the source
behavior to the destination behavior). These behaviors are defined as automatons,
where their nodes represent navigations, and their balanced arcs indicate the transi-
tions between navigations (the arc weight indicates the probability to take that arc).

. [90%]

Worker Beha