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Abstract

This thesis is devoted to Multiobjective Optimization Design (MOOD) pro-
cedures for controller tuning applications, by means of Evolutionary Multiob-
jective Optimization (EMO). With such purpose, developments on tools, pro-
cedures and guidelines to facilitate this process have been realized.

This thesis is divided in four parts. The first part, namely Fundamentals,
is devoted on the one hand, to cover the theorical background required for
this Thesis; on the other hand, it provides a state of the art review on current
applications of MOOD for controller tuning.

The second part, Preliminary contributions on controller tuning, states early
contributions using the MOOD procedure for controller tuning, identifying
gaps on methodologies and tools used in this procedure. The contribution
within this part is to identify the gaps between the three fundamental steps of
the MOOD procedure: problem definition, search and decision making. These
gaps are the basis for the developments presented in parts III and IV.

The third part, Contributions on MOOD tools, is devoted to improve the
tools used in Part II. Although applications on the scope of this thesis are re-
lated to controller tuning, such improvements can also be used in other en-
gineering fields. The first contribution regards the decision making process,
where tools and guidelines for design concepts comparison in m-dimensional
Pareto fronts are stated. The second contribution focuses on amending the gap
between search process and decision making. With this in mind, a mechanism
for preference inclusion within the evolutionary process is developed. With
this it is possible to calculate pertinent approximations of the Pareto front;
furthermore, it allows to deal efficiently with many-objective and constrained
optimization instances.

Finally, in the fourth part, Final contributions on controller tuning, a stochas-
tic sampling procedure for proportional-integral-derivative (PID) controllers
is proposed, to guarantee that (1) any sampled controller will stabilize the
closed loop and (2) any stabilizing controller could be sampled. Afterwards,
two control engineering benchmarks are solved using this sampling strategy,
the MOOD guidelines highlighted trough this thesis for multivariable con-
troller tuning and the tools developed in Part III.





Resumen

Esta tesis está dedicada al proceso de diseño mediante optimización multi-
objetivo (MOOD) para el ajuste de controladores, empleando algoritmos evo-
lutivos multiobjetivo. Con dicho propósito, se han llevado a cabo desarrollos
y mejoras en herramientas, metodologías y guías para facilitar este proceso.

Este documento está dividido en cuatro partes. La primera de ellas, llamada
Fundamentals, está dedicada por un lado a cubrir el marco conceptual re-
querido para ésta tesis; por otro lado, en ella se provee de un análisis en el es-
tado del arte en el empleo del proceso MOOD para el ajuste de controladores.

En la segunda parte, Preliminary contributions on controller tuning, se pre-
sentan contribuciones preliminares en el ajuste de controladores por medio
del proceso MOOD, identificando áreas de oportunidad y mejora en las her-
ramientas empleadas. La contribución de esta parte consiste en identificar la-
gunas, y proponer soluciones preliminares, entre los tres pasos básicos de este
proceso: definición del problema, búsqueda de soluciones y selección. Dichas
lagunas son la base sobre la que se desarrollan las contribuciones presentadas
en las partes III y IV.

La tercera parte, Contributions on MOOD tools, está dedicada a la mejora de
las herramientas empleadas en la Parte II. Aunque las aplicaciones dentro del
alcance de ésta tesis conciernen al ajuste de controladores, dichas herramien-
tas pueden ser usadas en otras áreas de la ingeniería. La primera contribu-
ción es en la etapa de selección, donde se han elaborado herramientas para el
análisis y comparación de conceptos de diseño en espacios m-dimensionales.
La segunda contribución está relacionada con acercar el proceso de búsqueda
de soluciones con la etapa de selección. Con ello en mente se ha desarrollado
un nuevo mecanismo para la inclusión de preferencias en el proceso evolutivo
de búsqueda; más allá, dicho mecanismo permite lidiar eficientemente con la
optimización de muchos objetivos de diseño y con restricciones.

Por último, en la cuarta parte Final contributions on controller tuning, se pro-
pone un muestreo estocástico para controladores PID estables orientado a los
algoritmos evolutivos; con dicho muestreo se garantiza que cualquier con-
trolador muestreado estabiliza el lazo de control y que todo controlador que
estabiliza el lazo puede ser muestreado. Finalmente, se resuelven dos proble-
mas de benchmark de ingeniería de control, empleando herramientas y guías
de diseño para el proceso MOOD desarrolladas a lo largo de la Parte III para
el ajuste de controladores multivariables.





Resum

Aquesta tesi està dedicada al procés de disseny mitjançant optimització
multiobjectiu (MOOD) per a l’ajust de controladors, emprant algorismes evo-
lutius multiobjectiu. Amb aquest propòsit, s’han dut a terme desenvolupa-
ments i millores en eines, metodologies i guies per a facilitar aquest procés.

Aquest document està dividit en quatre parts. La primera d’elles, anomenada
Fundamentals, està dedicada d’una banda a cobrir el marc conceptual requerit
per a aquest tesi; d’altra banda, en ella es proveeix d’un anàlisi de l’estat de
l’art en aplicacions actuals del procés MOOD per a ajust de controladors.

En la segona part, Preliminary contributions on controller tuning, es presen-
ten contribucions preliminars en l’ajust de controladors per mitjà del procés
MOOD, identificant àrees d’oportunitat i millora en les eines emprades. La
contribució d’aquesta part consisteix en identificar llacunes, i proposar solu-
cions preliminars, entre els tres passos bàsics d’aquest procés: definició del
problema, cerca de solucions i selecció. Aquestes llacunes són la base sobre la
qual es desenvolupen les contribucions presentades en les parts III i IV.

La tercera part, Contributions on MOOD tools, és dedicada al desenvolu-
pament i millora de les eines emprades en la Part II. Encara que les aplica-
cions dins de l’abast d’aquesta Tesi es centren en l’ajust de controladors, a-
questes eines poden ser potencialment usades en altres àrees de l’enginyeria.
La primera contribució és troba en la etapa de selecció, on són elaborades eines
i guies per a l’anàlisi i comparació de diferents conceptes de disseny en espais
m-dimensionals. La segona contribució està relacionada amb acostar el procés
de cerca de solucions amb el del procés de selecció. Amb aquest propòsit un
nou mecanisme per a la inclusió de preferències en el procés evolutiu de cerca
és desenvolupat. Amb aquest mecanisme és possible calcular aproximacions
al front de Pareto amb major pertinència; més enllà, aquest mecanisme permet
fer front eficientment amb l’optimització amb restriccions i de molts objectius
de disseny.

Finalment, en la quarta part Final contributions on controller tuning, es pro-
posa un mostreig estocàstic per a controladors PID estables orientat als algo-
rismes evolutius; amb aquest mostreig es garanteix que qualsevol controlador
mostrejat estabilitza el llaç de control i que tot controlador que estabilitza el
llaç pot ser mostrejat. Finalment, dos problemes de benchmark d’enginyeria
de control per a l’ajust de controladors multivariables són resolts, emprant les
eines i guies de disseny per al procés MOOD desenvolupades al llarg de la
Part III.





Contents

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
Main acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix
Main symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi
List of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiv
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xxvii

Aims, Structure and Contributions of this thesis 2

I Fundamentals 11

1 Tutorial on Multiobjective Optimization Design procedures 17

1.1 Aim of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2 Engineering design as a multiobjective optimization problem . 18
1.3 Background on Multiobjective Optimization . . . . . . . . . . . 21
1.4 Multiobjective Optimization Design (MOOD) procedure . . . . 24

1.4.1 Multiobjective Problem (MOP) definition . . . . . . . . . 24
1.4.2 Evolutionary Multi-objective Optimization (EMO) . . . . 27
1.4.3 Multi-Criteria Decision-Making (MCDM) . . . . . . . . . 36

1.5 Background on MOOD Tools . . . . . . . . . . . . . . . . . . . . 39
1.5.1 EMO process: Multiobjective Differential Evolution with

Spherical pruning (sp-MODE) algorithm. . . . . . . . . . 40
1.5.2 MCDM stage: Level Diagrams visualization . . . . . . . 45

1.6 Conclusions on this chapter . . . . . . . . . . . . . . . . . . . . . 48

2 Review on MOOD procedure for controller tuning 53

2.1 Aim of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.2 Applications on controller tuning. . . . . . . . . . . . . . . . . . 54

2.2.1 PI-PID controller design concept . . . . . . . . . . . . . . 56
2.2.2 Fuzzy controller design concept . . . . . . . . . . . . . . 61
2.2.3 State space feedback controller design concept . . . . . . 65
2.2.4 Predictive control design concept . . . . . . . . . . . . . . 66
2.2.5 Other design concept approaches . . . . . . . . . . . . . . 68

xv



xvi Contents

2.3 Conclusions on this chapter . . . . . . . . . . . . . . . . . . . . . 70
2.3.1 The multiobjective problem statement . . . . . . . . . . . 71
2.3.2 The evolutionary multiobjective process . . . . . . . . . . 73
2.3.3 The multicriteria decision making step . . . . . . . . . . 74

II Preliminary Contributions on Controller Tuning 75

3 MOOD procedure for multivariable PI controller tuning 81

3.1 Aim of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.2 Optimization statement . . . . . . . . . . . . . . . . . . . . . . . 82
3.3 Benchmark setup: the Wood & Berry distillation column process 85

3.3.1 Multiobjective Problem Definition . . . . . . . . . . . . . 85
3.3.2 Evolutionary Multiobjective Optimization process . . . . 85
3.3.3 Decision making stage . . . . . . . . . . . . . . . . . . . . 86

3.4 Conclusions on this chapter . . . . . . . . . . . . . . . . . . . . . 92

4 MOOD procedure for multivariable controller tuning 99

4.1 Aim of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2 Optimization statement . . . . . . . . . . . . . . . . . . . . . . . 100
4.3 Experimental setup: The Twin Rotor MIMO System . . . . . . . 103

4.3.1 Optimization stage . . . . . . . . . . . . . . . . . . . . . . 103
4.3.2 PID controller tuning . . . . . . . . . . . . . . . . . . . . . 104
4.3.3 State space feedback controller tuning . . . . . . . . . . . 107

4.4 Experimental validation: The Twin Rotor MIMO System . . . . 109
4.4.1 PID controller - experimental results . . . . . . . . . . . . 109
4.4.2 State space approach - experimental results . . . . . . . . 115
4.4.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.5 Conclusions on this chapter . . . . . . . . . . . . . . . . . . . . . 119

III Contributions on MOOD Tools 123

5 Level Diagrams for design concepts comparison 129

5.1 Aim of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.2 Design concepts comparison . . . . . . . . . . . . . . . . . . . . . 130
5.3 Quality measure to compare design concepts . . . . . . . . . . . 131
5.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.4.1 Bi-objective truss design problem . . . . . . . . . . . . . . 136
5.4.2 Disc brake design . . . . . . . . . . . . . . . . . . . . . . . 138
5.4.3 Parametric controller design . . . . . . . . . . . . . . . . 142
5.4.4 Performance evaluation of MOEAs . . . . . . . . . . . . . 148

5.5 Conclusions on this chapter . . . . . . . . . . . . . . . . . . . . . 149



Contents xvii

6 Pertinency improvement in EMO 155

6.1 Aim of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.2 Background on Physical Programming . . . . . . . . . . . . . . . 156
6.3 Pertinency improvement mechanism by means of global Phys-

ical Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.3.1 Global Physical Programming statements . . . . . . . . . 158
6.3.2 Population selection and archive update . . . . . . . . . 160
6.3.3 Tolerable solutions handling . . . . . . . . . . . . . . . . 161
6.3.4 Multiple preferences coding . . . . . . . . . . . . . . . . . 163
6.3.5 Pareto front approximation size control . . . . . . . . . . 164
6.3.6 Algorithm proposal: sp-MODE-II. Discussions and in-

sights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.4.1 The 3-bar truss design problem . . . . . . . . . . . . . . . 168
6.4.2 The DTLZ2 benchmark problem . . . . . . . . . . . . . . 169
6.4.3 Parametric controller tuning . . . . . . . . . . . . . . . . 172
6.4.4 Performance evaluation with other approaches . . . . . . 173

6.5 Conclusions on this chapter . . . . . . . . . . . . . . . . . . . . . 181

IV Final Contributions on Controller Tuning 183

7 Stochastic sampling of stable PID controllers 189

7.1 Aim of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 189
7.2 Sampling Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 190

7.2.1 Computation of stable set . . . . . . . . . . . . . . . . . . 190
7.2.2 Sampling from stable set . . . . . . . . . . . . . . . . . . . 191

7.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . 193
7.3.1 Performance test 1: Convergence improvement . . . . . 198
7.3.2 Performance test 2: multidisciplinary optimization . . . 201

7.4 Conclusions on this chapter . . . . . . . . . . . . . . . . . . . . . 202

8 MOOD procedure with preferences for controller tuning 207

8.1 Aim of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 207
8.2 MOOD procedure with preferences for multivariable PI con-

troller tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
8.3 Benchmark setup: the Wood & Berry distillation column process 209

8.3.1 Design problem statement . . . . . . . . . . . . . . . . . . 210
8.3.2 Results and Discussions . . . . . . . . . . . . . . . . . . . 211

8.4 Benchmark setup: the Boiler Control problem . . . . . . . . . . . 217
8.4.1 Design problem statement . . . . . . . . . . . . . . . . . . 219
8.4.2 Results and Discussions . . . . . . . . . . . . . . . . . . . 221

8.5 Conclusions on this chapter . . . . . . . . . . . . . . . . . . . . . 225



xviii Contents

Conclusions of this thesis 232

References 239

Author 259



Main acronyms

AOF Aggregate objective function

BLT Biggest Log modulus tuning

D Desirable

DE Differential Evolution

DM Decision Maker

EA Evolutionary Algorithm

EMO Evolutionary Multiobjective Optimization

FEs Function evaluations

GFCL Generate First, Choose Later

GPP Global Physical Programming

HD Highly Desirable

HU Highly Undesirable

IAE Integral of the absolute value of error

ITAE Integral of the time weighted absolute value of error

LD Level Diagrams

LQC Linear Quadratic Controller

MCDM Multicriteria Decision Making

MIMO Multiple Input, Multiple Output

MODE Multiobjective Differential Evolution

MOEA Multiobjective evolutionary algorithm

MOOD Multiobjective Optimization Design Procedure

xix



xx Contents

MOP Multiobjective Problem

PAc Parallel Coordinates

PI Proportional-integral

PID Proportional-integral-derivative

SCp Scatter plot

SISO Single Input, Single Output

sp-MODE Multiobjective Differential Evolution with Spherical Pruning

T Tolerable

TRMS Twin Rotor MIMO System

U Undesirable



Main symbols

J∗

P Approximated Pareto front

JP Pareto front

X∗

P Approximated Pareto set

XP Pareto set

J(θ) Objective design vector

Ji(θ) i-th design objective

θ Design alternative (decision) vector

Jutopian Utopian vector for design objectives

Jnadir The opposite design vector to Jutopian

JT The vector with the maximum value for each objective in the tolerable
range.

JD The vector with the maximum value for each objective in the desirable
range.

JHD The vector with the maximum value for each objective in the highly
desirable range.

T_HypV: The hypervolume of the Pareto front approximation bounded by
JT .

D_Hypv: The hypervolume of the Pareto front approximation bounded by
JD .

HD_HypV: The hypervolume of the Pareto front approximation bounded by
JHD .

T_J∗
P : the Tolerable Pareto front approximation where all solutions dominate
JT .

xxi



xxii Contents

D_J∗
P : the Desirable Pareto front approximation where all solutions domi-

nate JD .

HD_J∗
P : the Highly Desirable Pareto front approximation where all solu-

tions dominate JHD .



List of Algorithms

1.1 Basic MOEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.2 MOEA with pruning mechanism . . . . . . . . . . . . . . . . . . . 41
1.3 Spherical pruning mechanism . . . . . . . . . . . . . . . . . . . . 42
1.4 DE offspring generation mechanism . . . . . . . . . . . . . . . . . 43
1.5 MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.6 sp-MODE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.1 DE selection procedure with global physical programming. . . . 161
6.2 Spherical pruning with physical programming index. . . . . . . . 162
6.3 Dynamic size control. . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.4 sp-MODE-II. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.1 Stable PID stochastic sampling. . . . . . . . . . . . . . . . . . . . . 193

xxiii



List of Figures

1.1 Design methodology by means of optimization. . . . . . . . . . 19
1.2 Integral performance criteria IAE and ITAE as examples of mono-

index and AOF optimization statements. . . . . . . . . . . . . . 19
1.3 Integral performance criteria IAE and ITAE as a multiobjective

optimization statement. . . . . . . . . . . . . . . . . . . . . . . . 20
1.4 Pareto optimality and dominance definitions. . . . . . . . . . . . 22
1.5 Design concept and design alternative definitions. . . . . . . . . 23
1.6 s-Pareto front definition. . . . . . . . . . . . . . . . . . . . . . . . 25
1.7 A multiobjective optimization design (MOOD) procedure for

control systems engineering. . . . . . . . . . . . . . . . . . . . . . 26
1.8 Convergence towards the Pareto front. . . . . . . . . . . . . . . . 29
1.9 Diversity notion in the Pareto front. . . . . . . . . . . . . . . . . 30
1.10 Pertinency notion. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.11 3D Visualization of a 3-dimensional Pareto front . . . . . . . . . 37
1.12 Scatter plot (SCp) visualization for Pareto front of Figure 1.11 . 38
1.13 Parallel coordinates plot (PAc) visualization for Pareto front of

Figure 1.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.14 Level diagram (LD) visualization for Pareto front of Figure 1.11 39
1.15 Spherical relations on J∗

P ⊂ R3. . . . . . . . . . . . . . . . . . . . 41
1.16 Typical representation of the Pareto front for bi-objective prob-

lems using 2-D graph (a) and LD (b). . . . . . . . . . . . . . . . . 48

2.1 Basic control loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1 Pareto set and Pareto front approximations for benchmark setup
of section 3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.2 Performance in instance 1 for benchmark setup of section 3.3. . 93
3.3 Performance in instance 2 for benchmark setup of section 3.3. . 94
3.4 Performance in instance 3 for benchmark setup of section 3.3. . 95

4.1 Twin Rotor MIMO System (TRMS) setup. . . . . . . . . . . . . . 103
4.2 PID controller scheme for experimental setup of Section 4.3. . . 105
4.3 State space controller proposal for experimental setup of Sec-

tion 4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

xxiv



List of Figures xxv

4.4 J∗
P for PID controller. . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.5 J∗
P for the SS controller. . . . . . . . . . . . . . . . . . . . . . . . 110

4.6 Reference trajectory for test on real TRMS. . . . . . . . . . . . . . 111
4.7 Performance on the real TRMS of the MOOD-PID procedure for

the setpoint pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.8 Performance on the real TRMS of the MOOD-SS procedure on

setpoint pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.9 Design concept comparison between: PID controllers and state

space controllers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.1 Typical LD comparison of a PI and a PID controllers in a SISO
system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.2 Typical comparison of two design concepts using a 2-D graph
(a), level diagrams with quality measure Q(·, ·) (b) and level
diagrams with 2-norm (c). . . . . . . . . . . . . . . . . . . . . . . 134

5.3 Bi-objective truss design problem . . . . . . . . . . . . . . . . . . 137
5.4 Objective exchange for two concepts in truss design example

(a) and representation using LD/
{
J∗
p1, J

∗
p2

}
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Aims, Structure and

Contributions of this thesis

Oh, there were all sorts of things to won-

der about, but the truth was simple: here

stood this door alone on an endless stretch

of beach, and it was for only one of two

things: opening or leaving closed.

Stephen King, The Dark Tower II.

Justification & aim of this thesis

Satisfying a set of specifications and constraints required by real-control engi-
neering problems is often a challenge. For parametric controller tuning, for ex-
ample, these range from time-domain specifications (such as maximum over-
shoot, settling time, steady state error, and rise time) to frequency-domain
requirements (noise rejection or stability margin, for example). Problems in
which the designer must deal with the fulfillment of multiple objectives are
known as multiobjective problems (MOPs).

It is common to define an optimization statement to deal with MOPs to cal-
culate a solution with the desired balance among (usually conflictive) objec-
tives. When dealing with an MOP, we usually seek an Pareto optimal solution
[127] in which the objectives have been improved as much as possible with-
out giving anything in exchange. Evolutionary Multiobjective Optimization
(EMO) has been widely used to approximate the so-called Pareto set, where
all solutions are Pareto optimal.

For a successful implementation of the EMO, a Multi-Criteria Decision-
Making (MCDM) step needs to be carried out to select the most preferable
solution from the set approximated in the EMO process. Hereafter, this holistic
procedure (MOP definition, EMO process and MCDM step) will be known as
the Multi-Objective Optimization Design (MOOD) procedure.

The aforementioned steps are important to guarantee the overall perfor-
mance of a MOOD procedure. With a poor MOP definition, no matter how

3
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good the algorithms and MCDM methodology/tools are, the solutions ob-
tained will not fulfill the decision maker’s expectations. If the algorithm is
inadequate for the problem at hand (regarding some desirable features to be
commented), the decision maker (DM or designer) will not obtain a useful Pa-
reto set to analyze; and therefore she (he) will not be able to select a solution
that meets her (his) preferences. Finally, the incorrect use of MCDM tools and
methodologies could imply a lower degree of embedment of the DM in the
tradeoff analysis and solution selection. This last issue could easily discour-
age the DM from using a MOOD procedure.

Since the MOOD procedure provides the opportunity to obtain a set of
solutions to describe the objective tradeoff for a given MOP, its use is worth-
while for controller tuning. Due to the fact that several specifications such as
time and frequency requirements need to be fulfilled by the control engineer,
a procedure to appreciate the tradeoff exchange for complex processes could
be useful. Nevertheless, the EMO process and the MCDM step are usually
handled separately. That is, there is an unbalanced interest in both processes.
This thesis focuses on the MOOD procedure, addressing the specific problem
of controller tuning, and bridging the gap between EMO and MCDM. For this
purpose, several contributions have been made for each of the steps in this
procedure. The major aim of this thesis is:

To provide a useful and decision making oriented framework for the MOOD

procedure to improve its usability in controller tuning applications.

For this reason, the following specific aims are defined and covered through
the chapters of this thesis:

1. Review the state of the art of MOOD procedures for controller tuning, to
acquire an overall framework on the work done and the work to be done.

2. Identify gaps on developed tools and methodologies of the MOOD pro-
cedure for controller tuning, related with the expected quality of the Pa-
reto front, the desirable features for EMO or in the MCDM step.

3. Develop proposals on tools and methodologies to improve the usability
and performance of the MOOD procedure for controller tuning.

4. Test the aforementioned proposals in benchmark case studies.

5. Make available those developments by publishing results and by mak-
ing code available for practitioners.

Structure of this dissertation

This thesis is divided into four parts, namely: Fundamentals (I); Preliminary
contributions on controller tuning (II); Contributions on MOOD tools (III); and
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Final contributions on controller tuning (IV). Part I is devoted to covering the
theorical background required for this thesis and it also provides a state of
the art review on current applications of MOOD for controller tuning. Part
II states preliminary contributions using the MOOD approach for controller
tuning and identifies gaps in the tools used. In Part III new tools for the
MOOD procedure are presented to amend the aforementioned gaps, which
are evaluated in Part IV with two control engineering benchmarks. Finally,
some general conclusions and ideas for further research are discussed.

Contributions of this research

The thesis is contained within a research line in EMO. Its contribution focuses
mainly on controller tuning applications; nevertheless, during its develop-
ment, collaborations and developments in various engineering fields have
been realized. The main contributions are the following:

• A new mechanism has been developed for the EMO process to improve
the pertinency of solutions in the approximated Pareto front by means of
preference inclusion using physical programming techniques. Further-
more, this mechanism enables constrained and many-objective optimi-
zation instances to be handled efficiently.

• Improvements for level diagram visualizations have been achieved for
the MCDM step in order to provide a mechanism for m-dimensional
design concept comparison. This mechanism enables the evaluation of
various controller structures and MOEAs in a multidimensional space,
so that strengths and drawbacks can be identified in each case.

• A new stochastic sampling procedure for PID-like controllers has been
developed for controller tuning. This mechanism is useful for improving
the convergence of EAs and MOEAs.

• Overall guidelines for the MOOD procedure for controller tuning are
given through various benchmark case studies. These guidelines help
define a controller tuning benchmark that is needed to evaluate the per-
formance of algorithms and DM methodologies.

Contents of this thesis appear in the following publications:

Fundamentals, Chapter 1 :

• G. Reynoso-Meza, J. Sanchis, X. Blasco, M. Martínez. Evolution-

ary Algorithms for PID controller tuning: Current Trends and Perspec-

tives. Revista Iberoamericana de Automática e Informática Indus-
trial. 2013; 10: 251-268.
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Fundamentals, Chapter 2 :

• G. Reynoso-Meza, X. Blasco, J. Sanchis, M. Martínez. Controller

tuning by means of evolutionary multiobjective optimisation: current

trends and applications. Control Engineering Practice. July 2014, Vol.
28, Pp. 58-73.

Preliminary contributions on controller tuning, Chapter 3 :

• G. Reynoso-Meza, J. Sanchis, X. Blasco, J.M. Herrero. Multiobjec-

tive evolutionary algorithms for multivariable PI controller design. Ex-
pert Systems with Applications. Vol. 39, Issue 9, July 2012. Pp.
7895-7907.

Preliminary contributions on controller tuning, Chapter 4 :

• G. Reynoso-Meza, S. García-Nieto, J. Sanchis, X. Blasco. Con-

troller tuning by means of multiobjective optimization algorithms: a global

tuning framework. IEEE Transactions on Control Systems. Vol. 21,
Issue 2, March 2013. Pp. 445 - 458.

Contributions on MOOD Tools, Chapter 5 :

• G. Reynoso-Meza, X. Blasco, J. Sanchis and J.M. Herrero. Com-

parison of design concepts in multi-criteria decision making using level

diagrams. Information Sciences, Vol. 221, Issue 1, February 2013.
Pp. 124-141.

Contributions on MOOD Tools, Chapter 6 :

• G. Reynoso-Meza, J. Sanchis, X. Blasco and S. García-Nieto. Phys-

ical Programming for preference driven Evolutionary Multiobjective Op-

timization. Applied Soft Computing. Under review.

Final Contributions on Controller Tuning, Chapter 7 :

• G. Reynoso-Meza, J. Sanchis, X. Blasco and J.M. Herrero. A stabi-

lizing PID controller sampling procedure for stochastic optimizers. The
19th World Congress of the International Federation of Automatic
Control. Accepted on February 13th., 2014.

Also, a paper with content related with chapter 8 is under development.
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Conference papers related with the aforementioned line of re-

search are:

• G. Reynoso-Meza, J. Sanchis, S. García-Nieto, J. Velasco. Ajuste de Con-

troladores multivariables mediante algoritmos evolutivos multi-objetivo. Apli-

cación a un TRMS (Multivariable controller tuning by means of Evolutionary

Multiobjective Optimization. A TRMS application). IX Simposio CEA de
Control Inteligente. Puerto de la Cruz, 26-28 de Junio, 2013.

• G. Reynoso-Meza, X. Blasco, J.M. Herrero, J. Velasco. Ajuste de con-

troladores monovariables mediante algoritmos evolutivos multiobjetivo. Apli-

cación en un robot manipulador (Controller tuning by means of Evolutionary

Multiobjective Optimization. A Robotic manipulator example). IX Simposio
CEA de Control Inteligente. Puerto de la Cruz, 26-28 de Junio, 2013.

• G. Reynoso-Meza, X. Blasco, J. Sanchis. Optimización Evolutiva Multiob-

jetivo y Selección Multicriterio para la Ingeniería de Control (Multi-objective

evolutionary optimization and multicriteria decisión making for control engi-

neering). X Simposio Ingeniería de Control. Barcelona 1-2 Marzo 2012.

• G. Reynoso-Meza, J. Sanchis, J.M. Herrero, C. Ramos. Evolutionary

auto-tuning algorithm for PID controllers. IFAC Conference on Advances
in PID control. Pp. 1-6, 2012.

• G. Reynoso-Meza, X. Blasco, J. Sanchis, S. García-Nieto. A multiobjec-

tive optimization design methodology for SISO PID controllers. IFAC Confer-
ence on Advances in PID control. Pp.: 1-6, 2012.

• G. Reynoso-Meza, M. Graff, J. Sanchis, X. Blasco. Análisis multi-objetivo

y multi-criterio del Swedish Open Championship in robot control 2004 (Mul-

tiobjective and multicriteria analysis of the Swedish Open Championship in

robot control 2004). Asociación Mexicana de Mecatrónica. 10o Congreso
Nacional de Mecatrónica, 257-262, 2011.

• G. Reynoso-Meza, J. Sanchis, X. Blasco, and J.M. Herrero. Handling

control engineering preferences: How to get the most of PI controllers. In Pro-
ceedings of the IEEE congress on emerging technologies and Factory au-
tomation (ETFA2011). Toulouse (France). September 2011.

• G. Reynoso-Meza, A. Montagud, J. Sanchis, J. Urchueguía. Simulation

of the Synechocystis sp. PCC6803 metabolic behavior using stoichiometric rep-

resentations and multiobjective evolutionary algorithms. In Proceedings of
the 12th international conference on systems biology (ICSB 2011). Hei-
delberg/Manheim (Germany). August 2011.

• G. Reynoso-Meza, X. Blasco, J. Sanchis, Juan M. Herrero. An empirical

study on parameter selection for multiobjective optimization algorithms using
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Differential Evolution. In IEEE Symposium Series on Computational In-
telligence - SSCI 2011 Paris (France). April 2011

• G. Reynoso-Meza, X. Blasco, J. Sanchis, M. Martínez. Multiobjective op-

timization algorithm for solving constrained single objective problems. In IEEE
World Congress on Computational Intelligence (WCCI 2010). Barcelona
(Spain). July 2010.

• G. Reynoso-Meza, J. Sanchis, X. Blasco. An Adaptive Parameter Control

for the Differential Evolution Algorithm. LNCS 5517. Pp. 375-382. 2009,
Springer-Verlag.

• G. Reynoso-Meza, J. Sanchis, X. Blasco. 30 November - 2 December
2009. Multiobjective design of a digital controller for the throttle control bench-

mark. In: Memories of the IFAC Control Workshop on engine and pow-
ertrain control, simulation and modeling. IFP Rueil-Malmaison

Software development

Tools developed through this research are available at:

www.mathworks.com/matlabcentral

• Developed for this thesis:

MODE: Multiobjective Differential Evolution Algorithm with Spheri-
cal Pruning c©. Software for MOEAs development at:
.../fileexchange/38962.

sp-MODE: Multiobjective Differential Evolution Algorithm with Spher-
ical Pruning c©. Software developed in [148] and basis of Chapter 6:
.../fileexchange/39215.

sp-MODE-II: Preference based Multiobjective Differential Evolution Al-
gorithm with Spherical Pruning c©. Software developed in Chapter
6:
.../fileexchange/authors/289050.

LD-Tool: Level Diagrams for multiobjective decision making and De-
sign Concepts Comparison c©. Software developed in [151] and pre-
sented in Chapter 5:
.../fileexchange/39458.

• Related with this thesis:

NNC: Normalized Normal Constraint (NNC) algorithm for multiob-
jective optimization
.../fileexchange/38976

www.mathworks.com/matlabcentral
.../fileexchange/38962
.../fileexchange/39215
.../fileexchange/authors/289050
.../fileexchange/39458
.../fileexchange/38976
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T-DE: Hybrid Differential Evolution Algorithm With Adaptive Cross-
over Mechanism c©. Software in Matlab Central:
.../fileexchange/39217

Journal papers in collaboration1 related with the aforementioned

line of research are:

• X. Blasco, G. Reynoso-Meza, S. García-Nieto. Resultados del Concurso de

Ingeniería de Control 2012 y Convocatoria 2013 (Control Engineering Bench-

mark 2012 results and 2013 call for participation). Revista Iberoamericana
de Automática e Informática industrial. Vol 10, Num 4 (2013) pp. 240-
245.

• J. A. Romero-Perez, O. Arrieta, F. Padula, G. Reynoso-Meza, S. García-

Nieto, P. Balaguer. Estudio comparativo de algoritmos de auto-ajuste de con-

troladores PID. Resultados del Benchmark 2010-2011 del Grupo de Ingeniería

de Control de CEA [Comparative study of PID auto-tuning algorithms. Re-

sults of the 2011 Control Engineering Competition]. Revista Iberoamericana
de Automática e Informática industrial Vol. 9, Num. 2 (2012), pp. 182-
193.

• X. Blasco, S. García-Nieto, G. Reynoso-Meza. Control autónomo del se-

guimiento de trayectorias de un vehículo cuatrirrotor. Simulación y evaluación

de propuestas [Autonomous trajectory control of quadrotor vehicles. Simula-

tion and proposals evaluation]. Revista Iberoamericana de Automática e
Informática industrial Vol. 9, Num. 2 (2012), pp. 194-199.

• J.Sanchis, M. Martínez, X. Blasco, G. Reynoso-Meza. Modeling prefer-

ences in multiobjective engineering design. Engineering Applications of Ar-
tificial Intelligence. Vol. 23, num. 8, pp. 1255-1264, 2010.

Conference papers in collaboration2 related with the aforemen-

tioned line of research are:

• A. Pajares, X. Blasco, G. Reynoso-Meza, J.M. Herrero Dura. Desarrollo

de una herramienta para el análisis de datos multi-criterio. Aplicación en el
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• H. Sabina, G. Reynoso-Meza, R. Vilanova, X. Blasco. Comparación de

técnicas de optimización multi-objetivo clásicas y estocásticas para el ajuste de

1While some tools and developments from this thesis were used on these works, their main
results are not part of this dissertation. Such works are commented for informational purposes.

2idem

.../fileexchange/39217
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PART I

Fundamentals

Firstly, this Part is devoted to present a theorical background on Mul-
tiobjective Optimization Design (MOOD) procedures by means of
Evolutionary Multiobjective Optimization (EMO); secondly, it pro-
vides a state of the art review on current applications of MOOD pro-
cedures for controller tuning.
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CHAPTER 1:

Tutorial on Multiobjective

Optimization Design procedures

This chapter is devoted to present the theorical background on Multi-
objective Optimization Design (MOOD) procedures by means of Evo-
lutionary Multiobjective Optimization (EMO). Contents of this chap-
ter appear in the following paper:

• G. Reynoso-Meza, J. Sanchis, X. Blasco, M. Martínez. Evolu-

tionary Algorithms for PID controller tuning: Current Trends and

Perspectives. Revista Iberoamericana de Automática e Infor-
mática Industrial. 2013; 10: 251-268.
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Tutorial on Multiobjective

Optimization Design

procedures

Above all else, the mentat must be a gener-

alist, not a specialist. It is wise to have de-

cisions of great moment monitored by gen-

eralists. Experts and specialists lead you

quickly into chaos. They are a source of

useless nit-picking, the ferocious quibble

over a comma. The mentat-generalist, on

the other hand, should bring to decision-

making a healthy common sense.

Frank Herbert, The children of Dune

1.1 Aim of this chapter

In this chapter a theorical background on Multiobjective Optimization Design
(MOOD) procedures for engineering is given, specially oriented to controller
tuning applications. The specific aims of this chapter are:

• To present the engineering design task as an optimization problem, to
define the framework for the developments and contributions of this
thesis.

• To define the MOOD procedure and its fundamental steps (measure,
search, selection), to describe the overall design process used along this
dissertation.

17
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• To present the EMO in the MOOD procedure and its challenges, to vali-
date its usage in such framework.

• To present elementary tools used in this work to state the basis of the
developments in Section III.

The remainder of this chapter is as follows: in Section 1.2 an introduction
on how to address an engineering design problem using an optimization state-
ment is commented; in Section 1.3 a general background on multi-objective
optimization is given, while in Section 1.4 the MOOD procedure is explained.
In Section 1.5 basic tools and procedures (following the developments of [148])
are briefly commented. Finally, some concluding remarks are given.

1.2 Engineering design as a multiobjective optimi-

zation problem

In Figure 1.1, a general (maybe minimal) methodology to solve an engineering
design problem by means of an optimization statement is presented. Firstly,
the design problem has to be defined. This implies to identify decision vari-
ables θ and design objectives J = [J1(θ), · · · , Jm(θ)] . If m = 1, it is said to
deal with a singleobjective problem, while if m ≥ 2 it is a multiobjective prob-
lem (MOP). A classical example of a single-objective optimization problem for
controller tuning is the integral performance criteria IAE (integral of the abso-
lute error) for a PI (proportional-integral) controller (see Figure 1.2). In such
optimization statement, the sum of the absolute value of the error has to be
minimized.

According to [119], there are two main approaches to solving an optimiza-
tion statement for an MOP: the aggregate objective function (AOF) approach, and
the generate-first choose-later (GFCL) approach. In the AOF context a single-
index optimization statement that merges the design objectives is defined. A
traditional example consist in using a weighting vector to indicate relative im-
portance among objectives. In such cases, the decision maker (DM or simply
the designer) needs to describe all the tradeoffs at once, at the beginning of the
optimization process. A classical example (again), is the integral performance
criteria ITAE (integral of the time weighted absolute error) for a PI controller
(see Figure 1.2). In such optimization statement, the time weighted absolute
value of the error is minimized. That is, two objectives are important to the
designer: (minimize) the error and (minimize) the stabilizing time.

In the GFCL approach, the main goal is to generate many potentially de-
sirable Pareto optimal solutions, and then select the most preferable solution.
This is due to the impossibility of obtaining a solution that is the best for all ob-
jectives, and therefore several solutions with different tradeoff levels may ap-
pear. The selection takes place in a Multi-Criteria Decision-Making (MCDM)
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Figure 1.1: Design methodology by means of optimization.
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Figure 1.2: Integral performance criteria IAE(red full line) and ITAE (blue dotted line) as

examples of mono-index and AOF optimization statements.
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step, where the task of the DM is to analyze the tradeoff among objectives, and
select the best solution according to his/her preferences. For the MCDM step,
several techniques [60] and visualization approaches [106] have been used;
this step may not be a trivial task since the analysis and visualization com-
plexity increase with the number of objectives. Besides, this process could be
more time consuming than the optimization process itself [32]. Continuing
with the previous example, in the GFCL approach both objectives (error and
stabilizing time) are minded separately, and the problem consists on finding
other potential preferable solutions with different tradeoff. For example, in
Figure 1.3, it can be noticed that the IAE criteria minimizes the error, at ex-
change of a larger stabilizing time; in counterpart, the ITAE minimizes the
stabilizing time, at exchange of a larger error measure. The GFCL approach
aims to find other solutions with different exchanges between those objectives.
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Figure 1.3: Integral performance criteria IAE(red full line) and ITAE (blue dotted line) as a

multiobjective optimization statement.

One way to generate such sets of potential solutions in GFCL approach is
by means of multiobjective optimization. This optimization approach seeks
for a set of Pareto optimal solutions to approximate what is known as the Pa-
reto set [127, 115]. A Pareto set approximation could help providing a prelimi-
nary idea of the objective space; and according to [21] it could be helpful when
it is necessary to explain and justify the MCDM procedure. As drawbacks,
more time and embedment from the DM in the overall process are required.

Classic techniques [127] to calculate this set of solutions have been used
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(such as varying weighting vectors, ǫ-constraint, and goal programming meth-
ods) as well as specialized algorithms (normal boundary intersection method
[39], normal constraint method [121], and successive Pareto front optimization
[162]). Nevertheless sometimes these problems could be complex, non-linear
and highly constrained, situation which makes it difficult to find a useful Pa-
reto set approximation. According to this, another way to approximate the
Pareto set is by means of Evolutionary Multiobjective Optimization (EMO),
which is useful due to the flexibility of MultiObjective Evolutionary Algo-
rithms (MOEAs) in dealing with non-convex and highly constrained functions
[32, 30]. Such algorithms have been successfully applied in several control en-
gineering [61] and engineering design areas [167].

Regarding the GFCL framework, when the multiobjective optimization
process is merged with the MCDM step for a given MOP statement, it is pos-
sible to define a multiobjective optimization design (MOOD) procedure [150].
This MOOD procedure can not substitute, in all instances, an AOF approach;
nevertheless, it could be helpful for complex design problems, where a close
embedment of the designer is needed. That is where an analysis on tradeoff
could be helpful and necessary, before implementing a desired solution.

1.3 Background on Multiobjective Optimization

A MOP, without loss of generality,3 can be stated as follows:

min
θ

J(θ) = [J1(θ), . . . , Jm(θ)] (1.1)

subject to:

g(θ) ≤ 0 (1.2)

h(θ) = 0 (1.3)

θi ≤ θi ≤ θi, i = [1, . . . , n] (1.4)

where θ is defined as the decision vector with dim(θ) = n; J(θ) as the ob-
jective vector with dim (J(θ)) = m; g(θ), h(θ) as the inequality and equality
constraint vectors, respectively; and θi, θi are the lower and upper bounds in
the decision space for θi variable. As remarked previously, there is no single
solution because in general there is no solution that is best for all objectives.
Therefore, a set of solutions, the Pareto set, is defined. Each solution in the
Pareto set defines an objective vector in the Pareto front. All solutions in the
Pareto front are said to be a set of Pareto-optimal and non-dominated solu-
tions:

3A maximization problem can be converted to a minimization problem. For each of the objec-
tives that have to be maximized, the transformation: max Ji(θ) = −min(−Ji(θ)) can be applied.
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Definition 1. (Pareto optimality [127]): An objective vector J(θ1) is Pareto optimal

if there is no other objective vector J(θ2) such that Ji(θ
2) ≤ Ji(θ

1) for all i ∈

[1, 2, . . . ,m] and Jj(θ
2) < Jj(θ

1) for at least one j, j ∈ [1, 2, . . . ,m].

Definition 2. (Strict Dominance [127]): An objective vector J(θ1) is dominated by

another objective vector J(θ2) if Ji(θ
2) < Ji(θ

1) for all i ∈ [1, 2, . . . ,m].

Definition 3. (Dominance [127]): An objective vector J(θ1) dominates another vec-

tor J(θ2) if J(θ1) is not worse than J(θ2) in all objectives and is better in at least

one objective; that is J(θ1) ≺ J(θ2)

Definition 4. (Weak Dominance [127]): An objective vector J(θ1) weakly domi-

nates another vector J(θ2) if J(θ1) is not worse than J(θ2) in all objectives.

Figure 1.4: Pareto optimality and dominance definitions.

For example, in Figure 1.4, five different solutions (♦) are calculated to ap-
proximate a Pareto front (bold line). Solutions A, B, and C are non-dominated
solutions, since there are no better solution vectors (in the calculated set) for
all the objectives. Solutions B and C are not Pareto optimal, since some so-
lutions (not found in this case) dominate them. Furthermore, solution A is
also Pareto optimal, since it lies on the feasible Pareto front. The set of non-
dominated solutions (A, B, and C) build the Pareto front J∗

P and Pareto set
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X∗
P approximations. It is important to notice that most of the times the Pareto

front is unknown and we shall only rely on approximations.
In [119], some refinement is incorporated into the Pareto front notion to

differentiate design concepts. A Pareto front is defined given a design concept
(or simply, a concept) that is an idea about how to solve a given MOP. This de-
sign concept is built with a family of design alternatives (Pareto-optimal solu-
tions) that are specific solutions in the design concept. In the leading example,
the PI controller is the design concept, whereas a specific pair of values of pro-
portional and integral gains is a design alternative. For example, in Figure 1.5,
a Pareto front approximation (bold line) for a particular design concept is cal-
culated with a set of Pareto-optimal design alternatives (♦); we can state, for
example, a PI controller for a given MOP as a design concept. But sometimes,
there are different concepts, all of which are viable for solving an MOP (for
example, we may use a PI or a fuzzy controller for a given process). Therefore,
the DM can calculate a Pareto front approximation for each in order to make
a comparison. Accordingly, in [119] the definition of a Pareto front and Pareto
optimality were extended to a Pareto front for a set of concepts (s-Pareto front)
where all solutions are s-Pareto optimal.

Figure 1.5: Design concept and design alternative definitions.

Definition 5. (s-Pareto optimality [119]): Given an MOP and K design concepts,
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an objective vector J(θ1) is s-Pareto optimal if there is no other objective vector J(θ2)

in the design concept k such that Ji(θ
2) ≤ Ji(θ

1) for all i ∈ [1, 2, . . . ,m] and all

concepts k, k ∈ [1, . . . ,K]; and Jj(θ
2) < Jj(θ

1) for at least one j, j ∈ [1, 2, . . . ,m]

for any concept k.

Therefore, the s-Pareto front is built with the design alternatives of a set of
K design concepts. In Figure 1.6 this notion is shown. Two different Pareto
front approximations for two different concepts (△ and ♦ respectively) are
calculated (Figure 1.6a). In Figure 1.6b, an s-Pareto front with both design
concepts is built.

As remarked in [119], a comparison between design concepts is useful for
the designer, because he will be able to identify the concepts strengths, weak-
nesses, limitations and drawbacks. It is also important to visualize such com-
parisons, and to have a quantitative measure to evaluate strengths and weak-
nesses.

In the next section, it will be discussed how to incorporate such notions
into a design procedure for multiobjective problems.

1.4 Multiobjective Optimization Design (MOOD)

procedure

It is important to perform an integral procedure [21] minding equally the deci-
sion making and optimization steps [27]. Therefore, a general framework is re-
quired to successfully incorporate this approach into any engineering design
process. A multiobjective optimization design (MOOD) procedure is shown
in Figure 1.7. It consists of (at least) three main steps [31, 32]: the MOP defini-
tion (measurement); the multiobjective optimization process (search); and the
MCDM stage (decision making).

1.4.1 Multiobjective Problem (MOP) definition

At this stage the design concept is defined (how to tackle the problem at hand);
the engineering requirements (what is important to optimize); and the con-
straints (which solutions are not practical/allowed). In [119] it is noted that
the design concept implies the existence of a parametric model that defines
the parameter values (the decision space) that lead to a particular design al-
ternative and its performance (objective space). This is not a trivial task, since
the problem formulation from the point of view of the designer is not that of
the optimizer [63]. Multi-objective problem definitions and their Pareto front
approximation have been proposed in several fields as described in [30]; and
reviews on rule mining [175], supply chains [4, 113], energy systems [52, 55],
flow shop scheduling [185], pattern recognition [34], hydrological modeling
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(a)

(b)

Figure 1.6: s-Pareto front definition.
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Figure 1.7: A multiobjective optimization design (MOOD) procedure for control systems en-

gineering.

[50], water resources [147], machining [197], and portfolio management [123]
can be consulted by interested readers.

The designer will be searching for a preferable solution at the end of the
optimization process. As this thesis is dedicated to control system engineer-
ing, the discussed design concepts will be entirely related to this field. As a
controller must satisfy a set of specifications and design objectives, a MOOD
procedure could provide a deep insight into controller’s performance and ca-
pabilities. In exchange, more time is required for the optimization and deci-
sion making stages. Although several performance measurements are avail-
able, according to [5]4 the basic specifications cover:

• Load disturbance response

• Measurement noise response

• Set point response

• Robustness to model uncertainties.

It is worthwhile noting how the selection of the optimization objectives for
measuring the desired performance can be achieved. A convenient feature
of using MOEAs is the flexibility to select interpretable objectives for the de-
signer. That is, the objective selection can be close to the point of view of the
designer. Sometimes, with classical optimization approaches, a cost function
is built to satisfy a set of requirements such as convexity and/or continuity;
that is, it is built from the point of view of the optimizer, in spite of a possible

4Although specified in the context of PID control, they are applicable to all types of con-
trollers.
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loss of interpretability for the designer. Therefore, the multiobjective optimi-
zation statement is not a trivial task, since the problem formulation from the
point of view of the designer is not that of the optimizer [63].

Given the MOP definition some characteristics for the MOEA to be used
could be required. That is, according to the expected design alternatives,
the MOEA would need to include certain mechanisms or techniques to deal
with the optimization statement. Some examples are related to robust, multi-
modal, dynamic and/or computationally expensive optimization. Therefore,
such instances could lead to certain desirable characteristics for the optimizer,
which will be discussed below.

1.4.2 Evolutionary Multi-objective Optimization (EMO)

As noticed earlier, this thesis focuses on the MOOD procedure by means of
EMO. Due to this, MOEAs will be discussed in this thesis. Some of the classical
strategies to approximate the Pareto set include: Normal constraint method
[121, 164], Normal boundary intersection (NBI) method [39], Epsilon con-
straint techniques [127] and Physical programming [122]. In [81], a Matlab c©
toolbox kit for automatic control5 is developed that includes some of the afore-
mentioned utilities for multiobjective optimization. For the interested reader,
in [115, 127] reviews of general optimization statements for MOP in engineer-
ing are given.

MOEAs have been used to approximate a Pareto set [202], due to their flex-
ibility when evolving an entire population towards the Pareto front. A com-
prehensive review of the early stages of MOEAs is contained in [33]. There are
several popular evolutionary and nature-inspired techniques used by MOEAs.
The former are based mainly on the laws of natural selection, where the fittest
members (solutions) in a population (set of potential solutions) have the best
chance of survival as the population evolves. The latter are based on the nat-
ural behavior of organisms. In both cases, they are used to evolve their pop-
ulations towards the (unknown) Pareto front. Hereafter, it will be referred to
both simply as evolutionary techniques.

The most popular techniques include Genetic Algorithms (GA) [174, 101],
Particle Swarm Optimization (PSO) [96, 28], and Differential Evolution (DE)
[183, 125, 41]. Nevertheless, evolutionary techniques as Artificial Bee Colony
(ABC) [95] or Ant Colony Optimization (ACO) [49] algorithms are becoming
popular. No evolutionary technique is better than the others, since each have
drawbacks and advantages. These evolutionary/nature-inspired techniques
require mechanisms to deal with EMO since they were originally used for sin-
gleobjective optimization. While the dominance criterion (Definition 3) could
be used to evolve the population towards a Pareto front, it could be insuffi-
cient to achieve a minimum degree of satisfaction in other desirable character-

5Freely available at http://www.acadotoolkit.org/.

http://www.acadotoolkit.org/
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istics for a MOEA (diversity for instance). In Algorithm 1.1 a general structure
for a MOEA is given. Its structure is very similar to that of almost any evo-
lutionary technique ([61]): it builds and evaluates an initial population P |0
(lines 1-2) and begins with the optimization (evolutionary) process (lines 5 to
10). Inside this optimization process, the evolutionary operators (depending
on the evolutionary technique) will build and evaluate a new population (line
7-8), and the solutions with better cost function will be selected for the next
generation (line 10). The main difference is regarding line 9, where the Pareto
set approximation is built; according to the requirements of the designer, such
process will incorporate (or not) some desirable features.

1 Build initial population P |0 with Np individuals;
2 Evaluate P |0;
3 Build initial Pareto set approximation X∗

P |0;
4 Set generation counter G = 0;
5 while convergence criteria not reached do

6 G = G+ 1;
7 Build population P ∗|G using P |G with an evolutionary technique;
8 Evaluate new population P ∗|G;
9 Build Pareto set approximation X∗

P |G with X∗
P |G−1

⋃
P ∗|G ;

10 Update population P |G+1 with P ∗|G
⋃
P |G;

11 end

12 RETURN Pareto set approximation X∗
P |G;

Algorithm 1.1: Basic MOEA

Desirable characteristics for an MOEA could be related to the set of (use-
ful) solutions required by the DM or the MOP statement. Regarding the Pareto
set sought, some desirable characteristics include (in no particular order) con-
vergence, diversity and pertinency. Regarding the optimization statement,
some features could be for handling constrained, many-objective, dynamic,
multi-modal, robust, computationally expensive or large scale optimization
instances. These desired characteristics are also a guide for appreciating cur-
rent trends and on going research on EMO and MOEAs development [1],
[202]. Some of which are explained below.

Feature 1. Convergence

Convergence refers to the algorithm’s capacity to reach the real (usually
unknown) Pareto front (Figure 1.8). It is known that convergence properties
depend on the evolutionary parameters of an MOEA, modifying its exploita-
tion and exploration capabilities [51]. In this sense, several adaptation mech-
anisms are provided, as well as several ready to use MOEAs with a default set
of parameters, that are adjusted according several benchmarks. For example,
the benchmarks of the CEC (congress on evolutionary computation) provide a
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good set of these algorithms, comprising evolutionary techniques as GA, PSO
and DE (see for instance, [83, 200]). Another idea to improve the convergence
properties of a MOEA is using local search routines through the evolutionary
process. Such algorithms are known as memetic algorithms [134, 136].

Evaluating the convergence of a MOEA is not a trivial task, since it has
to be evaluated the convergence of a Pareto front approximation. In two di-
mensions it could not be an issue, but in several dimensions it becomes more
difficult. Several metrics have been used to evaluate the convergence proper-
ties (and other characteristics) for MOEAs [99, 206].

Convergence is a property common to all optimization algorithms; from
the user’s point of view, it can been said it is an expected characteristic. Nev-
ertheless, in the case of MOEAs it could be insufficient, and another desired
(expected) feature as diversity is required.

(a)

Figure 1.8: Convergence towards the Pareto front.

Feature 2. Diversity Mechanism

Diversity refers to the algorithm’s capacity to obtain a set of distributed
solutions that provide a useful description of objective tradeoff and decision
variables (Figure 1.9). Popular ideas include pruning mechanisms, spreading
measures or performance indicators of the approximated front.
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Regarding pruning mechanisms, probably the first technique was the ǫ-do-
minance method [104] which defines a threshold where a solution dominates
other solutions in their surroundings. That is, a solution dominates the so-
lutions that are less fit for all the objectives, as well as the solutions inside a
distance that is less than a given parameter ǫ. Such dominance relaxation has
been shown to generate Pareto fronts with some desirable pertinency char-
acteristics [117]. Algorithms based on this concept include ev-MOGA6 [78],
paǫ-MyDE [77], and paǫ-ODEMO [73]. Similar ideas have been developed us-
ing spherical coordinates (or similar statements) [22, 159, 12] in the objective
or decision space.

(a)

Figure 1.9: Diversity notion in the Pareto front.

With regard to spreading measures, the crowding distance [43] is used to
instigate an algorithm to migrate its population to less crowded areas. This
approach is used in algorithms such as NSGA-II7 [43], which is a very popular
MOEA. Other algorithms such as MOEA/D 8 [199] decompose the problem
in several scalar optimization subproblems, which are solved simultaneously

6Available for Matlab c© at: http://www.mathworks.com/matlabcentral/
fileexchange/31080

7Source code available at: http://www.iitk.ac.in/kangal/codes.shtml; also, a vari-
ant of this algorithm is available in the global optimization toolbox of Matlab c©.

8Matlab c© code available at http://cswww.essex.ac.uk/staff/zhang/

http://www.mathworks.com/matlabcentral/fileexchange/31080
http://www.mathworks.com/matlabcentral/fileexchange/31080
http://www.iitk.ac.in/kangal/codes.shtml
http://cswww.essex.ac.uk/staff/zhang/IntrotoResearch/MOEAd.htm
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(as NBI algorithm) and thereby assure diversity as a consequence of space
segmentation when defining the scalar subproblems.

In the case of indicator based MOEAs, instead of comparing members of
the population, in each generation the members who best build a Pareto front
are selected based on some performance indicator. An example is the IBEA al-
gorithm [205] which is an indicator-based evolutionary algorithm. Most used
performance indicators seem to be the hypervolume and the epsilon-indicator
[206].

However a good diversity across the Pareto front must not be confused
with solution pertinency (meaning interesting and valuable solutions from the
DM point of view). Several techniques to accomplish a good diversity on the
Pareto front seem to be based on (or compared with) uniform distributions.
Nevertheless, a large set of solutions may not be of interest to the DM, owing
to a strong degradation in one (or several) objectives [35]. Therefore, some
mechanisms to incorporate design preferences could be desirable for the DM
to improve solution pertinency.

Feature 3. Pertinency

Incorporating DM’s preferences into the MOEA has been suggested to im-
prove the pertinency of solutions (see for example [27, 38]). That is, the capac-
ity to obtain a set of interesting solutions from the DM’s point of view (Figure
1.10). The designer’s preferences could be defined in the MOOD procedure in
an a priori, progressive, or a posteriori fashion [135].

• A priori: the designer has some knowledge about his/her preferences in
the design objective space. In such cases, he could be interested in using
an algorithm that can incorporate such preferences in the optimization
procedure.

• Progressive: the optimization algorithm embeds the designer into the
optimization process to adjust or change his/her preferences on the fly.
This could be a desirable characteristic for an algorithm when the de-
signer has some knowledge of the objectives tradeoff in complex prob-
lems.

• A posteriori: the designer analyzes the Pareto front calculated by the
algorithm, and according to the set of solutions, he/she defines his/her
preferences in order to select the preferable solution.

Some popular techniques include ranking procedures, goal attainment,
fuzzy relations, among others [27]. Possibly one of the first algorithms to in-
clude preference information is the MOGA 9 [62, 143] algorithm which uses a

IntrotoResearch/MOEAd.htm
9Toolbox for Matlab c© is available at: http://www.sheffield.ac.uk/acse/

research/ecrg/gat

http://cswww.essex.ac.uk/staff/zhang/IntrotoResearch/MOEAd.htm
http://www.sheffield.ac.uk/acse/research/ecrg/gat
http://www.sheffield.ac.uk/acse/research/ecrg/gat
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goal vector scheme. In [58], the NSGA-II algorithm is improved using prefer-
ences in a fuzzy scheme. Other examples are presented in [189] where a pref-
erence information approach was merged with the IBEA proposal; or in [143]
where a preference articulation technique is used in the MOGA framework.
Examples where the ranking scheme has been used include [35, 192, 144, 11].

(a)

Figure 1.10: Pertinency notion.

Improving pertinency in multiobjective algorithms could have a direct and
positive impact in the MCDM stage, since the DM could be provided with a
more compact set of potential and interesting solutions. It has been suggested
that the size of the Pareto front approximation must be kept to a manageable
size for the DM. According to [122] it is usually impossible to retain informa-
tion from more than 10 or 20 design alternatives.

A straightforward alternative to improve pertinency of solutions could be
developed by means of optimization constraints (in addition to bound con-
straints on decision variables). This topic is exposed below.

Feature 4. Constrained optimization

Another desirable characteristic could be constraint handling because such
mechanisms are always an interesting topic of research since most of the de-
sign optimization problems need to consider constraints. Various techniques
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have been developed over the years [62, 29, 124] for evolutionary optimiza-
tion. The latter classifies current approaches as:

• Feasibility rules. An easy and basic manner to implement the approach
is discussed in [42]. It consists in:

– When comparing two feasible solutions, the one with the best ob-
jective function is selected.

– When comparing a feasible and an infeasible solution, the feasible
one is selected.

– When comparing two infeasible solutions, the one with the lowest
sum of constraint violation is selected.

• Stochastic ranking. This approach briefly consists in comparing two in-
feasible solutions by their fitness or by their constraint violations.

• ǫ-constrained method. This method uses a lexicographic ordering mech-
anism where the minimization of the constraint violation precedes the
minimization of the objective function. This mechanism with an adap-
tive parameter scheme 10 won the CEC-2010 competition in a special
session on constrained real-parameter optimization [111].

• Novel penalty functions and novel special operators.

• Multiobjective concepts. In the case of multiobjective optimization, it
can be a straightforward approach where the constraint is treated as an
additional objective to optimize to a desired value (goal vector).

• Ensemble of constraint-handling techniques. This approach involves
taking advantage of all the mechanisms for constraint handling and us-
ing them on a single optimization run (for example [112]).

Regarding controller tuning, constrained optimization instances may ap-
pear in complex processes, where several constraints on settling time, over-
shoot and robustness must be fulfilled.

Feature 5. Many-Objectives Optimization

Algorithms with good diversity preservation mechanisms could face prob-
lems if solutions are dominance resistant in an m-dimensional objective space.
This could lead to wasting time and CPU resources in non-optimal areas [142].
This is because of the self diverse nature and the large number of objectives
(usually, m ≥ 5). Furthermore, recent research has indicated that a random
search approach can be competitive for generating a Pareto front approxima-
tion for a many-objective optimization [35]. In [90], a review of many-objective

10Code available at http://www.ints.info.hiroshima-cu.ac.jp/~takahama/eng/
index.html for single objective optimization.

http://www.ints.info.hiroshima-cu.ac.jp/~takahama/eng/index.html
http://www.ints.info.hiroshima-cu.ac.jp/~takahama/eng/index.html
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optimization techniques is given. According to this review, approaches to deal
with many-objective optimization include:

• Modification of Pareto dominance to improve the selection pressure to-
wards the Pareto front.

• Introduction of different ranks to define a metric based on the number
of objectives for which a solution is better than the other.

• Use of indicator functions as performance indicators of the quality of the
Pareto front approximation.

• Use of scalarizing functions (weighting vectors, for example).

• Use of preference information (see above), that is, information on the
region of interest for the DM.

• Reduction in the number of objectives.

Some examples to deal with this instance include [110] where an objec-
tive reduction is used with principal component analysis, whereas in [171] a
heuristic approach is used for dimensionality reduction. Besides, algorithms
which incorporate preference information in the optimization approach could
be used in many-objective instances [90].

In the specific case of controller tuning, a many-objective optimization in-
stance would appear according with the complexity of a given control loop or
process, and the number of requirements to fulfill.

Feature 6. Dynamic Optimization

Sometimes the static approach is not enough to find a preferable solution
and therefore, a dynamic optimization statement needs to be solved where
the cost function varies with time. The problem, besides tracking the optimal
solution, is to select the desired solution at each sampling time. In [53, 37]
there are extensive reviews on the topic.

As it can be noticed, this kind of capabilities would be useful for problems
related to Predictive Control.

Feature 7. Multi-modal optimization

In multi-modal optimization, different decision variable vectors could have
the same objective vector. In some instances, it could be desirable to ponder
different solutions even if they have the same objective vector in the MCDM
step. This could be important in instances where, for example, the decision
variables have a physical meaning and it is convenient to analyze the impact
of using one over another. In an EMO framework, this information could be
added as additional objectives as noticed by [44]. For more details on multi-
modal optimization, the interested reader could refer to [40].
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Multi-modal instances for controller tuning per se seem to be not usual;
nevertheless they may appear in multi-disciplinary optimization [116] state-
ments, where besides tuning parameters, other design variables (as mechani-
cal or geometrical) are involved.

Feature 8. Robust optimization

In a general frame and according to [17], robust optimization could refer
to the models used to measure the performance, or the sensitivity analysis
of the calculated solutions. That is, how much the objective vector could be
degraded under the presence of uncertainties. This sensibility analysis could
be done by means of deterministic measures and/or with direct search (as
Montecarlo methods). This kind of analysis could result in a different level
of interpretability of the performance due to uncertainties in the model used
in the optimization. This problem statement is related to reliability optimiza-
tion, where a given performance must be assured for a certain process along
different scenarios.

A practical application of this optimization statement is provided, in [176]
an evaluation of the American Control Conference benchmark [194] based on
Montecarlo methods is performed.

Feature 9. Computationally Expensive optimization

Computationally expensive optimization is related to line 8 in Algorithm
I. Sometimes the cost function to evaluate requires a huge amount of com-
putational resources. Therefore stochastic approaches could face a problem,
given the complexity to evaluate the fitness (performance) of an individual
(design alternative). Some tendencies to deal with this are mainly oriented to
generate a surface on-the-fly of the objective space, with lower computational
effort. One popular technique is to use Neural Networks, trained through the
evolutionary process, but any kind of model or surface approximation could
be used. A review on the topic can be consulted in [166]. In the field of control
systems engineering, such type of instances would appear when expensive
calculations in complex simulations are needed to compute the objective vec-
tor.

In other instances, such computational effort could be relative; that is, there
are limited computational resources to evaluate a cost function. With this idea
in the field of EA’s compact evolutionary algorithms have been proposed, but
such instance has not reached yet the EMO approach. Some examples are ex-
posed in [76] and [128]. Instances where these capabilities could be desirable
include embedded solvers for optimization.

Feature 10. Large scale optimization

This refers to the capabilities of a given MOEA to deal with MOP with
any number of decision variables, with reasonable computational resources.
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Sometimes a MOEA could have remarkable convergence properties for a rel-
atively small number of decision variables, but it could be intractable (accord-
ing to the computational resources available) to solve a problem with a larger
number of decision variables. While in expensive optimization instances (Sec-
tion 9) the complexity is due to the performance measurement (line 8 in Algo-
rithm I), in a large scale instance it may be related to the algorithm mechanism
used to approximate a new set of design alternatives (lines 7 and 9 in Algo-
rithm I). In the former the complexity is added by the problem, in the latter
complexity is added by the algorithm. A review on this topic can be consulted
in [108].

The aforementioned features could be desirable characteristics for a given
MOEA. It would depend on the designer’s preferences and the MOP state-
ment at hand. Afterwards, a MCDM step must be carried, in order to select
the most preferable solution. This step is commented below.

1.4.3 Multi-Criteria Decision-Making (MCDM)

Once the DM has been provided with a Pareto front J∗
P , he or she will need to

analyze the tradeoff between objectives and select the best solution according
to his/her preferences. A comprehensive compendium on MCDM techniques
(and software) for multi-dimensional data and decision analysis can be con-
sulted in [60]. Assuming that all preferences have been handled as much as
possible in the optimization stage, a final selection step could be made with
the approximated Pareto front. Here it will be emphasized the tradeoff visu-
alization.

It is widely accepted that visualization tools are valuable and provide the
DM with a meaningful method to analyze the Pareto front and take decisions
[106]. Tools and/or methodologies are required for this final step to success-
fully embed the DM into the solution refinement and selection process. It is
useful to the DM to understand and appreciate the impact that a given tradeoff
in one sub-space could have on others [21]. Even if an EMO process has been
applied to a reduced objective space, the DM sometimes needs to increase the
space with additional metrics or measurements in order to have confidence in
her/his own decision [21]. Usually, analysis on the Pareto front may be related
to design alternatives comparison and design concepts comparison.

For two-dimensional problems (and sometimes for three-dimensional prob-
lems) it is usually straightforward to make an accurate graphical analysis of
the Pareto front (see for example Figure 1.11), but the difficulty increases with
the dimension of the problem. Tools such as VIDEO [100] incorporate a color
coding in three-dimensional graphs to analyze tradeoffs for 4-dimensional
Pareto fronts. In [106], a review on visualization techniques includes tech-
niques such as decision maps, star diagrams, value paths, GAIA, and heatmap
graphs. Possibly the most common choices for Pareto front visualization and
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analysis in control systems applications are: scatter diagrams, parallel coordi-
nates [86], and level diagrams [19, 151].
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Figure 1.11: 3D Visualization of a 3-dimensional Pareto front

Scatter diagram plots (SCp) 11 are a straightforward visualization approach.
They generate an array of 2-D graphs to visualize each combination of a pair
of objectives (see Figure 1.12). This type of visualization is enough for two
dimensional problems. To appreciate all the tradeoffs of an m-dimensional
Pareto front, at least m(m−1)

2 combination plots are required. For example, the
Pareto front of Figure 1.11 is visualized using SCp in Figure 1.12. If the DM
would like to see the tradeoff for an objective and a decision variable from the
n-dimensional decision space, she/he will need n times m additional plots.

The Parallel coordinate (PAc) visualization strategy [86] plots an m-dimen-
sional objective vector in a two-dimensional graph 12. For each objective vec-
tor J(θ) = [J1(θ), . . . , Jm(θ)] the ordered pairs (i, Ji(θ)), i ∈ [1, . . . ,m] are
plotted and linked with a line. This is a very compact way of depicting mul-
tidimensional information: just one 2-D plot is required. Nevertheless, to en-
tirely represent the tradeoff surface some axis relocations may be necessary.
For example, in Figure 1.13, it is possible to appreciate the PAc visualization
of the Pareto front for Figure 1.11. To appreciate tendencies with the decision
space variable, an extended plot with n+m vertical axes is required. An inde-
pendent graph could be plotted, but some strategy (such as color coding) will
be needed to link an objective vector with its corresponding decision vector in
order to appreciate tradeoff information from the objective space. This kind
of feature is incorporated in visualization tools such as TULIP from INRIA 13,

11Tool available in Matlab c©.
12Tool available in the statistics toolbox of Matlab c©.
13Available at http://tulip.labri.fr/TulipDrupal/. Includes applications for multi-

http://tulip.labri.fr/TulipDrupal/


38 Chapter 1. Tutorial on Multiobjective Optimization Design procedures

0 2 4 6
0

1

2

3

0 2 4 6 8
0

1

2

3

0 1 2 3
0

2

4

6

0 2 4 6 8
0

2

4

6

0 1 2 3
0

5

10

0 2 4 6
0

5

10

J
1
(θ)

J
2
(θ)

J
3
(θ)

Figure 1.12: Scatter plot (SCp) visualization for Pareto front of Figure 1.11

which is also helpful for analyzing multidimensional data. Finally, a normal-
ization or y-axis re-scaling can be easily incorporated, if required, to facilitate
the analysis.
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Figure 1.13: Parallel coordinates plot (PAc) visualization for Pareto front of Figure 1.11

The level diagram (LD) visualization [19] 14 is useful for analyzing m-ob-
jective Pareto fronts [204, 203], as it is based on the classification of the approx-
imation J∗

P obtained. Each objective Jq(θ) is normalized Ĵq(θ) with respect

dimensional analysis.
14GUI for Matlab c© is available at: http://www.mathworks.com/matlabcentral/

fileexchange/24042

http://www.mathworks.com/matlabcentral/fileexchange/24042
http://www.mathworks.com/matlabcentral/fileexchange/24042
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to its minimum and maximum values. To each normalized objective vector
Ĵ(θ) a norm is applied to evaluate the distance to an ideal solution J ideal 15.
The LD tool displays a two dimensional graph for each objective and decision
variable. The ordered pairs

(
Jq(θ), ‖Ĵ(θ)‖p

)
in each objective sub-graph and

(
θl, ‖Ĵ(θ)‖p

)
in each decision variable sub-graph are plotted (a total of n+m

plots). Therefore, a given solution will have the same y-value in all graphs
(see Figure 1.14). This correspondence will help to evaluate general tenden-
cies along the Pareto front and compare solutions according to the selected
norm. Also, with this correspondence, information from the objective space
is directly embedded in the decision space, since a decision vector inherits its
y − value from its corresponding objective vector.
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Figure 1.14: Level diagram (LD) visualization for Pareto front of Figure 1.11

In any case, the characteristics required for such a visualization were de-
scribed in [106]: simplicity (must be understandable); persistence (informa-
tion must be rememberable by the DM); and completeness (all relevant infor-
mation must be depicted). Some degree of interactivity with the visualization
tool is also desirable (during and/or before the optimization process) to suc-
cessfully embed the DM into the selection process.

1.5 Background on MOOD Tools

In this section, some MOOD tools are explained. They are used as basis for the
Preliminary Contributions on Controller Tuning (Part II) and they are basis of

15By default, the minimal values for each objective in the calculated Pareto front approxima-
tion could be used to build an ideal solution.
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the further improvements presented on Contributions on MOOD Tools (Part
III). They follow the initial research contained in [148].

Search process: the spherical pruning multiobjective differential evolution
(sp-MODE) algorithm16. It is a MOEA resulting from a previous work
[148] and validated as a suitable tool for the MOOD procedure in con-
troller tuning.

Selection process: the level diagrams visualization toolbox (LD-Tool) for Mat-
lab c©17. This visualization tool has been also validated for controller
tuning in a previous work [149].

While a detailed description of both tools for controller tuning is included
in [148] (and the preliminary results which eventually led to this thesis), here
just a brief description will be depicted for the sake of completeness.

1.5.1 EMO process: Multiobjective Differential Evolution with

Spherical pruning (sp-MODE) algorithm.

A general pseudocode for MOEAs with pruning mechanism and external ar-
chive A is shown in Algorithm 1.2. The usage of an external archive A to
store the best set of quality solutions found so far in an evolutionary process
is common in MOEAs.

The basic idea of the spherical pruning is to analyze the proposed solutions
in the current Pareto front approximation J∗

P by using normalized spherical
coordinates from a reference solution (see Figure 1.15). With such approach,
it is possible to attain a good distribution along the Pareto front [158, 148].
The algorithm selects one solution for each spherical sector, according to a
given norm or measure. This process is explained in Algorithm 1.3, where the
following definitions are required:

Definition 6. (normalized spherical coordinates) given a solution θ1 and J(θ1), let

S(J(θ1)) = [‖J(θ1)‖2,β(J(θ
1))] (1.5)

be the normalized spherical coordinates from a reference solution Jref where β(J(θ1))

= [β1(J(θ
1)), . . . , βm−1(J(θ

1))] is the arc vector and ‖J(θ1)‖2 the Euclidean dis-

tance to the reference solution.

It is important to guarantee that Jref dominates all the solutions. An intu-
itive approach is to select:

Jref = J ideal =
[
min J1(θ

i), . . . ,min Jm(θi)
]
∀J(θi) ∈ Â|G (1.6)

16Available at: www.mathworks.com/matlabcentral/fileexchange/38962
17Available at: www.mathworks.com/matlabcentral/fileexchange/24042

www.mathworks.com/matlabcentral/fileexchange/38962
www.mathworks.com/matlabcentral/fileexchange/24042
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Figure 1.15: Spherical relations on J∗

P ⊂ R
3. For each spherical sector, just one solution, the

solution with the lowest norm will be selected.

1 Generate initial population P |0 with Np individuals;
2 Evaluate P |0;
3 Apply dominance criterion on P |0 to get archive A|0;
4 while stopping criterion unsatisfied do

5 Update generation counter G=G+1;
6 Get subpopulation S|G with solutions in P |G and A|G;
7 Generate offspring O|G with S|G;
8 Evaluate offspring O|G;
9 Update population P |G with offspring O|G;

10 Apply dominance criterion on O|G
⋃
A|G to get Â|G;

11 Apply pruning mechanism to prune Â|G to get A|G+1;
12 Update environment variables (if using a self-adaptive mechanism);
13 end

14 Algorithm terminates. JP is approximated by J∗
P = A|G;

Algorithm 1.2: MOEA with pruning mechanism

Definition 7. (sight range) The sight range from the reference solution Jref to the

Pareto front approximation J∗

P is bounded by βU and βL:

βU =
[
maxβ1(J(θ

i)), . . . ,minβm−1(J(θ
i))
]
∀ J(θi) ∈ Â|G (1.7)

βL =
[
minβ1(J(θ

i)), . . . ,minβm−1(J(θ
i))
]
∀ J(θi) ∈ Â|G (1.8)

If Jref = J ideal, it is straightforward to prove that βU =
[
π
2 , . . . ,

π
2

]
and βL =

[0, . . . , 0].
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Definition 8. (spherical grid) Given a set of solutions in the objective space, the

spherical grid on the m-dimensional space in arc increments βǫ = [βǫ
1, . . . , β

ǫ
m−1] is

defined as:

ΛJ∗

P =

[
βU
1 − βL

1

βǫ
1

, . . . ,
βU
m−1 − βL

m−1

βǫ
m−1

]
(1.9)

Definition 9. (spherical sector) The normalized spherical sector of a solution θ1 is

defined as:

Λǫ(θ
1) =

[⌈
β1(J(θ

1))

Λ
J∗

P

1

⌉
, . . . ,

⌈
βm−1(J(θ

1))

Λ
J∗

P

m−1

⌉]
(1.10)

Definition 10. (spherical pruning) given two solutions θ1 and θ2 from a set, θ1 has

preference in the spherical sector over θ2 iff:

[
Λǫ(θ

1) = Λǫ(θ
2)
]
∧
[
‖J(θ1)‖p < ‖J(θ2)‖p

]
(1.11)

where ‖J(θ)‖p =

(
m∑
q=1
|Jq(θ)|

p

)1/p

is a suitable p-norm.

1 Generate initial population P |0 with Np individuals;
2 Read archive Â|G;
3 Read and update extreme values for Jref |G;
4 for each member in Â|G do

5 calculate its normalized spherical coordinates (Definition 3);
6 end

7 Build the spherical grid (Definition 4 and 5);
8 for each member in Â|G do

9 calculate its spherical sector (Definition 6);
10 end

11 for i=1:SolutionsInArchive do

12 Compare with the remainder solutions in Â|G;
13 if no other solution has the same spherical sector then

14 it goes to archive A|G+1;
15 end

16 if other solutions are in the same spherical sector then

17 it goes to archive A|G+1 if it has the lowest norm (Definition 7);
18 end

19 end

20 Return Archive A|G+1;

Algorithm 1.3: Spherical pruning mechanism
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In this implementation, the spherical pruning is merged with the DE al-
gorithm [183, 41, 182]. Although any other evolutionary or nature inspired
mechanism may be used, DE algorithm is selected because of its simplicity.
The DE algorithm uses two operators: mutation and crossover (Equations
(1.12) and (1.13) respectively) to generate its offspring (Algorithm 1.4).

Mutation: For each target (parent) vector θi|G, a mutant vector vi|G is gen-
erated at generation G according to Equation (1.12):

vi|G = θr1 |G + F (θr2 |G − θr3 |G) (1.12)

Where r1 6= r2 6= r3 6= i and F is usually known as the scaling factor.

Crossover: For each target vector θi|G and its mutant vector vi|G, a trial
(child) vector ui|G = [ui

1|G, u
i
2|G, . . . , u

i
n|G] is created as follows:

ui
j |G =

{
vij |G if rand(0, 1) ≤ Cr

θij |G otherwise
(1.13)

where j ∈ 1, 2, 3 . . . n and Cr is named the crossover probability rate.

1 for i=1:SolutionsInParentPopulation do

2 Generate a Mutant Vector vi (Equation (1.12)) ;
3 Generate a Child Vector ui (Equation (1.13)) ;
4 end

5 Offspring O = U ;

Algorithm 1.4: DE offspring generation mechanism

The standard selection mechanisms are as follows:

• For single objective optimization, a child is selected over its parent (for
the next generation) if it has a better cost value.

• In EMO, a simple selection based on dominance is used; a child is se-
lected over his parent if the child strictly dominates his parent (Defini-
tion 2).

This solution, merging the MODE algorithm (Algorithm 1.5) and the spher-
ical pruning mechanism (Algorithm 1.3) was named as sp-MODE algorithm
(see Algorithm 1.6) and it is freely available at Matlab c© Central18. Default
parameters and guidelines for parameter tuning are given in table 1.1.

Other approaches have used spherical coordinates or similar ideas (as cone
separation) in multiobjective optimization. For example, in [22] these ideas

18http://www.mathworks.com/matlabcentral/fileexchange/39215

http://www.mathworks.com/matlabcentral/fileexchange/39215
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1 Build initial population P |0 with Np individuals;
2 Evaluate P |0;
3 Build initial Pareto set approximation X∗

P |0;
4 Set generation counter G = 0;
5 while stopping criterion unsatisfied do

6 G = G+ 1;
7 Build offspring P ∗|G using P |G using DE algorithm operators

(Algorithm 1.4).;
8 Evaluate offspring P ∗|G;
9 Update population P |G+1 with P ∗|G

⋃
P |G using greedy selection

mechanism of DE algorithm. ;
10 end

11 RETURN Pareto set approximation X∗
P |G = P |G+1;

Algorithm 1.5: MODE

1 Generate initial population P |0 with Np individuals;
2 Evaluate P |0;
3 Apply dominance criterion on P |0 to get A|0;
4 while stopping criterion unsatisfied do

5 Read generation count G;
6 Get subpopulation S|G with solutions in P |G and A|G;
7 Generate offspring O|G with S|G using DE operators (Algorithm

1.4).;
8 Evaluate offspring O|G;
9 Update population P |G with offspring O|G according to greedy

selection mechanism.;
10 Apply dominance criterion on O|G

⋃
A|G to get Â|G;

11 Apply pruning mechanism (Algorithm 1.3) to prune Â|G to get
A|G+1;

12 G = G+ 1;
13 end

14 Algorithm terminates. JP is approximated by J∗
P = A|G;

Algorithm 1.6: sp-MODE.
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have been used for parallel computation, where cone separation is used in
the decision space to split the search into several regions. In [12], a cone ǫ-
dominance is defined merging cones with the ǫ-dominance mechanism. Nev-
ertheless, with such approach a new parameter κ is introduced to adjust the
capacity of the grid. If this parameter is not adequately adjusted, drawbacks of
the ǫ-dominance mechanism could be inherited. Potential drawbacks are re-
lated with confusing regions with practically uninteresting tradeoff with those
of interest for the designer (pertinent regions). As it will be shown in Chap-
ter 6, such characteristic will be exploited to generate pertinent Pareto front
approximations.

1.5.2 MCDM stage: Level Diagrams visualization

Level diagrams (LD) enables the DM to perform an analysis on the calculated
Pareto front J∗

P . LD visualization is based on the classification of the Pareto
front J∗

P . Each objective Jq(θ) is normalized with respect to its minimum and
maximum values. That is:

Ĵq(θ) =
Jq(θ)− Jmin

q

Jmax
q − Jmin

q

, q ∈ [1, . . . ,m]. (1.14)

where (with a little abuse of notation):

Jmin =

[
min

J1(θ)∈J∗

P

J1(θ), . . . , min
Jm(θ)∈J∗

P

Jm(θ)

]
(1.15)

Jmax =

[
max

J1(θ)∈J∗

P

J1(θ), . . . , max
Jm(θ)∈J∗

P

Jm(θ)

]
(1.16)

For each normalized objective vector Ĵ(θ) = [Ĵ1(θ), . . . , Ĵm(θ)] a p-norm
‖Ĵ(θ)‖p is applied to evaluate the distance to an ideal solution J ideal = Jmin;
common norms are:

‖Ĵ(θ)‖1 =

m∑

q=1

Ĵq(θ) (1.17)

‖Ĵ(θ)‖2 =

m∑

q=1

Ĵq(θ)
2 (1.18)

‖Ĵ(θ)‖∞ = max Ĵq(θ) (1.19)

The LD visualization displays a two-dimensional graph for every objective
and every decision variable. The ordered pairs

(
Jq(θ), ‖Ĵ(θ)‖p

)
are plotted

in each objective sub-graph and
(
θl, ‖Ĵ(θ)‖p

)
in each decision variable sub-

graph. Therefore, a given solution will have the same y-value in all graphs (see
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Table 1.1: Guidelines for sp-MODE’s parameters tuning.

Parameter Value Comments
DE algorithm

F (Scaling
factor)

0.5
Recognized as good initial choice

according to [183].

[0.8, 1.0]
Values recognized for non-separable

problems according to [155, 41].
Cr

(Crossover
rate)

[0.1, 0.2]
Values recognized for separable
problems according to [155, 41].

0.5

Trade-off value for separable and
non-separable problems. Default

value used (for example) by MOEA/D
algorithm [199].

Np

(Population)
50

While a five to ten times the number of

decision variables rule has been
recognized as a thumb rule [183] for

single objective optimization, here it is
proposed a default size of 50

individuals.
Pruning mechanism

100

It is proposed for bi-objective
problems, to bound the approximated
Pareto front to 100 design alternatives.

βǫ (Arcs) [10, 10]

It is proposed for 3-objective
problems, to bound the approximated

Pareto front to 102 = 100 design
alternatives.

m−1︷ ︸︸ ︷
[m, . . . ,m]

It is proposed for m-objective
problems, to bound the approximated

Pareto front to mm−1 design
alternatives.

p (p-norm) 1 It is proposed as default value.

Figure 1.16). This correspondence helps to evaluate general tendencies along
the Pareto front and compare solutions according to the selected norm. In all
cases, the lower the norm, the closer the ideal solution19. For the remainder of
this work and for the sake of simplicity, ‖ · ‖2 norm will be used.

For example, an euclidian norm is helpful to evaluate the distance of a

19In this thesis, the minimal values for each objective in the calculated Pareto front approxi-
mation are used to build an ideal solution.
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given solution with respect to the ideal solution, meanwhile a maximum norm
will give information about the tradeoff achieved by this solution. Such norm,
used to visualize tendencies in the Pareto front, does not deform the MOP
essence, since this visualization process takes place after the optimization stage.

In all cases, the lower the norm, the closer to the ideal solution Jmin. For
example, in Figure 1.16, point A is the closest solution to Jmin with the ‖ · ‖1
norm. This does not mean that point A must be selected by the DM. Selection
will be performed according with the visual information from the LD visual-
ization and the DM’s preferences. In the same Figure, it is possible to visualize
how the tradeoff rate changes in solution A. That is, it is possible to appreciate
two different tendencies around solution A: on the one hand, the better J2(θ)
value, the worse J1(θ) value (circles). On the other hand, the worse J2(θ)

value, the better J1(θ) value (diamonds). It is difficult to appreciate such ten-
dencies with classical visualizations with more than three objectives. For the
remainder of this thesis, the ‖ · ‖2 norm will be used.

Differences in LD from other visualization techniques rely mainly on the
number of plots required to depict all the information (completeness). For
example, scatter plots (SCp) require at least m(m−1)

2 graphs for tradeoff com-
parison of each pair of objectives; if correlations with the decision space are
needed, n ·m additional plots will be required. Another popular visualization
strategy is Parallel Coordinates (‖p), which is a very compact way to display
multidimensional data. A single 2-dimensional plot is required, with as many
vertical axes as objectives (plus decision variables, if required). Nevertheless,
to fully appreciate all the tradeoff among objectives, some rearrangements of
the vertical axes could be required. In the case of LD, a total of n +m graphs
are needed and no additional rearrangements for axes are required. Further-
more, the decision space variables inherit the norm value from the objective
space, giving a straightforward correlation between objective and decision
space. The LD visualization offers a tradeoff between SCp and ‖p to visu-
alize an m-dimensional Pareto front with the following assumption: the fewer
the plots required to depict all the information, the greater the persistence.

In any case, some degree of interactivity (with the data) would be desirable
to facilitate the decision making procedure; this could improve the simplicity
of any visualization technique. Moreover, elementary tools to identify prefer-
able zones could be helpful (such as color coding for example); this could im-
prove the persistence of the aforementioned visualization techniques. These
types of features have been successfully included in software tools such as
VIDEO [100] (classical visualization) and TULIP (parallel coordinates) from
INRIA 20.

The LD-ToolBox 21, a powerful tool to analyze m-objective Pareto fronts,
[149, 156, 204] uses LD visualization and is employed at this point. It is a

20Available at http://tulip.labri.fr/TulipDrupal/
21available at http://www.mathworks.com/matlabcentral/fileexchange/24042

http://tulip.labri.fr/TulipDrupal/
http://www.mathworks.com/matlabcentral/fileexchange/24042
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Matlab c© toolbox that offers to the DM a degree of interactivity with multi-
dimensional data. An in-depth explanation of the LD tool capabilities can be
found in [19] 22.
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Figure 1.16: Typical representation of the Pareto front for bi-objective problems using 2-D graph

(a) and LD (b). Points at the same level in LD correspond on each graphic.

1.6 Conclusions on this chapter

In this chapter, some topics on MOP definitions, the EMO process and the
MCDM step have been covered. The aforementioned steps are important to
guarantee the overall performance of a MOOD procedure. With a poor MOP

22There are video tutorials available at http://cpoh.upv.es/es/investigacion/
software/item/52-ld-tool.html.

http://cpoh.upv.es/es/investigacion/software/item/52-ld-tool.html
http://cpoh.upv.es/es/investigacion/software/item/52-ld-tool.html
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definition, the solutions obtained will not fulfil the DM’s expectations regard-
less of the quality of the algorithms and MCDM methodology/tools. If the
algorithm is inadequate for the problem at hand (regarding the desirable char-
acteristics from Section 1 to 10), the DM will not obtain a useful Pareto set to
analyze and therefore he/she will not be able to select a solution that meets
his/her preferences. Finally, the incorrect use of MCDM tools and method-
ologies could imply a lower degree of embedment of the DM in the tradeoff
analysis and solution selection. The last issue could easily discourage the DM
from using a MOOD procedure.

Regarding the MOP, some comments have been made regarding the capac-
ity to reach a different level of interpretability on objective functions. In the
MOOD approach there is no need to build a complicated aggregated function
to merge the design objectives; therefore the objectives may be listed sepa-
rately and optimized simultaneously. That is, the objective function statement
could be made from the needs of the designer instead of the optimizer. This
may facilitate the embedment of the designer into the overall procedure. In
the case of EMO, it has been shown how MOEAs could be useful to face dif-
ferent optimization instances as well as bring some desirable characteristics to
the approximated Pareto front. It is important to remember that the final pur-
pose of any MOEA is to provide the DM with a useful set of solutions (Pareto
front approximation) to perform the MCDM procedure [21]. With regard to
the MCDM step, it can be seen that visualization of the Pareto front is a desir-
able tool for the DM to perform his/her selection at the MCDM stage. Finally,
tools to be used as basis of this thesis has been presented.

Next, several design concepts and MOP statements used in control system
engineering field will be discussed.
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CHAPTER 2:

Controller tuning using

evolutionary multiobjective

optimization: current trends and

applications

In this chapter a review on controller tuning applications using a
MOOD procedure based on EMO is given. Contents of this chapter
appear in the following paper:

• G. Reynoso-Meza, X. Blasco, J. Sanchis, M. Martínez. Con-

troller tuning by means of evolutionary multiobjective optimization:

current trends and applications. Control Engineering Practice.
July 2014, Vol. 28, Pp. 58-73.
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Controller tuning using

evolutionary multiobjective

optimization: current trends

and applications

All collected data had come to a final end.

Nothing was left to be collected. But all

collected data had yet to be completely cor-

related and put together in all possible rela-

tionships. A timeless interval was spent in

doing that.

Isaac Asimov, The Last Question.

2.1 Aim of this chapter

In this chapter a review on controller tuning applications using a MOOD pro-
cedure is given. The specific aims of this chapter are:

• To present a state-of-the art review of the last ten years (2002-2012) of
MOOD procedures using EMO for controller tuning.

• To identify gaps between the EMO process and the MCDM step for those
MOP statements.

Since the MOOD procedure provides the opportunity to obtain a set of so-
lutions to describe the objectives tradeoff for a given MOP, it is worthwhile to
use it for controller tuning. Due to the fact that several specifications such as

53
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time and frequency requirements need to be fulfilled by the control engineer,
a procedure to appreciate the tradeoff exchange for complex processes could
be useful. Controller design concepts such as PID, fuzzy, state space feedback
and predictive controllers are covered, where by means of the MOOD proce-
dure, the designer is seeking to improve their performance. At the end of this
chapter, conclusions on potential directions for further research and applica-
tions development are commented.

2.2 Applications on controller tuning.

In [61], a review on the early stages of MOEAs in control systems is provided.
To be in the scope of this work design applications may include parametric
controller tuning for the 10 year period following the aforementioned review
(from 2002-2012). Works on parametric model identification are not included
since comprehensive reviews on modeling (in the broad sense) using EMO are
available for fuzzy systems [56], neural networks, [71, 46], machine learning
[93] and support vector machines [186].

Relevant applications are included, where desirable characteristics such
as convergence and diversity are considered. This means that works where
a proof of concept of an EMO for solving a given problem, or where a sim-
ple comparison between MOEAs is provided are intentionally omitted. Work
with depth analysis that brings new desirable characteristics of MOEAs for
controller tuning is included and discussed. This is because it is intended
to offer to the interested reader a useful framework on work to-be-done and
already-done on MOOD procedures for controller tuning.

Figure 2.1: Basic control loop.

According to the basic control loop of Figure 2.1 and the review, some com-
mon choices for objectives in frequency domain are:

• Maximum value of the sensitivity function

JMs
(θ) =

∥∥(I + P (s)C(s))−1
∥∥
∞

(2.1)

• Disturbance attenuation performance

JW1
(θ) =

∥∥W (s) · (I + P (s)C(s))−1
∥∥
∞

< 1 (2.2)



Part I: Fundamentals 55

• Maximum value of the complementary sensitivity function

JMp
(θ) =

∥∥P (s)C(s)(I + P (s)C(s))−1
∥∥
∞

(2.3)

• Robust stability performance.

JW2
(θ) =

∥∥W (s) · (P (s)C(s)(I + P (s)C(s))−1)
∥∥
∞

< 1 (2.4)

where W (s) are weighting transfer functions commonly used in mixed
sensitivity techniques. Meanwhile in time domain:

• Integral of the absolute error value

JIAE(θ) =

Tf∫

t=t0

|r(t) − y(t)| dt (2.5)

• Integral of the time weighted absolute error value

JITAE(θ) =

Tf∫

t=t0

t |r(t) − y(t)| dt (2.6)

• Integral of the squared error value

JISE(θ) =

Tf∫

t=t0

(r(t)− y(t))
2
dt (2.7)

• Integral of the time weighted squared error value

JITSE(θ) =

Tf∫

t=t0

t (r(t)− y(t))
2
dt (2.8)

• Integral of the control action value

JISU (θ) =

Tf∫

t=t0

(u(t))
2
dt (2.9)

• Total variation of control action

JTV (θ) =

Tf∫

t=t0

∣∣∣∣
du

dt

∣∣∣∣ (2.10)
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• Maximum value of control action

JmaxU (θ) = max(u(t)), t ∈ [t0, Tf ] (2.11)

where r(t), y(t), u(t) are the references, measured variable and control ac-
tions in time t. Such objectives, for the sake of simplicity, have been stated in
a general sense; details regarding specific implementation issues can be con-
sulted in the references by the interested reader in each case.

2.2.1 PI-PID controller design concept

PID controllers are reliable digital control solutions thanks to their simplicity
and efficacy [5, 8]. They represent a common solution for industrial appli-
cations and therefore, there is still ongoing research on new techniques for
robust PID controller tuning [191]. Any improvement in PID tuning is worth-
while, owing to the minimum number of changes required for their incorpo-
ration into already operational control loops [187, 177]. As expected, several
works have focused on the PID performance improvement.

Given a process P (s), the following general description for a PID controller
is used:

C(s) = kp

(
a+

1

Tis
+ b

Td

Td

N s+ 1

)
R(s)

− kp

(
1 +

1

Tis
+

Td

Td

N s+ 1

)
Y (s) (2.12)

where kp is the controller proportional gain, Ti the integral time, Td the
derivative time, N the derivative filter, a, b the setpoint weighting for propor-
tional and derivative actions, R(s) the reference and Y (s) the measured signal.
Therefore, the following design concepts (controllers) with their decision vari-
ables could be stated:

PI: θPI = [kp, Ti]

PD: θPD = [kp, Td]

PID: θPID = [kp, Ti, Td]

PID/N: θPID/N = [kp, Ti, Td, N ]

PI1: θPI1 = [kp, Ti, a]

PID2: θPID2 = [kp, Ti, Td, a, b]

PID2/N: θPID2/N = [kp, Ti, Td, N, a, b]
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Applications on PI-PID controller design concept

In [79], authors focus on defining a general MOP statement for a wide vari-
ety of applications and it is one of the few works that uses as decision vari-
ables all the flexibility degrees of a PID controller (gains, weighting factors,
and filters). It proposes an MOP using four objectives for a PID2/N con-
troller. The aforementioned objectives are related with different norms of
JIAE(θPID2/N ), JMs(θPID2/N ), JITAE(θPID2/N ) (Equations (2.5), (2.1) and
(2.6) respectively) and J(θPID2/N ) =

∥∥W (s) · (I + P (s)C(s))−1
∥∥
2

for noise re-
duction. Constraints to avoid saturation effects are also included. The PI1 and
PID2/N concepts are compared (using SCp visualization) in order to appre-
ciate the tradeoff differences in the MOP given for single input single output
and multiple input multiple output processes (SISO and MIMO respectively).

[188] seems to be the first work that provides tuning rules for an MOP
statement; that is, defining tuning rules with a certain degree of flexibility
for the designer to select a desirable controller according to his/her prefer-
ences. It uses an integral MOOD tuning procedure for PI1 controllers to build
a multiobjective-based tuning rule procedure. The methodology begins with
an identified first order plus dead time model to perform the optimization and
MCDM step procedure. In the first step, a 3D Pareto front is analyzed to select
a solution with the desired tradeoff among JIAE(θPI1) (for load disturbance),
JMs(θPI1) and JTV (θPI1) (Equations (2.5), (2.1) and (2.10) respectively). A
second analysis in a 2D Pareto front is then performed to select the proper
value of the setpoint weighting for setpoint response. The Pareto fronts are
built according to a given value of the normalized time delay. The approach
was validated with several SISO processes with different characteristics.

In [82], an EMO constrained statement for a PID/N controller is proposed
for SISO processes. Three main objectives are defined: a low frequency perfor-
mance objective based on J(θPID/N ) = P (s)(I+P (s)C(s))−1, a pass-band ro-
bust objective using an aggregate function of JMs

(θPID/N ) and JMp
(θPID/N )

(Equations (2.1) and (2.3) respectively), and a control activity objective based
on J(θPID/N ) = C(s)(I + P (s)C(s))−1. Constraints are also incorporated
to improve the pertinency of solutions. The MOEA proposed in the paper
uses a single-objective optimization procedure in a subset of its population
to improve convergence and speed. A SISO example is provided and after
several comparisons (using SCp visualization), the authors noticed that using
only frequency domain objectives does not give enough information to the
designer regarding pertinency in time domain specifications. Therefore, the
authors suggest that mixing objectives from both domains would significantly
improve the interpretability and pertinency of the design alternative.

In [85], an MOEA using a simulated annealing (SA) based algorithm [184]
is proposed for PID2/N controller tuning for square MIMO processes. The
algorithm uses a generation mechanism based on orthogonal experiment de-
signs; this mechanism is used in order to incorporate a type of systematic rea-
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soning method to generate promising Pareto optimal solutions. The design
objectives used are the sensitivity and complementary sensitivity functions
JW1

(θPID2/N ), JW2
(θPID2/N ) and squared error JISE(θPID2/N ) (Equations

(2.2), (2.4) and (2.7) respectively). The algorithm is compared with a state-
of-the-art algorithm and is evaluated in an aircraft simulated model. In this
proposal, the constraint-handling and pertinency mechanisms are supported
by the weighting function approach employed in the mixed sensitivity tech-
nique. Comparison with other techniques is shown, where a mixed 2-norm
and 1-norm criterion is used to select a preferable solution.

In [149], a PID2/N controller was tuned using a MOOD procedure. The
controller employed a hybrid constraint approach using mixed sensitivity con-
straints as objectives. The process under consideration was a black-box non-
linear model with three different dynamics (underdamped, overdamped, and
unstable) according to the operational zone. A set of nominal models was
identified using a prior EMO statement and a total of 15 objectives (5 for each
operational zone) based on JIAE(θPID2/N ), JITAE(θPID2/N ), JTV (θPID2/N ),
JW1

(θPID2/N ) and JW2
(θPID2/N ) (Equations (2.5), (2.6), (2.10), (2.2) and (2.4)

respectively) were stated. A subset of design alternatives was selected, accord-
ing to the 2-norm from the normalized ideal solution in an LD visualization
framework.

In [156] the optimization statement developed by [6] for PI1 controllers is
stated as an EMO problem for (square) MIMO processes. The purpose was
to analyze the tradeoff between integral gain Jki

(θPI1) = −
kp

Ti
, maximum

value of the sensitivity function JMs
(θPI1) (Equation (2.1)) and maximum

value of the complementary sensitivity function JMp
(θPI1) (Equation (2.3))

for setpoint changes (one triplet for each loop); additionally as overall robust
performance the largest log modulus defined in [109] is stated. The tradeoff is
discussed, and the design alternatives in the Pareto front are compared with
other AOF and EMO approaches using an LD visualization.

In [168], a PID controller is tuned for a flexible alternating current trans-
mission system. The overall goal was to find a controller capable of improving
the load disturbance rejection performance with the minimum control effort.
Two objectives were defined for this purpose: error measurement JISE(θPID)

and control effort JISU (θPID) (Equations (2.7) and (2.9) respectively). The
NSGA-II algorithm was used, and the selection procedure was performed us-
ing preference articulation by means of a fuzzy inference system. In this in-
ference system, the minimum and maximum values of each objective in the
calculated Pareto front are used to calculate the best solution.

It has been noticed that the MOOD procedure can be more time consum-
ing than an AOF approach. Nevertheless, sometimes it is posible to run the
optimization for a given nominal case, and use it as the basis for a particu-
lar (different) statement. A good example is provided in [3] where two design
concepts, a PID and an I-PD controller (a PID2 controller with a = 0, b = 0) are
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tuned using an MOEA for an optimal chemotherapy control model for cancer
treatment. Both controllers are used to supply drug doses for a given period of
time. Three objectives are defined: (maximize) tumour cell killing, (minimize)
toxicity, and (minimize) tolerable drug concentration. The MOOD approach
is used to observe and evaluate the effects of treatment. The purpose is to
develop a reference case on the performance of the controllers to be used by
the medical staff to determine the best treatment for a particular patient (since
it is impractical to generate a Pareto front for each patient). To improve the
pertinency of solutions, a goal vector approach is used. The visualization and
selection procedure were performed using SCp when comparing both design
concepts. The visualization process was useful, since it performed an in-depth
analysis on the characteristics and physical meaning of the solutions.

In [196] a set of four PI controllers is proposed for the ALSTOM gasifier
problem [48]. This gasifier is a popular MIMO popular benchmark, 23 and a
wide variety of control structures have been developed and evaluated on it. It
is a non-linear model of a coal gasifier, with several constraints. The defined
MOP consisted of six objectives, each related to the integral of the absolute
error JIAE(θPI) (Equation (2.5)) for different load and disturbance scenarios.
An SCp visualization in the decision space is used to analyse the performance
of the calculated PI controllers; the MCDM selection was performed using a
filtering process on the Pareto front approximation and a coal quality indica-
tor (i.e. a new measurement is included in the MCDM process). This shows
the flexibility that can be incorporated in the MCDM step, with new indica-
tors included to evaluate the potential sets of solutions, before taking a final
selection.

In [146], a double-acting hybrid magnetic thrust bearings and its controller
were designed and optimized using a unified MOOD framework. A GA-
based MOEA was used to optimize an MOP statement with 5 objectives, 14
constraints and 16 decision variables. Regarding the decision space, two de-
cision variables correspond to a PD controller design concept; regarding ob-
jective space, 3 objectives are related to mechanical properties (exerted force,
power loss and weight) and two with control performance: JISE(θPD) and
JISU (θPD) (equations 2.7 and 2.9 respectively). Scatter diagram visualization
is used in the MCDM stage and as a selection criteria, the closest solutions to
the utopia point were selected and compared. In this case, this application
could be an example of holistic mechanical-and-control design. That is, a multi-
disciplinary design approach, where control and geometric decision variables
are optimized on the same level.

In [201] a multivariable PI controller structure is tuned for two MIMO pro-
cesses: a distillation column and an aircraft model. A bi-objective optimiza-
tion statement is defined, using an AOF for robust stability and disturbance
attenuation by means of JW1

(θPI) and JW2
(θPI) (Equations (2.2) and (2.4) re-

23Simulink models available at http://www-staff.lboro.ac.uk/~elrd2/

http://www-staff.lboro.ac.uk/~elrd2/
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spectively). As a second objective, the integral of the squared error JISE(θPI)

(Equation (2.7)) is stated; a PSO-based MOEA (lb-MOPSO) is proposed and
compared with NSGA-II. Norm 1 criteria are used to compare controllers from
the Pareto front with other design concepts.

In [179, 178] a controllability analysis of electronic valves using MOEAs
is performed. A given valve is evaluated with respect to seven different per-
formance objectives, based on a measure of transition time from release to
landing, applied forces, landing speed, and armature velocity. The main goal
is to determine the Pareto-optimal set of candidate actuators that fulfil a set of
control requirements. Further analysis on the Pareto front is performed using
PAc visualization. In the light of this visualization, several remarks are made
about the tradeoff between objectives. This is a good example of how MOOD
methodology can be used to design components with a guaranteed degree of
controllability, i.e., a design for controllability.

Conclusions on PI-PID controller design concept

In Table 2.1 a summary of these applications is provided. Brief remarks on
MOP, EMO and MCDM for each work are given. From the above it is possible
to notice the following:

Regarding the MOP statement, although works as [6], [140] and [89] re-
marked the importance of considering decision variables as N , a, b as integral
parts of PID tuning procedure, few works focus on using those decision vari-
ables within an integral PID tuning methodology.

Moreover, several works focus mainly on SISO plants and tuned a single
PID controller. Due to the fact that several and well established tuning proce-
dures exist, there is a missing justification on when a MOOD approach could
produce better solutions for the designer. Such justification is not related with
the optimization problem per se; that is, it is not about the difficulty in finding
a solution, but the difficulty in finding a solution with a reasonable tradeoff
between conflicting objectives. In this framework, the MOOD approach for
SISO loops can be justifiable.

MIMO processes seem to be a promising area where the capabilities of the
MOOD procedure could be evaluated. This is due to the fact that MIMO pro-
cesses can be more complex, and a reasonable tradeoff between conflicting
objectives can be hard to find. In this case, dealing with MIMO processes,
mechanisms for many-objective and expensive optimization could be valu-
able.

It is also interesting to notice those works where multidisciplinary opti-
mization is performed, merging for example control and mechanical decision
variables. It could lead to interesting optimization instances, since the shape
of the decision space will differ to that of the control parameters. Multimodal
optimization instances could be interesting to apply in such problems, since
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physical variables need to be minded.
Regarding the optimizer, MOEAs based on GA seem to be more popular

for PID controller tuning than their counterparts. This leads to the following
question: Are the operators used in GA best suited for PID controller tuning? Is the

stochastic search employed by MOEAs that is based on GA capable of finding more

accurate Pareto front approximations in the case of PID tuning? There are no works
addressing this question, which could be an interesting issue for practitioners
and designers when selecting an algorithm.

A less considered topic about the stochastic search used in MOEAs for PID
controller tuning, is about the proper selection of decision variable bounds.
That is, how to select the [θi, θi] for each θi ∈ θ with respect to internal closed-

loop stability? While commonly uncommented, this is a primary constraint in
controller tuning. In this sense, given the stochastic nature of MOEAs, it could
be important to fulfill the following two requirements for stochastic sampling:

1. Any sampled controller must stabilize the closed loop.

2. Any stabilizing controller C(s) of the process P (s) must be contained in
[θi, θi] , θi ∈ θ.

A common approach for feature 1 is to define bounds on the parameter that
avoid all non-stable (but also some stable) PID parameters; therefore, feature
2 is not fulfilled. A second alternative, is to bound the search space with all
stable PID parameters, but including non-stable parameters that are verified
while the algorithm is running; this obviously does not fulfil feature 1, and
could misspend computational (CPU time) resources. Therefore, techniques
for stochastic sampling that address both requirements could be interesting.

It seems that the MOOD procedure brings a suitable framework that in-
cludes constraints in the optimization problem, in comparison with evolution-
ary approaches for AOF statements for PID controllers [152]. It seems that the
simplicity of the PID and algorithms available have enabled many-objective
optimization problems to be stated. While it seems that the optimizers in-
corporate some constraint handling mechanism quite well, it is not usual to
find applications with preference handling incorporated in the algorithm to
improve pertinency (in an a-priori or interactive sense).

Finally, in the MCDM, classical approaches for visualization based on SCp
and 3D representation are the most used, despite the number of objectives de-
fined for the MOP. However, guidelines on this procedure, although valuable,
are not well covered.

2.2.2 Fuzzy controller design concept

Fuzzy systems have been widely and successfully used in control system ap-
plications as referenced in [57]. As in the PID design concept, the MOOD is
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Table 2.1: Summary of MOOD procedure for PID design concept. J(θ) refers to the number

of objectives; θ to the number of decision variables and g(θ), h(θ) to the number of inequality

and equality constraints, respectively (according with examples provided in each paper). In

some instances, constraints are also stated as objectives.

MOP EMO MCDM

Concept(s) Process(es) Ref J(θ) θ
(g(θ),
h(θ))

Algorithm
Related features
from Chapter 2

Plot Selection insights

PID2/N, PI1 SISO, MIMO [79] 4 7 (2,0) GA 4
3D,
SCp

Concepts comparison.

PI1 FOPDT [188] 4 3 (0,0) GA 3D, 2D Tuning rule methodology.

PID
Electromag-

netic
[178] 7 27 (2,0) GA 5; 4; 3 PAc

Iterative controllability analysis
for a given design.

PID/N SISO [82] 3 4 (4,0) Ad hoc 4; 3 SCp
Incorporate analysis of time

domain objectives.

PID Aeronautical [85] 3 27 (2,0) Ad hoc 4 SCp Analysis with other techniques.

PD Mechatronical [146] 5 14 (14,0) GA 4; 5 SCp Design alternatives comparison.

PID2/N SISO [149] 15 7 (6,0) GA 4; 5 LD
Selection according to

preferences.

P + PI (3) Chemical [196] 6 8 (1,0) NSGA-II 4; 5 SCp
New indicator included for

selection.

PID Electrical [168] 2 3 (0,0) NSGA-II None Fuzzy based selection.

PID, I-PD Bio-medical [3] 2 3 (3,0) GA 4 SCp
Concepts comparison; intended

to support specific treatment.

PID
Chemical,

Aeronautical
[201] 2 27 (1,0) PSO 4 SCp Norm 1 selection.

PI Chemical [156] 7 4 (3,0) DE 4; 5 LD Trade-off analysis.

useful for analyzing the tradeoff between conflicting objectives. In this case,
the fuzzy controller is more complex to tune, given its non-linearity. A com-
prehensive compendium on the synergy between fuzzy tools and MOEAs is
given in [56]. This thesis will focus on controller implementations. In general,
decision variables regard θ = [Λ,Υ,Λ,Υ, µ] where:

Λ: is the membership function shape.

Λ: is the number of membership functions.

Υ: is the fuzzy rule structure.

Υ: is the number of fuzzy rules.

µ: are the weights of the fuzzy inference system.

Applications on fuzzy controller design concept

In [97] a fuzzy logic controller was adjusted using NSGA-II for a base-isolation
system using a magnetorheological damper. A total of four objectives were
stated, based on the maximum displacement, maximum acceleration, and
their root mean squared values for different earthquake profiles using as de-
cision variables θ = (Λ,Υ, µ). A design concept comparison with a skyhook
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controller was then performed using an SCp visualization. It was remarked
that with regard to a pair of objectives, there was practically no difference
among concepts (using as a basis the number of dominated solutions). Nev-
ertheless when four objectives were considered, the MOOD tuning proce-
dure using NSGA-II outperformed the other design concept. This is a good
example of how it is possible to ask more from an existing tuning rule by
adding new objectives and indices to discriminate solutions; nevertheless, in
this work it was remarked that the more the objectives, the greater the ratio of
non-dominated solutions. This issue is typical in many-objective optimization
problems, as discussed above.

In [25], a fuzzy scheduling controller is adjusted using an MOEA for a gas
turbine engine model. This is a complex aerospace system where several fac-
tors (such as safety, reliability, and maintainability) need to be considered as
control requirements. A MOGA algorithm is used to tune the membership
functions Λ, and the scaling factors µ of the fuzzy controller. A total of nine
different objectives were stated: rise time and settling time of the compressor,
engine thrust and its rise time, maximum nozzle and turbine temperatures,
the fan pressure ratio, low pressure surge margin and thermodynamic stress.
A PAc visualization is used to analyze the tradeoff among design alternatives.
In this case, no controller was capable of fulfilling all the requirements, and
an extensive analysis of the conflicting objectives was made using a trade-
off matrix to find suitable controllers. This is a good example of the designer
interacting with the optimizer to improve the pertinency of the solutions (pro-
gressive preference articulation).

In [114], a MOOD is used for parameter tuning of a fuzzy controller for vi-
bration suppression on smart structures. Objectives based on JISE(Λ, µ,Υ)

(Equation (2.7)) for nodal displacements, velocities and accelerations were
stated. Several tests on the behavior of the design alternatives were made
to guide the final controller selection by means of a multi-objective PSO al-
gorithm. The main objective of this work is to focus on the EMO stage by
evaluating the best PSO strategy based on a number of non-dominated solu-
tion criteria. Several design alternatives are evaluated to analyze the trade-
off achieved by each MOEA alternative. A work like this could be used as
a reference to select the most adequate evolutionary strategy (regarding its
exploitation and exploration capabilities) for a given MOP.

In [65] a fuzzy controller is tuned by optimizing a quality function and the
number of rules in the fuzzy logic controller. The example provided is a heat,
ventilation, and air conditioning (HVAC) system with a fuzzy controller with
nine inputs and three outputs. It is a very complex process given the consid-
erable time requirements and computation time needed to run a simulation to
measure the performance. The quality function used comprises an aggregate
objective function JAOF (Λ,Υ) of thermal comfort, air quality requirements,
energy consumption, and system stability. The aim of this work was to obtain
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a controller to accomplish the quality function cost with a reduced (tractable)
number of rules; and therefore J(Λ,Υ) = Υ is considered as a second objec-
tive. A design concept analysis (2D visualization) is presented at two different
levels: among various MOEAs and controllers. The advantages of consider-
ing the number of rules was demonstrated since it was possible to reduce them
and still fulfil the requirements with better results in the cost function.

In [54], a fuzzy logic controller for drug infusion for anesthesia was pro-
posed. Traditionally, this administration is performed by an expert; therefore,
a fuzzy controller is a good candidate to incorporate such expertise into an
automatic control scheme. Nevertheless, when trying to optimize the perfor-
mance using membership functions and rule structures as decision variables,
the interpretability of the controller may be lost. This is a undesirable situation
given that for the medical staff it is fundamental to understand the logic be-
hind the controller for the correct anesthesia infusion. For this reason, two ob-
jectives were stated: control action quality by means of an aggregate objective
function JAOF (Λ,Υ) based on JISE(Λ,Υ), JISU (Λ,Υ); and an interpretability
index JII(Λ,Υ). In the MCDM step, several design concepts are compared
with an alternative solution that is closer to the ideal solution in the calculated
Pareto front.

Finally, in [180], fuzzy logic controllers are adjusted on-line using MOEAs.
The main purpose of this work was to investigate the applicability of MOEA
for control design in a hardware-in-the-loop context. The selected process
was a sealed pump running on magnetic bearings. Four objectives were mini-
mized: rise time, steady state error, power utilization, and control complexity,
using as decision variables θ = (Υ,Λ,Υ). Whereas several controllers fulfil
the required specifications, those with the least complexity were selected. As
observed by the authors, lower controller complexity offers several computa-
tional advantages when working on-line.

Conclusions on fuzzy controller design concept

In Table 2.2 a summary on these applications is provided. The difference in
the quantity of the works dedicated to fuzzy controllers and PID controllers is
noticeable.

With regard to MOP definition, it seems that EMO has been popular to si-
multaneously optimize objectives related with performance and interpretabil-
ity of the fuzzy inference system. It can also be observed that few works incor-
porate constraints in the MOP statement; in the same way, it is unusual to find
instances of many-objective optimizations. This could be due to the fact that
such types of design concepts need to be handled with large scale optimiza-
tion instances (several decision variables). This is justifiable if it is considered
that the first issue to handle are the parameters of the controller, before dealing
with additional objectives and/or constraints. The reason constraints are not
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Table 2.2: Summary of MOOD methodology for Fuzzy Controller design concept. J(θ) refers

to the number of objectives; θ to the number of decision variables and g(θ), h(θ) to the number

of inequality and equality constraints, respectively (according with examples provided in each

paper). In some instances, constraints are also stated as objectives.

MOP EMO MCDM

Concept(s) Process(es) Ref J(θ) θ
(g(θ),
h(θ))

Algorithm
Related features
from Chapter 2

Plot Selection insights

Fuzzy
scheduling

Aeronautical [25] 9 100 (9, 0) GA 3,5 PAc
Constraint violation analysis;

fine tuning.

PID, Fuzzy
Controller

DC motor
(HiL)

[180] 4 34 (0,0) GA 6 None According performance.

Fuzzy
controller

Geological [97] 4 160 (0,0) NSGA-II 10 SCp Design alternatives comparison.

Fuzzy
controller

Bio-medical [54] 2 40 (0,0) SPEA based 10 2D

Design alternatives/concepts
comparison with other

controllers. Selection by norm-2
criteria.

Fuzzy
controller

Mechanical [114] 3 30 (0, 0) PSO 3D Design alternatives comparison.

Fuzzy
controller

HVAC system [65] 2 3096 (0, 0) SPEA based 10,9 2D

Design alternatives comparison
at two levels: different

controllers and different
MOEAs.

fully incorporated, could be because of incompatibilities with large scale opti-
mization and the constraint handling; therefore the question here is: Is there a

gap in MOEAs to satisfy such a need? That this scalability issue is an open prob-
lem was also noticed in [56]. Finally, in the MCDM step, SCp tools have been
sufficient for Pareto front visualization and analysis, due to the low number
of objectives stated in the MOP. Nevertheless, as more objectives are included
in the MOP, some mechanism to deal with scalability and many-objective op-
timization will be required, with integration of decision maker preferences, as
stated in the same review.

2.2.3 State space feedback controller design concept

The state space representation has shown to be a remarkable tool for controller
design. Several advanced control techniques use this representation to calcu-
late a controller (in the same representation) with a desired performance. The
decision variables stated are the gains of the matrix G. Classical optimization
approaches in a MOOD framework have been used in [120] with good results.
In several instances, it seems that the MOOD procedure has been used to com-
pare classical approaches with the EMO approach, as presented below.

Applications on state space feedback controller design concept

In [91], a new algorithm is developed for state space feedback controller tun-
ing. The algorithm is based on an ǫ-elimination procedure, which eliminates
similar individuals in the objective space sense, and in the decision variable
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space. This could be helpful to improve the diversity of solutions when the
decision vector could be crucial in discriminating or accepting solutions. The
algorithm is evaluated in a single inverted pendulum model using two ob-
jectives in two different instances; in the first instance, an aggregate function
objective of the settling time and overshoot of the cart JAFO1

(G) and pendu-
lum JAFO2

(G) were stated. In the second, the probabilities of failure JPr1(G),
JPr2(G) measured in a probabilistic set of models were used as objectives. As
two objectives were stated for each instance, a classical SCp visualization and
decision analysis were performed.

In [80], the algorithm developed in [79] (covered in the PID design concept)
is used for n-order controller tuning for the SISO and MIMO processes. Ini-
tially, the algorithm’s capacity to calculate controllers under an H2/H∞ frame-
work was compared with LMI techniques using a 2D representation. One of
the advantages of the MOOD approach is flexibility in fixing the controller
order size. Several controllers with different order sizes (to define different
design concepts) were proposed for MIMO controller tuning. This last state-
ment enabled the performance improvement of the controller to be analyzed
as the controller order size variate. Similarly, in [129], the MOOD approach is
compared with the LMI concept for an LQR and H2/H∞ controllers using as
objectives noise sensitivities for output and actuator.

Conclusions on state space feedback controller design concept

In Table 2.3 a summary on these applications is provided. There are still few
works focusing on this design concept and therefore, it is difficult to extrap-
olate conclusions as in the PID and fuzzy cases. It can be observed that the
MOOD procedure has been compared with modern tuning techniques such
as H2/H∞ and LQC techniques. The stochastic sampling used by evolution-
ary techniques to search the G gains on the control matrix could lead to the
same issues noted in PID control (section 2.2.1). Given that H2/H∞ and LQC
techniques are also based on optimization, it could be interesting to hybridize
both approaches for this design concept.

2.2.4 Predictive control design concept

Online applications for MOOD are not straightforward, since the MCDM stage
must be carried out, in some instances, automatically. As a result, analysis that
relies on the DM must be codified to become an automatic process. Predictive
control techniques have been incorporating the MOOD framework and the
MCDM procedure in their optimization stages. Good examples using deter-
ministic approaches are presented in [15, 198, 145]. Approaches using EMO in
the MOOD procedure are presented below; decision variables regard to θ = U

(control action through the control horizon) or θ = R (references given to the
controllers through the control horizon).
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Table 2.3: Summary of MOOD methodology for state space feedback controller design concept.

J(θ) refers to the number of objectives; θ to the number of decision variables and g(θ), h(θ)

to the number of inequality and equality constraints, respectively (according with the examples

provided in the papers). In some instances, constraints are also counted as objectives.

MOP EMO MCDM

Concept(s) Process(es) Ref J(θ) θ
(g(θ),
h(θ))

Algorithm
Related features
from Chapter 2

Plot Selection insights

H2/H∞ SISO, MIMO [80] 3 13 (1,0) GA 4 SCp
Concepts comparison with LMI

design

LQG, H2/H∞ SISO [129] 3 6 (1,0) GA 4, 3 2D Concepts comparison with LMI.

State space
controller

Mechanical [91] 4 4 (0,0) GA 7, 8 SCp Design alternatives comparison

Applications on predictive control design concept

Recently, [66] proposed a MOOD procedure, where an evolutionary approach
and an inference system are used for non-linear systems. Firstly, a NARX dy-
namic neural network is used to build a model of the plant. Then, a multiob-
jective genetic algorithm is used to approximate a Pareto front on the selected
prediction horizon JISE(U); afterwards a fuzzy inference system is used to se-
lect the control action to be applied. This is an interesting example where sev-
eral computational intelligence tools are used for modeling, optimizing and
selecting the most suitable control action.

In [26] NSGA-II is used to generate the Pareto set of optimal trajectories
θ = R for setpoint changes for supervisory control of flotation columns. The
MOOD is used to meet the engineering and market requirements that are
specifically stated for the control problem. Stated objectives include reducing
the change of the references upon the control horizon, economic profit, hy-
draulic stability (subject to constraints related with froth overloading), quality
of the concentrate, and cleaning efficiency. The optimization, an automatic de-
cision making procedure based on normalized distances to the ideal solution
and constraint fulfillment, is then defined to select the best trajectory.

Conclusions on predictive control design concept

In Table 2.4 a summary on these applications is provided. Predictive control
seems to be an opportunity to apply the MOOD approach, due to the few
works dedicated to this control design alternative. Nevertheless, it can also be
seen that the problem relies on tracking the Pareto front each sampling time,
as well as performing the selection procedure on the fly (interactive approach).
An alternative, not exploited here, is to use the MOOD approach in an upper

layer where the DM may analyze the Pareto set approximation and change
the control objectives accordingly (as employed in [145] with multiobjective
deterministic algorithms).



68 Chapter 2. Review on MOOD procedure for controller tuning

Table 2.4: Summary of MOOD methodology for predictive control concept. J(θ) refers to the

number of objectives; θ to the number of decision variables and g(θ), h(θ) to the number of

inequality and equality constraints, respectively (according with the examples provided in the

papers). In some instances, constraints are also counted as objectives.

MOP EMO MCDM

Concept(s) Process(es) Ref J(θ) θ
(g(θ),
h(θ))

Algorithm
Related features
from Chapter 2

Plot Selection insights

Predictive
control

Mechanical [66] 2 8 (0,0) GA 6 None Fuzzy inference system is used.

Predictive
control

Chemical [26] 8 - (4,0) NSGA-II 6; 4 None
Successive ordering according

to feasibility.

2.2.5 Other design concept approaches

The MOOD methodology has also been used with ad-hoc controller structures
to address the performance of particular and complex processes. That is, spe-
cific controllers structures for specific processes. They are commented below.

Applications

In [107] a disk drive servo controller was tuned using an MOEA. An ad-hoc

algorithm was proposed that assigns greater priority to constraint objectives
than optimization objectives. These constraints are bounds on certain design
objectives that avoid non-pertinent solutions. A goal objective vector is de-
fined with a prioritized ranking approach, for two different tracks that seek
values where constraints (3) are included as objectives (for a total of 10 ob-
jectives). Objectives are based on JISU (θ) and JTV (θ) constrained to desired
values of steady state error, standard deviation of following error and seek
time. To deal with the many objective optimization instance, a preference ar-
ticulation is included in the algorithm to focus the search towards a pertinent
Pareto front. In this work, the designer identifies the importance of having a
solution reference (goal vector) and uses it in the evolution process to improve
the pertinency of solutions. Pareto front visualization and analysis were per-
formed using a PAc visualization. After a validation in a simulated model, the
design alternatives selected are evaluated in the physical process.

In [181] a pole placement controller for an electronically operated throt-
tle system is adjusted using a MOOD methodology. The process is a highly
non-linear system, with several time domain specifications and requirements
to fulfil. Firstly, a low-order model is used to identify the tractable number
of poles in the controller (nine in this case). A high-order non-linear model
(experimentally verified) is then employed to select the pole location using
a MOEA. A total of five objectives are defined: rise time, overshoot, settling
time, steady-state error, and system delay. The final selection was used by the
designer in accordance with his expertise. It was remarked that the extra de-
sign work was worthwhile since a controller with a better response lag was
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calculated.
In [2] a MOGA algorithm is used to generate command shapers for the con-

trol of a flexible manipulator; this kind of manipulator is light and fast but vi-
bration control is difficult to achieve. A command shaper control is a good al-
ternative for control, but several design objectives could be in conflict. For this
reason, the MOOD approach is used to generate a set of potentially preferable
controllers. Six objectives are defined and a PAc visualization is used to com-
pare design alternatives. Objectives are based on settling time (for hub and
end-point), rise time, peak to peak oscillation, infinity norm and root mean
squared value of end-point acceleration. The main advantage identified by
the authors is that the MOEA does not require a priori knowledge of the natu-
ral frequency to calculate the command shaper parameters, as required by the
original design methodology. The methodology process includes a prelimi-
nary analysis of three different command shapers (design concepts) in 2D; the
most promising concept is then used to deal with a six objective space.

In [36], a design concept comparison for different controllers was per-
formed using the MOOD approach. A MOEA was used to calculate the best
control action that cancels vibrations in a magnetorheological damper (MRD).
Since this is not possible (in the practical sense) because it requires a perfect
knowledge of the current state of the damper, such a control action and its
performance were used to bound the performance for a set of controllers. A
Skyhook control, a feedback linearization control, and a sliding mode control
were compared using this framework and two objectives were used: mean
dissipated power and absorbed power. A design concept comparison was
commented on that lead to the selection of the best control solution according
to the current state of the MRD. This is a good example of how a design con-
cept comparison can assist the DM in selecting a desired controller according
to his/her preferences.

Finally, in [74], a MOEA is used to tune the parameters of a fractional PID
controller (PIλDν) [130] using a reliability based optimization approach with
stochastic sampling. This type of controller has some advantages over the
classical PID controllers, but tuning techniques are more difficult. The authors
chose a MOOD approach to select the parameters of this type of controller in
order to fully appreciate its performance. A design concept comparison with a
classical PID controller was made using an LD visualization framework with
five design objectives. Objectives stated include the probabilities of failure of
JS(θPIλDν ), JT (θPIλDν ), JITSE(θPIλDν ) and JUmax

(θPIλDν ) (Equations (2.1),
(2.3), (2.8) and (2.11)) mixing time domain and frequency domain objectives.
Using such an approach, it was possible to appreciate the drawbacks and ad-
vantages of using a complex PID controller. As mentioned previously, this
could be useful for the designer in justifying his/her selection.
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Table 2.5: Summary of MOOD methodology for control systems engineering. J(θ) refers to

the number of objectives; θ to the number of decision variables and g(θ), h(θ) to the number

of inequality and equality constraints, respectively (according with the examples provided in

the papers). In some instances, constraints are also counted as objectives.

MOP EMO MCDM

Concept(s) Process(es) Ref J(θ) θ
(g(θ),
h(θ))

Algorithm
Related features
from Chapter 2

Plot Selection insights

State space
controller

Electronic [107] 10 7 (6,0) GA 4, 5,3 PAc Design alternatives comparison

RST controller Mechanical [181] 5 9 (0,0) GA 5 None Design alternative evaluation

Command
Shapers

Robotics [2] 2,6 8 (0,0) GA 5 PAc
Concepts comparison in 2D.

Selection of a flexible controller
for 6D objectives.

Several Mechanical [36] 2 – (0,0) GA 2D Concepts comparison.

PID, PIλDµ SISO [74] 5 5 (0,0) NSGA-II 5; 8 LD Design alternatives comparison.

Conclusions

In Table 2.5 a summary on these applications is provided. An interesting fact
is that GA seems to be the first option as a evolutionary technique for ad-hoc

controllers. Also it seems that the option with specific controllers is to evaluate
their performance in many-objective optimization instances.

2.3 Conclusions on this chapter

A review of MOOD methodologies in control systems engineering field was
presented. The MOOD procedure is a GFCL approach that includes a MOP
statement, a multiobjective optimization process, and an MCDM step. All of
them are important for a successful implementation of the MOOD approach
and embedment of the DM into the design process. This review has focused
on EMO techniques for the optimization stages for MOPs dealing with con-
troller tuning.

The MOOD procedure has been shown to be a useful tool for parametric
controller tuning. Such approach allows the designer to have a different in-
sight into design alternatives and their tradeoff, in order to select the most
convenient or preferable solution for the DM. The MOOD procedure requires
a closest embedment of the designer and it is more time consuming than an
AOF approach, due to the multiobjective optimization stage and the MCDM
step. For this reason, this approach could be reserved for complex MOP in-
stances, where it is worthwhile to expend more time in the design phase to
analyze the objective exchange among design alternatives.

Several applications on controller tuning for different design concepts have
been presented and discussed. The MOOD procedure has been used for dif-
ferent kinds of controllers, from simple to complex architectures in a wide
variety of applications. Several trends will be discussed next with regard to
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Table 2.6: Summary of EMO features in controller tuning applications.

Concept(s) Ref Pertinency Constrained Many Objectives Dynamic Multi-modal Robust Expensive Large Scale

[79] X

[188]

[178] X X X

[82] X X

PID [85] X

Control [146] X X

[149] X X

[196] X X

[168]

[3] X

[201] X

[156] X X

[25] X X X

[180] X

Fuzzy [97] X

Control [54] X

[114]

[65] X X

[80] X X

Space [129] X X

[91] X X

Predictive [66] X

Control [26] X X

State [107] X X X

[2] X X

Others [181] X

[36]

[74] X X

each of the steps in the MOOD procedure.

2.3.1 The multiobjective problem statement

Perhaps the first question to answer regarding the MOP is: What kind of prob-

lems are worth to address with MOOD? As noticed in [126], more activity should
be focused on identifying which problems are real world problems that should
be handled by MOEAs. There is no doubt that controller tuning is a real prob-
lem with practical applications. Nevertheless, for the same reason there are
several techniques for controller tuning. Therefore, some research should be
focus on identifying what type of MOP is best solved by the MOOD procedure
in controller tuning. The following two questions could be helpful:
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• Is it difficult to find a controller with a reasonable balance among design objec-

tives?

• Is it worthwhile analyzing the tradeoff among controllers (design alternatives)?

If the answer is yes to both questions, then the MOOD procedure could be
an appropriate tool for the problem at hand. Otherwise, tuning techniques or
AOF approaches could be enough.

For complex controllers (Fuzzy controllers for instance), the MOOD could
be a valuable alternative. But in the specific case of PID controller, it has been
noticed that several works have focused on tuning a single loop. In such case,
the MOOD has to compete with several and well established tuning proce-
dures and techniques. Perhaps efforts should be focused on MIMO processes,
that could be more complex to tune and therefore, to find a solution with a
reasonable tradeoff.

An alternative to the MOOD procedure is to be used at the beginning of the
design phase. The multi-disciplinary optimization approach, where mechani-
cal and control design could be merged, is recognized as a mathematical chal-
lenge in optimization [161] and a promising optimization approach for design
[116]. This integration is exploited by commercial products as modeFRON-
TIER24 which may introduce interesting possibilities for holistic analyzes in
multi-disciplinary design.

According to Table 2.6, some gaps among controller design concepts and
MOEAs are detected. Such gaps could be due to:

• an MOP where such desirable characteristics could be required has not
been proposed;

• the available algorithms do not reach the specifications required by the
designer to provide useful Pareto front approximations.

Regarding the former possibility, if no MOPs are defined that require such
features, is this because such MOPs: are not interesting from the point of view of

the designer? or because the designer is unaware of the possibility of dealing with

them using an EMO approach? With regard to the latter possibility, if MOEAs
are not good enough, is it due to a lack of understanding of the MOP with respect

to controller tuning? In any case, these questions could provide a starting point
for new MOP statements.

Regarding the objectives definition, frequency and time domain perfor-
mance measures have been used to identify preferable solutions. Neverthe-
less, few works use both kind of objectives in the same MOP statement. There-
fore, merging both to improve the pertinency of solutions could be a possible
direction.

24http://www.esteco.com/modefrontier

http://www.esteco.com/modefrontier
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2.3.2 The evolutionary multiobjective process

With regard to the optimizer, its selection should be made according to the
MOP statement in order to guarantee the designer’s desired performance.
That is, it should be made according to the different features that could be
desired for the algorithm. Those characteristics could be related to the quality
of the Pareto front (convergence, diversity, pertinency) or to the MOP stated
(constrained, multi-modal, many-objective, computationally expensive, dy-
namic or robust optimization for example).

As remarked in [173], there are several works focusing on new evolutionary
or bio-inspired techniques instead of focusing in other more practical aspects
of the optimization problem. The question is do we need so many MOEAs to

address the controller tuning problem?

Several MOEAs are available for the designer offering such capabilities,
and research on new algorithms for controller tuning should be oriented to
amend any existing gap (according Table 2.6) identified by the designer’s re-
quirements. Research should be focused on mechanisms to support (if re-
quired) the different optimization instances from section 1.4.2, instead of defin-
ing new evolutionary techniques. Given that convergence and diversity are
expected properties, and almost every MOEA includes mechanisms for those
purposes, the efforts could be oriented to preferences inclusion. As it was
commented before, the MOOD in the controller tuning framework could be
used for those problems where it is difficult to find a reasonable tradeoff.
That means that the designer would have some ideas concerning his or her
needs, and this information could be merged into the evolutionary process.
This could be a valuable mechanism to lead the evolutionary search efficiently
towards a pertinent Pareto front approximation. This could facilitate the opti-
mization in many-objective and large-scale optimization instances.

Also, the following questions should be answered: which evolutionary tech-

niques fit better for a given design concept? That is, which kind of exploitation and

exploration capabilities are better for approximating a Pareto front? Which opera-

tors fit better on the objective space, to approximate a Pareto front given a controller?

Which problems are best addressed by a particular evolutionary technique? Is there

any difference? How can problems that are separable, non-separable or a mixture of

both, be addressed? One possibility for answering those questions is to define
a proper control benchmark, suitable to be solved by using the MOOD pro-
cedure. Although there are several works using this procedure for controller
tuning, a common benchmark problem has not been stated to compare perfor-
mance on MOEAs and decision making procedures. The Alstom gasifier [48]
or the Boiler process [133] could represent excellent benchmark platforms for
this purpose.

Finally, more basic research would be helpful, to ensure the two character-
istics for stochastic sampling referred in Section 2.2.1 as well as work focusing
on optimization hybrid techniques.
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2.3.3 The multicriteria decision making step

Concerning the MCDM step several methodologies and visualizations have
been presented that could help the DM take his/her final resolution. Nev-
ertheless, more insights into the MCDM procedure need to be documented,
since it is not always an easy task to perform. This gap could be amended
by bringing more tools from the multi-dimensional data and decision analysis
field.

In the visualization case, is it possible to define different visualization approaches

for analyzing multidimensional data and multidimensional Pareto front that fit better

for controller tuning? There are several GUIs developed for controller tuning,
but merging such capabilities with an analysis of Pareto front (with regard
to simplicity, persistence and completeness) could be useful for the designer.
Also an interesting feature to develop would be a design concepts compari-
son of different controller in multidimensional Pareto fronts. Such an analysis
could bring conclusions about when it is worthwhile using a complicated con-
trol technique rather than a simpler one.

Finally, there is an uncommented issue regarding the quantity of Pareto
optimal solutions that a MOEA needs to approximate for the MCDM stage.
Several algorithms evaluate their performance by generating a very dense Pa-
reto front approximation with several solutions. Nevertheless, it is necessary
to remember that the designer will analyze the tradeoff of those solutions, and
a large number of solutions could be more confusing than helpful. Therefore,
MOEAs should focus on producing the most pertinent solutions.

Next, in Part II some preliminary contributions of this MOOD procedure
for controller tuning for MIMO processes will be presented. Such contribu-
tions focus on multivariable processes (identified as a potential research area)
and in many-objective optimization instances with the tools presented in Sec-
tion 1.5. In those applications, opportunities for further improvements on
tools for the MOOD procedure will be detected, becoming the basis for con-
tributions in Part III.
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PART II:

Preliminary Contributions on

Controller Tuning

This part is devoted to present early contributions using the MOOD
procedure for controller tuning. Such contributions focus on multi-
variable processes (identified as a potential research area in Chapter
2) and on many-objective optimization instances. Basic ideas devel-
oped through this part will show their usefulness for such optimi-
zation statements; nevertheless, some gaps (regarding the tools from
Section 1.5) will be likewise identified. These gaps will become the
basis for the contributions to be presented in Part III (Contributions
on MOOD Tools).
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CHAPTER 3:

Multiobjective optimization design

procedure for multivariable PI

controller tuning

In this chapter, preliminary contributions on PI controller tuning for
multivariable processes using the MOOD procedure are presented.
Contents of this chapter appear in the following paper:

• G. Reynoso-Meza, J. Sanchis, X. Blasco, J.M. Herrero. Multi-

objective evolutionary algorithms for multivariable PI controller de-

sign. Expert Systems with Applications. Vol. 39, Issue 9, July
2012. Pp. 7895-7907.
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3

Multiobjective optimization

design procedure for

multivariable PI controller

tuning

Humankind cannot gain something with-

out first giving something in return. To ob-

tain, something of equal value must be lost.

This is Alchemy’s First Law of Equivalent

Exchange.

Hiromu Arakawa, Fullmetal Alchemist

3.1 Aim of this chapter

In this chapter, a preliminary contribution on multivariable PI controller tun-
ing using the MOOD procedure is presented. It follows the previous devel-
opment reported in [148] for controller tuning applications. The aims of this
chapter are:

1. To evaluate current tools for Evolutionary Multiobjective Optimization
and to find its limitations, concerning desirable Features 1-10 for PI con-
trollers in MIMO processes.

2. To evaluate current visualization tools for m-dimensional Pareto fronts
and design alternatives analysis, in order to find their limitations.
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The remainder of this chapter is as follows: in section 4.2 a MOOD pro-
cedure for multivariable PI controller tuning is explained. In section 4.3 this
procedure is evaluated on a multivariable benchmark process. Finally, some
concluding remarks are given.

3.2 Optimization statement

MIMO systems are common in industry. Their complexity is due to their cou-
pling effects between inputs and outputs. Consider a NxN multivariable pro-
cess modeled by the following transfer matrix:

P (s) =




P11(s) . . . P1N (s)

...
. . .

...

PN1(s) . . . PNN (s)




(3.1)

The selected controller design concept must fulfill a set of requirements, in
accordance with the given process. Common choices for controlling MIMO
systems are: decoupled PI-PID controllers [87]; centralized PI-PID controllers
[88]; state space feedback techniques [68, 153]; or predictive control [67, 172,
105]. The selection of one technique over another depends on the desired
balance between complexity and tradeoff between design specifications.

In this chapter, a set of decoupled PI controllers is proposed to tackle the
control problem in a MIMO system. PI controllers are simple but successful
solutions, and they can be improved with complementary techniques (see [8]).
Equation (3.2) shows the structure of the chosen PI controller:

C(s) = kp

(
1 +

1

Tis

)
E(s) (3.2)

where kc is the proportional gain, Ti the integral time (secs), and E(s) the
error signal. The decoupled PI controller C(s) design has N SISO controllers:

C(s) =




C1(s) . . . 0

...
. . .

...

0 . . . CN (s)




(3.3)

Therefore, the decision space is defined as:

θ = [kp1
, Ti1 , . . . , kpN

, TiN ] ∈ R
2N (3.4)

The non-convex optimization developed by [6] will be used as guideline
for the SISO PI controllers. This optimization procedure is numerical and



Part II: Preliminary Contributions on Controller Tuning 83

model oriented and does not require any time domain function computations
(simulations). It defines a given value of the maximum sensitivity function
as a design constraint JMs

(θPI1) (Equation (2.1)) and/or the maximum com-
plementary sensitivity function JMp

(θPI1) (Equation (2.3)). A numerical non-
convex optimization is then solved, by increasing as much as possible the in-
tegral gain Jki

(θPI1) = −
kp

Ti
subject to the values of Ms and Mp, in order to

obtain a desired tradeoff between load rejection and robustness.
The previous tuning procedure can be adapted for MOEAs by defining

as engineering control objectives ki, Ms and Mp. Such objectives give the
DM some insight regarding the tradeoff for robustness, load rejection, and
set point response as in [6]. To apply this tuning procedure in a multivariable
process, an index to measure the overall MIMO system stability is required.
Here, the closed loop log modulus (Lcm) will be used as a robustness indi-
cator. This index leads to the well-known Biggest (sic) Log Modulus Tuning
(BLT) criterion for diagonal PID controllers in MIMO processes [109]. The cri-
terion is defined as:

Lcm = 20 log

∣∣∣∣
W (s)

1 +W (s)

∣∣∣∣ ≤ Lmax
cm (3.5)

where W (s) = −1+det (I + P (s)C(s)). This criterion proposes a de-tuning

of the proportional gains of each controller, in order to fulfill a maximum value
of the closed loop log modulus Lmax

cm . Therefore, the MOP at hand is to find a
tradeoff solution θ, that is:

minJ(θ) = [−ki1 ,Ms1 ,Mp1
, . . . ,−kiN ,MsN ,MpN

, Lcm] ∈ R
3N+1 (3.6)

The objective vector as defined by Equation (3.6) does not guarantee to
give the DM a useful Pareto front with a good degree of flexibility to select
a reliable and practical solution. It is well-known that certain practical limits
to Ms, Mp and Lcm values are needed to guarantee a minimum of stability
margin. Therefore, the MOP statement must consider the following practical
limits:

kp1
+ ν1 · kp1

/Ti1 ≤ Ku1

...

kpN
+ νN · kpN

/TiN ≤ KuN

1.2 ≤Ms1,...,N ≤ 2.0

1 ≤Mp1,...,N
≤ 1.5

0 ≤ Lcm ≤ 2N (3.7)

Where ν is the maximum value between the time delay process and 1.
Constraint kp+ ν ·kc/Ti ≤ Ku is used to bound the maximum allowed control
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action effort to the ultimate gain Ku. Constraints 1.2 ≤ Ms and 1 ≤ Mp

are used to avoid controllers with a sluggish performance, while constraints
Ms ≤ 2.0 and Mp ≤ 1.5 guarantee a minimum of stability margin [6]. The
empirical rule of keeping Lcm ≤ 2N [109] is adopted.

As constraints are considered in the MOP, a constraint handling mecha-
nism is used. According to the practical and empirical limits defined for J∗

P

by Equation (3.7), any unfeasible solution is punished. In [42], a penalty func-
tion without penalty parameter is proposed. Such penalty function enforces
the following criteria:

1. Any feasible solution is preferred to any infeasible solution.

2. Between two feasible solutions, the solution with the better objective
function value is preferred.

3. Between two infeasible solutions, the solution with the smaller constraint
violation is preferred.

Following these ideas, the objective vector takes the form:

min
θ∈R2N

J(θ) =





J(θ) ∈ R3N+1 if
7∑

k=1

φk(θ) = 0

offset +

(
7∑

k=1

φk(θ)

)
·R ∈ R3N+1 otherwise

(3.8)

where:

offset = max (Jmax) ·R

φ1(θ) = max{0, kp1
+

ν1kp1

Ti1

−Ku1
, . . . , kpN

+
νNkpN

TiN

−KuN
}

φ2(θ) = max{0, 1.2−Ms1 . . . , 1.2−MsN }

φ3(θ) = max{0, 1.0−Mp1
. . . , 1.0−MpN

} (3.9)

φ4(θ) = max{0,Ms1 − 2.0, . . . ,MsN − 2.0}

φ5(θ) = max{0,Mp1
− 1.5, . . . ,MpN

− 1.5}

φ6(θ) = max{0, Lcm − 2N}

φ7(θ) = max{0,−Lcm}

Jmax = Jnadir =

[
max

J(θ)∈J∗

P

J1(θ), . . . , max
J(θ)∈J∗

P

Jm(θ)

]

and R is a vector with the following structure: R = [

m︷ ︸︸ ︷
1, . . . , 1].
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3.3 Benchmark setup: the Wood & Berry distilla-

tion column process

To show the applicability of the MOOD procedure for multivariable PI tuning,
the well-known distillation column model defined by Wood and Berry will be
used [16, 195]. It represents the control of the composition of two products (a
mixture of methanol and water for this specific case), where the manipulated
variables are the reflux and steam flows:

P (s) =




P11(s) P12(s)

P21(s) P22(s)


 =




12.8e−s

16.7s+1
−18.9e−3s

21s+1

6.6e−7s

10.9s+1
−19.4e−3s

14.4s+1


 (3.10)

As mentioned earlier, any kind of parametric controller can be tuned with
the MOOD procedure, but for comparison purposes two PI controllers will be
used:

C(s) =




kp1

(
1 + 1

Ti1s

)
0

0 kp2

(
1 + 1

Ti2s

)


 (3.11)

3.3.1 Multiobjective Problem Definition

Given equations (3.10) and (3.11), the MOP at hand is to find a tradeoff solu-
tion θ = [kp1

, Ti1 kp2
, Tp2

] for the design objectives:

J(θ) = [−kp1
/Ti1 ,Ms1 ,Mp1

,−kp2
/Ti2 ,Ms2 ,Mp2

, Lcm] (3.12)

subject to:

kp1
+ kp1

/Ti1 ≤ Ku1
≈ 2.0

|kp2
+ 3kp2

/Ti2 | ≤ |Ku2
| ≈ | − 0.42|

1.2 ≤Ms1,2 ≤ 2.0 (3.13)

1 ≤Mp1,2
≤ 1.5

0 ≤ Lcm ≤ 4

3.3.2 Evolutionary Multiobjective Optimization process

The objective vector shown in Table 4.1 is in accordance with Equation (3.8).
The optimization process is performed with three different MOEAs:

• DE algorithm without archiving strategy (NA); namely, a child will be
selected over his parent if child ≺ parent (MODE algorithm, see Algo-
rithm 1.5). Parameter values F = 0.5, Cr = 0.8 are used (which are



86 Chapter 3. MOOD procedure for multivariable PI controller tuning

standard parameters in accordance with [182]) and an initial population
of 50 random decision vectors.

• A DE algorithm with spherical pruning [158, 148] (sp-MODE algorithm,
see Algorithm 1.6). Parameter values F = 0.5, Cr = 0.8, a population of
50 solutions, and a spherical grid resolution of 5 are used (see Table 1.1).

• The gamultiobj algorithm provided by MatLab c© is used to calculate a
Pareto front for reference. This algorithm uses a controlled elitist genetic
algorithm (a variant of NSGA-II [43]). Diversity is maintained by con-
trolling the elite members of the population as the algorithm progresses
by using a crowding distance index. Default parameters are used and
the BLT solution [109] is used in its initial population.

The maximum allowable function evaluations (FEs) for each method is
bound to 6000, and 25 independent runs will be evaluated to analyze their
performance. Each execution from the sp-MODE and the NA strategy will be
compared with the Pareto front J∗

P |GA built with the executions of the gamul-

tiobj algorithm.
To evaluate the performance of each MOEA, the Iǫ binary indicator [206,

99] is used. The indicator indicates the factor Iǫ(A,B) by which an approxi-
mation set A is worse than another set B with respect to all the objectives. Us-
ing a comparison method (see Table 5.1) CIǫ,E(A,B) = E(Iǫ(A,B), Iǫ(B,A))

= {false, true} the Eps binary indicator is a compatible and complete oper-
ator 25 and this is useful to determine if two Pareto fronts are incomparable,
equal, or if one is better than the other [206].

The optimization experiments were carried on an a standard PC, with a
Pentium(R) processor running at 3.40 GHz and 2 GB RAM. The results after
25 independent trials with each proposal are shown in Table 3.2 (performance
indicators) and Table 3.3 (non-dominated solutions attained).

As evidenced by the given results, the sp-MODE algorithm represents a
viable approach for generating the Pareto front. The sp-MODE algorithm out-
performs the gamultiobj algorithm, since Iǫ(sp −MODE,GA) < 1. Besides,
the sp-MODE algorithm has a better improvement over J∗

P |GA than the NA-
strategy (Iǫ(sp−MODE,GA) < Iǫ(NA,GA)).

3.3.3 Decision making stage

To validate the MOOD procedure as a competitive and practical solution for
controller tuning, the Pareto front with 153 solutions (median value in Table
3.3) is selected and used for controller evaluation.26 In Figure 3.1 the Pareto

25Given a binary relation on approximation sets (·), the comparison method is compatible if
CI,E(A,B) → A · B ∨ B · A. However, the comparison method is complete if A · B ∨ A · B →

CI,E(A,B).
26The best solution attained could be used for this analysis, but this will not be entirely realis-

tic, since it is not always possible to run an optimization algorithm several times.
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Table 3.1: MOP statement for optimization of the multivariable PID controller case.

min
θ∈R4

J(θ) =





J(θ) ∈ R7 if
7∑

k=1

φk(θ) = 0

offset +
7∑

k=1

φk(θ) ·R ∈ R7 otherwise

J(θ) = [J1(θ), J2(θ), J3(θ), J4(θ), J5(θ), J6(θ), J7(θ)] θ = [kc1, Ti1, kc2, Ti2] offset = max(Jnadir) ∗R

Objectives Decision variables Constraints

J1(θ) = −ki1 = −kp1/Ti1 Kp1 ∈ [0.001,Ku1] φ1(θ) = max (0, kp1 + kp1/Ti1 − 2.1, |kp2 + 3kp2/Ti2| − 0.42)

J2(θ) = Ms1 = max
∣∣∣ 1
1+C1(ω)P11(ω)

∣∣∣ Kp2 ∈ [Ku2,−0.001] φ2(θ) = max (0, 1.2−Ms1, 1.2−Ms2)

J3(θ) = Mp1 = max
∣∣∣ C1(ω)P11(ω)
1+C1(ω)P11(ω)

∣∣∣ Ti1,i2 ∈ [0.001, 40] φ3(θ) = max (0, 1.0−Mp1, 1.0−Mp2)

J4(θ) = −ki2 = −kp2/Ti2 φ4(θ) = max (0,Ms1 − 2.0,Ms2 − 2.0)

J5(θ) = Ms2 = max
∣∣∣ 1
1+C2(ω)P22(ω)

∣∣∣ φ5(θ) = max (0,Mp1 − 1.5,Mp2 − 1.5)

J6(θ) = Mp2 = max
∣∣∣ C2(ω)P22(ω)
1+C2(ω)P22(ω)

∣∣∣ φ6(θ) = max{0, Lcm − 4.0}

J7(θ) = Lcm = 20 log
∣∣∣ W (S)
1+W (S)

∣∣∣ ,W (s) = −1 det (I + P (s)C(s)) φ7(θ) = max{0,−Lcm}
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Table 3.2: Performance achieved by MOEAs.

Eps Indicator

Iǫ(NA,GA) Iǫ(sp−MODE,GA)

Pareto Worst 2.34E-001 1.01E-001

Set for Best 7.74E-002 4.69E-002

Reference Median 1.07E-001 7.55E-003

J∗
P |GA Mean 1.19E-001 7.53E-002

(676) Std 3.32E-002 1.44E-002

set and Pareto front using the LD tool are shown respectively.

The controller selection procedure lies on the DM’s preferences and de-
sired specifications. To illustrate the tradeoff achieved by different solutions,
six controllers Gc(s) were selected from the Pareto front for further evaluation
(see Table 3.4). The controllers with the lowest ‖Ĵ(θ)‖1, ‖Ĵ(θ)‖2 and ‖Ĵ(θ)‖∞
norm are selected. An overall tradeoff between objectives is expected using
these controllers.

The remaining controllers are selected according to DM’s preferences. It is
assumed, for example, that the DM is interested in controllers over the A-line
in objective J7(θ) (see Figure 3.1b) and decides to perform a further analysis
on three controllers from such a geometric locus.

The controller resulting from the BLT tuning [109] (oriented to MIMO-
stability using the Ziegler-Nichols procedure), as well as the controller pro-
posed in [87] (WIB) that minimizes the integral of the absolute error for a spe-
cific test, are finally included.

These controllers will be tested in the multivariable model in three differ-
ent instances:

1. Set point change in Controlled Variable 1; consequently, the performance
to reject the disturbance in Controlled Variable 2 is evaluated.

2. Set point change in Controlled Variable 2; consequently, the performance
to reject the disturbance in Controlled Variable 1 is evaluated.

3. Simultaneous set point change in both controlled variables.

In all cases, the integral of the absolute error (IAE), the integral of the ab-
solute derivative of the control action (IADU), the settling time (ST) at ±2%,
the rise time (RT) from 10% to 90%, the maximum deviation (MD), and the
overshoot (OS) will be evaluated. In Tables 3.5, 3.6, 3.7 and in Figures 3.2,
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Figure 3.1: Pareto set and Pareto front approximations for experimental setup of section 3.3.

‖Ĵ(θ)‖∞ norm is used. A-line indicates controllers that match a hypothetical preference of the

DM.
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Table 3.3: Number of solutions achieved by MOEAs.

NA sp-MODE

Worst 0 109

Best 48 243

Median 43 153

Mean 4.03E+001 1.56E+002

Std 9.15E+000 3.09E+001

Table 3.4: Controllers selected for further evaluation.

kp1 Ti1 kp2 Ti2 J1(θ) J2(θ) J3(θ) J4(θ) J5(θ) J6(θ) J7(θ)

BLT [109] 0.3750 8.2900 -0.0750 23.6000 -0.0452 1.2953 1.1081 -0.0032 1.2513 0.9998 3.8599

WIB [87] 0.8485 326.3462 -0.0132 1.9130 -0.0026 1.6663 1.0178 -0.0069 2.0569 1.7259 0.6024

min ‖Ĵ(θ)‖2 0.4245 15.6135 -0.0397 7.0977 -0.0272 1.3090 1.0014 -0.0056 1.3090 1.1047 1.5054

min ‖Ĵ(θ)‖1 0.3351 34.1079 -0.0476 8.9239 -0.0098 1.2263 1.0000 -0.0053 1.2496 1.0427 0.7488

min ‖Ĵ(θ)‖∞ 0.7415 11.2697 -0.0431 5.4571 -0.0657 1.6220 1.0809 -0.0079 1.5097 1.2914 2.1913

J7(θ) = 2.9922 0.7687 6.9516 -0.0408 5.1598 -0.1106 1.6989 1.2144 -0.0079 1.5316 1.3170 2.9922

J7(θ) = 3.4956 0.8458 12.4453 -0.0858 17.6735 -0.0680 1.7434 1.1414 -0.0049 1.3092 1.0000 3.4956

J7(θ) = 3.995 0.92489 8.7357 -0.0783 5.8147 -0.1059 1.8880 1.2790 -0.0135 1.6731 1.4436 3.9950

3.3 and 3.4 the obtained results for each controller are shown. Some expected
behaviors are noted:

• For controllers in the A-line (see J7 at Figure 3.1b) the greater the Lcm,
the greater the control action and the worse the tradeoffs. That is evident
since such controllers are incapable of performing well in all the exper-
iments. Notice how these controllers become more oscillating as J7(θ)

increases (Figures 3.2b, 3.3b, and 3.4b).

• Controller WIB obtains the best value in IAE for Experiment 3; this was
expected since this controller was tuned to minimize IAE for the same
instance. Notice how this outstanding performance has a lower tradeoff
when single setpoint change in controlled variable 1 is applied (Figures
3.2a and 3.3a).

• Controllers with min ‖Ĵ(θ)‖2, min ‖Ĵ(θ)‖1 and min ‖Ĵ(θ)‖∞ have a bal-
anced tradeoff between objectives and achieving a good overall perfor-
mance (Figures 3.2b, 3.3b, and 3.4b).

It is important to remark that there are no controllers with poor perfor-
mance but controllers with different tradeoffs between objectives. As it can be
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Table 3.5: Controller performance in benchmark setup for a step change in reference Y1. In

bold appears the best value and in italics the worst value in each experiment.

IAE IADU ST RT MD OS

BLT 4.54E+002 8.71E-001 2.29E+001 3.68E+000 – 10.38%

Unit Step WIB 2.48E+003 2.02E+000 +2.00E+002 1.39E+000 – 7.24%

Reference min ‖Ĵ(θ)‖2 5.78E+002 8.99E-001 5.81E+001 4.02E+000 – 0.24%

Y1 min ‖Ĵ(θ)‖1 1.57E+003 6.86E-001 1.40E+002 5.53E+001 – 0.00%

min ‖Ĵ(θ)‖∞ 3.34E+002 1.76E+000 3.27E+001 1.50E+000 – 13.78%

Y1 J7(θ) = 2.9922 3.32E+002 1.97E+000 2.18E+001 1.35E+000 – 24.43%

J7(θ) = 3.4956 3.18E+002 2.28E+000 2.90E+001 1.27E+000 – 29.11%

J7(θ) = 3.995 3.16E+002 2.74E+000 1.99E+001 1.11E+000 – 30.04%

BLT 1.65E+003 1.02E-001 1.38E+002 — 6.70E-001 —

Unit Step WIB 1.01E+003 7.02E-002 6.78E+001 — 8.07E-001 —

Reference min ‖Ĵ(θ)‖2 9.54E+002 5.34E-002 5.12E+001 — 6.48E-001 —

Y1 min ‖Ĵ(θ)‖1 9.92E+002 5.43E-002 7.00E+001 — 5.36E-001 —

min ‖Ĵ(θ)‖∞ 8.20E+002 6.97E-002 5.93E+001 — 8.47E-001 —

Y2 J7(θ) = 2.9922 8.59E+002 7.35E-002 6.35E+001 — 9.27E-001 —

J7(θ) = 3.4956 1.10E+003 1.63E-001 8.40E+001 — 8.94E-001 —

J7(θ) = 3.995 6.44E+002 1.72E-001 5.27E+001 — 9.79E-001 —

Table 3.6: Controller performance in benchmark setup for a step change in reference Y2. In

bold appears the best value and in italics the worst value in each experiment.

IAE IADU ST RT MD OS

BLT 3.38E+002 1.92E-001 4.58E+001 — 1.82E-001 —

Unit Step WIB 4.22E+003 1.58E-001 +2.00E+002 — 1.49E-001 —

Reference min ‖Ĵ(θ)‖2 5.63E+002 1.53E-001 7.27E+001 — 1.36E-001 —

Y2 min ‖Ĵ(θ)‖1 1.56E+003 1.53E-001 1.57E+002 — 1.89E-001 —

min ‖Ĵ(θ)‖∞ 2.32E+002 1.54E-001 4.03E+001 — 9.63E-002 —

J7(θ) = 2.9922 1.40E+002 1.57E-001 2.86E+001 — 8.68E-002 —

Y1 J7(θ) = 3.4956 2.25E+002 2.62E-001 3.85E+001 — 1.39E-001 —

J7(θ) = 3.995 1.47E+002 2.42E-001 2.61E+001 — 1.44E-001 —

BLT 3.26E+003 1.63E-001 1.73E+002 8.58E+001 — 0.00%

Unit Step WIB 1.80E+003 1.24E-001 6.85E+001 2.05E+001 — 6.19%

Reference min ‖Ĵ(θ)‖2 1.85E+003 1.04E-001 6.78E+001 3.59E+001 — 0.00%

Y2 min ‖Ĵ(θ)‖1 1.94E+003 1.04E-001 9.48E+001 3.72E+001 — 0.00%

min ‖Ĵ(θ)‖∞ 1.38E+003 1.10E-001 3.84E+001 2.34E+001 — 1.33%

J7(θ) = 2.9922 1.43E+003 1.14E-001 5.91E+001 2.35E+001 — 2.11%

Y2 J7(θ) = 3.4956 2.13E+003 1.84E-001 1.11E+002 5.19E+001 — 0.00%

J7(θ) = 3.995 9.00E+002 1.80E-001 4.75E+001 6.62E+000 — 2.57%
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Table 3.7: Controller performance in benchmark setup for a simultaneous step change in ref-

erences Y1 and Y2. In bold appears the best value and in italics the worst value in each

experiment.

IAE IADU ST RT MD OS

BLT 5.75E+002 1.01E+000 3.23E+001 2.98E+000 – 26.57%

Unit Step WIB 2.35E+002 1.95E+000 8.33E+000 1.39E+000 – 8.04%

Reference min ‖Ĵ(θ)‖2 5.41E+002 9.57E-001 5.03E+001 3.28E+000 – 13.84%

Y1,Y2 min ‖Ĵ(θ)‖1 6.35E+002 7.30E-001 8.34E+001 4.68E+000 – 7.36%

min ‖Ĵ(θ)‖∞ 3.74E+002 1.78E+000 2.55E+001 1.50E+000 – 19.39%

Y1 J7(θ) = 2.9922 3.67E+002 1.99E+000 1.30E+001 1.35E+000 – 29.46%

J7(θ) = 3.4956 3.94E+002 2.33E+000 2.50E+001 1.27E+000 – 26.38%

J7(θ) = 3.995 3.86E+002 2.74E+000 2.53E+001 1.11E+000 – 35.27%

BLT 1.81E+003 2.37E-001 2.01E+001 4.77E+000 – 29.61%

Unit Step WIB 7.97E+002 6.91E-002 1.73E+001 2.23E+000 – 6.91%

Reference min ‖Ĵ(θ)‖2 1.10E+003 1.19E-001 1.83E+001 4.59E+000 – 11.94%

Y1,Y2 min ‖Ĵ(θ)‖1 1.07E+003 1.23E-001 1.80E+001 5.28E+000 – 12.28%

min ‖Ĵ(θ)‖∞ 1.01E+003 1.48E-001 1.72E+001 3.61E+000 – 37.50%

Y2 J7(θ) = 2.9922 1.04E+003 1.51E-001 1.67E+001 3.49E+000 – 43.74%

J7(θ) = 3.4956 1.42E+003 3.31E-001 1.61E+001 3.89E+000 – 55.55%

J7(θ) = 3.995 1.15E+003 3.32E-001 2.97E+001 3.68E+000 – 79.98%

seen, performances differ. This analysis could assist in scheduling strategies
where more than one controller is used. As a final remark, it can be noticed
that operational aspects such saturation, initial states, and operational ranges
are not considered. MOEAs flexibility allows the use of time function com-
putations to incorporate operational aspects and to redefine the optimization
statement with more meaningful objectives.

3.4 Conclusions on this chapter

In this chapter, a MOOD procedure for multivariable PI controller tuning has
been presented. The obtained results validate the methodology as a practical
approach. Thanks to the visualization capabilities of the LD tool, it is eas-
ier perform the controller selection procedure. As the simulations reveal, the
MOOD procedure is validated as a useful tool for control purposes.

With this approach, it is possible to get the most of the optimization pro-
cedure using classical control techniques supported with well-known perfor-
mance objectives. The common usage of these objectives by the control en-
gineer community allows to have practical bounds and quick interpretations
to select suitable controllers. The Pareto front allows to have a better insight
about the objective tradeoff and how it changes between solutions.
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Figure 3.2: Performance in instance 1 for benchmark setup of section 3.3.
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Figure 3.3: Performance in instance 2 for benchmark setup of section 3.3.
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Figure 3.4: Performance in instance 3 for benchmark setup of section 3.3.
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The MOP definition for the Wood and Berry distillation column will al-
low further comparisons of MOEAs performance. This MOP provides a use-
ful multiobjective constrained problem for controller tuning in multivariable
process, and will help to focus these algorithms into an specific class of engi-
neering design problems.

Nevertheless, two issues are detected:

1. With the aforementioned optimization statement, it is very easy to face
problems related with many-objective optimization statements (domi-
nance resistant solutions and exploitation of sub-optimal areas).

2. Sampling for stabilizing PI controllers is solved partially. Constraints
imposed are stated to assure stable controllers, nevertheless the two re-
quirements for a controller sampling discussed in section 2.2.1 are not
addressed properly.

In the next chapter, an alternative for the first issue is proposed.



CHAPTER 4:

Controller tuning by means of

multiobjective optimization

algorithms: a global tuning

framework

In this chapter a MOOD procedure for multivariable controller tun-
ing is presented. Following the results from the previous chapter, a
mechanism to deal with many-objective optimization instances, by
means of aggregation functions to fuse similar design objectives, is
proposed. Contents of this chapter appear in the following paper:

• G. Reynoso-Meza, S. García-Nieto, J. Sanchis, X. Blasco. Con-

troller tuning by means of multiobjective optimization algorithms: a

global tuning framework. IEEE Transactions on Control Systems.
Vol. 21, Issue 2, March 2013. Pp. 445 - 458.
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Controller tuning by means

of multiobjective

optimization algorithms: a

global tuning framework

A process cannot be understood by stop-

ping it. Understanding must move with

the flow of the process, must join it and flow

with it.

Paul Atreides

4.1 Aim of this chapter

In this chapter, a MOOD procedure for multivariable controller tuning is pre-
sented. It follows the previous chapter dedicated to multivariable PI controller
tuning. While the many-objective optimization instance is preserved, an ag-
gregation mechanism is designed. This mechanism is designed to avoid a
multiplicative increase in the number of objectives, without compromising
the MOOD procedure philosophy for controller tuning. The aims of this chap-
ter are:

1. Evaluate current tools for Evolutionary Multiobjective Optimization to
find its limitations, concerning desirable features commented in Section
1.4.2.

2. Evaluate current visualization tools for m-dimensional Pareto fronts, de-
sign alternatives and design concepts comparison, in order to find its

99
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limitations.

3. Propose a merging technique to limit problematic issues related to many-
objective optimization statements.

4. Evaluate the overall approach in a physical process, in order to validate
its usability.

This chapter is structured as follows: in Section 5.2 the MOOD procedure
for controller tuning is presented, and in Section 5.3 and 5.4 an engineering
application example is developed, experimentally evaluated and discussed.
Finally, some concluding remarks are given.

4.2 Optimization statement

The use of a process model will lead to a higher degree of reliability for the
controller’s performance under practical considerations such as saturation,
complex tracking references, and/or any kind of constraint. In this chapter,
the integral of the absolute magnitude of the error (IAE) and the integral of
the absolute value of the derivative control signal (IADU) are used due to
their interpretability. Given a model, which will be controlled with a sam-
pling time of Ts with t ∈ [t0, tf ] and with controller tuning parameters θ, the
IAE and IADU are defined as:

IAE(θ) =

N∑

k=1

|rk − yk| (4.1)

IADU (θ) =

N∑

k=1

|uk − uk−1| (4.2)

Where rk, yk and uk are respectively the setpoint signal, the controlled and
manipulated variables at sample k; while N is the number of samples in the
time interval [t0, tf ]. The above mentioned objectives are defined for a SISO
system. If a MIMO system with ρ inputs and ν outputs is under consideration,
it is possible to have as many objectives IAE, IADU as inputs and outputs.
Nevertheless, this could lead to an exponential increase in the number of so-
lutions in the Pareto front J∗

P , and the analysis of the results could be more
difficult. Moreover, a large subset of solutions will probably be undesirable
for the DM (for example, controllers with an outstanding performance in one
controlled variable at the expense of another). So, it is worthwhile trying to
reduce the objective space to facilitate the analysis for the DM without losing
any of the advantages of the MOOD procedure [23]. The following objectives
are defined:
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JE(θ) =

[
IAE1,1(θ)

∆R1
,
IAE2,2(θ)

∆R2
, . . . ,

IAEν,ν(θ)

∆Rν

]
(4.3)

JU (θ) =




ν∑

j=1

IADU1,j(θ)

∆U1
max

,

ν∑

j=1

IADU2,j(θ)

∆U2
max

, . . . ,

ν∑

j=1

IADUρ,j(θ)

∆Uρ
max


 (4.4)

Where IAEi,j(θ) is the IAE(θ) for controlled variable i when there is a
setpoint change ∆Rj for controlled variable j; IADU i,j(θ) is the IADU(θ)

for control signal i when there is a change in setpoint signal j, and ∆U i
max

is the maximum change allowed for control signal i. Vectors (4.3) and (4.4)
contain the IAE and IADU values for each variable normalized over an oper-
ation range. Because of this, it is possible to perform a comparison between
controlled variables and between control signals.

Define a sorting function Z : R1×n → R1×n,Z(f) = g so that: g =

[a1, a2, a3, . . . , an], where a1 ≥ a2 ≥ a3 ≥ . . . an, where each ai is an ele-
ment of f . The global index for IAE and IADU performance measurements
are defined as JE(θ) and JU(θ) respectively:

JE(θ) = Z(JE(θ))×w (4.5)

JU (θ) = Z(JU (θ))×w (4.6)

Vector w indicates it is most important to optimize the maximum value,
thereby assuring a minimum worst performance for all objectives. As inputs
and outputs are usually normalized in the range [0, 1] an intuitive value 27 for
w is w = [100, 10−2, . . . , 10−n]T .

Please note that this objective reduction is important to facilitate the deci-
sion making step. In one hand, the multiobjective approach gives to the DM a
better insight concerning the objective tradeoffs; in the other hand, too much
information (too many objectives) can hinder the DM task to select a desired
solution. This topic, known as many-objective optimization (usually more
than 4 objectives) is not trivial, and some algorithms could face several prob-
lems due to their diversity improvement mechanisms [142, 35]. The objective
reduction is an alternative to face the many-objective optimization issue [90],
and with this proposal the relevant information about the conflict between
control actions and performance is retained.

Additionally, a measurement for coupling effects is required:

27Notice that setting w = [1, 0, . . . , 0] is equivalent to set JE (θ) = ‖JE(θ)‖∞ . Nev-
ertheless, any MOEA would not be able to differentiate, for example, between one solution
JE(θ1) = [0.9, 0.9, 0.9, 0.9, 0.9] with Z(JE(θ1)) × w = 0.9 from another one JE(θ2) =

[0.9, 0.5, 0.01, 0.5, 0.7] with Z(JE(θ2))×w = 0.9. The latter should be preferred over the former.
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JC(θ) =

[
max
i6=1

IAE1,i(θ)

∆Ri
max

,max
i6=2

IAE2,i(θ)

∆Ri
max

, . . . ,max
i6=ν

IAEν,i(θ)

∆Ri
max

]
(4.7)

i ∈ [1, 2, . . . , ν]

JC(θ) = Z(JC(θ))×w (4.8)

Where ∆Ri
max is the maximum allowable setpoint step change for con-

trolled variable i.
Finally, it is not possible to rely only on the process model, due to un-

modeled dynamics or parametric uncertainty. Therefore, a robustness objec-
tive is required to guarantee a robust stability. One possible choice is to use
complementary sensitivity function T (s) with a linearized process model as
follows:

JT = sup
ω

σ̄ (T (ω)W (ω)) , ω ∈ (ω, ω) (4.9)

Usually T (s) together with weighting function W (s) is stated as a hard
constraint (JT < 1). Since W (s) selection is not a trivial task [138], the MOOD
procedure can manage this task as an optimization objective ( i.e., it will be
minimized instead of being used as a hard constraint). The MOOD proce-
dure can deal with constraints in the same way as it deals with each objec-
tive and represents a feasible alternative to constraint-handling [29, 124]. This
approach, combined with an adequate tool to analyze m-dimensional Pareto
fronts, is useful to analyze the impact of relaxing, if possible, one or more
constraints.

With the above mentioned objectives, it is possible to build an optimiza-
tion statement to adjust any kind of parametric controller (see Equation (4.10)).
That is, given a control structure with numerical parameters to adjust, the
latter MOP can be stated, using information from the simulation process as
performance measurement. The objectives cover the most important require-
ments for a controller: performance, control effort, coupling effects and ro-
bustness. Although these performance measurements have been proposed as
first approximation, some other measures can be used (or added) by the DM.

min
θ∈Rn

J(θ) =

[
JE(θ), JU(θ), JC(θ), JI(θ), JT (θ)

]
∈ R

5 (4.10)

Since the implementation objectives JI are related with a particular con-
troller, they will be considered according to each specific case. Constraint han-
dling depends on the selected algorithm and its own mechanisms. In general,
the guidelines stated in [42] can be used to incorporate them into the cost
function evaluation or into the MOP statement as and additional objective
[29, 124].
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4.3 Experimental setup: The Twin Rotor MIMO Sys-

tem

To show the applicability of the method, two different approaches of controller
tuning for a non-linear twin rotor MIMO system (TRMS) are presented.

Figure 4.1: Twin Rotor MIMO System (TRMS) setup.

The TRMS is an academic workbench and a useful platform to evaluate
control strategies [193, 94, 131] due to its complexity, non-linearities, and inac-
cessibility of states. It is a TITO (two inputs, two outputs) system, where two
DC motors have control over the vertical angle (main angle) and horizontal
angle (tail angle) respectively. Both inputs are limited in the normalized range
[−1, 1], the main angle being in the range [−0.5, 0.5] rad, and the tail angle in
the range [−3.0, 3.0] rad.

The MOOD procedure is validated in two steps:

1. An optimization stage using an identified process model to obtain Θ∗
P ,J

∗
P .

2. An experimental validation of the approximations Θ∗
P ,J

∗
P on the real

TRMS.

4.3.1 Optimization stage

A non-linear state space model was identified as a part of the controller tuning-
design procedure. Details on the system modeling and the observer design
can be consulted in [64].
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To evaluate the performance of a given controller, a Simulink c©model with
the identified non-linear model was used. Two simulations were carried out
with different patterns:

• Simulation pattern 1: Setpoint step change for the main angle from 0 rad
to 0.4 rad while tail setpoint is maintained at 0.

• Simulation pattern 2: Setpoint step change for the tail angle from 0 rad
to 2.4 rad while main setpoint is maintained at 0.

The objectives defined in Equations (4.5), (4.6), (4.8) and (4.9) are used ac-
cording to a TITO system:

JE(θ) = Ts




max
(

IAE1,1(θ)
∆R1 , IAE2,2(θ)

∆R2

)

min
(

IAE1,1(θ)
∆R1 , IAE2,2(θ)

∆R2

)




T

×w (4.11)

JU(θ) =




max

(
2∑

j=1

IADU1,j(θ)
∆U1

max
,

2∑
j=1

IADU2,j(θ)
∆U2

max

)

min

(
2∑

j=1

IADU1,j(θ)
∆U1

max
,

2∑
j=1

IADU2,j(θ)
∆U2

max

)




T

×w (4.12)

JC(θ) = Ts




max
(

IAE1,2(θ)
∆R1

max
, IAE2,1(θ)

∆R2
max

)

min
(

IAE1,2(θ)
∆R1

max
, IAE2,1(θ)

∆R2
max

)




T

×w (4.13)

Where w is set to w = [100, 10−1]. To evaluate JT (θ) a linearized model
is used. As a weighting function for the robustness objective, the transfer
function W (s) = 0.7s+2

s+1.1 will be used.
With the MOOD procedure, any kind of controller can be tuned. In this

work, two schemes are used: an ISA-PID controller [7] and a state space con-
troller (see Figures 4.2 and 4.3). For both cases, the controller is required to
work with a sampling time of 20/1000 seconds and a saturated control signal
in the normalized range ±1. In both cases, the sp-MODE algorithm (see Al-
gorithm 1.6) has been used, with evolutionary parameters in accordance with
Table 1.1 (F = 0.5, Cr = 0.8, Np = 50, βǫ = [5, 5, 5, 5] and 1-norm.)

4.3.2 PID controller tuning

PID controllers currently represent a reliable digital control solution due to
their simplicity. They are often used in industrial applications and so there
is ongoing research into new techniques for robust PID controller tuning [70,
190, 72, 6, 140]. For this reason, the PID scheme will be the first to be evaluated.
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Figure 4.2: PID controller scheme for experimental setup of Section 4.3.

Figure 4.3: State space controller proposal for experimental setup of Section 4.3.

A two degrees of freedom ISA-PID controller with a derivative filter and
an antiwindup scheme will be used:

U(s) = kp

(
b+

1

Tis
+ c

Td

Td/Ns+ 1

)
R(s)

− kp

(
1 +

1

Tis
+

Td

Td/Ns+ 1

)
Y (s) (4.14)

where

kp is the proportional gain.

Ti represents the integral time (secs).

Td is the derivative time (secs).

N represents the derivative filter. Common values for this filter lie in the
range N = [3, 20].

b is the setpoint weighting for the proportional action.

c is the setpoint weighting for the derivative action.
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Table 4.1: MOO statement for the PID controller approach.

min
θ∈R7

J(θ) ∈ R5

JE(θ) = Ts

[
max

(
IAEMain

step

0.4 ,
IAETail

step

2.4

)
+ 10−2min

(
IAEMain

step

0.4 ,
IAETail

step

2.4

)]
Kp1,p2

∈ [0, 1]

JU (θ) = max
(∑

∆uMain
step +

∑
∆uMain

pert ,
∑

∆uTail
step +

∑
∆uTail

pert

)
+ Ti1,i2 ∈ (0, 100]

10−2min
(∑

∆uMain
step +

∑
∆uMain

pert ,
∑

∆uTail
step +

∑
∆uTail

pert

)

JC(θ) = Ts

[
max

(
IAEMain

pert

(2·0.5) ,
IAETail

pert

(2·3)

)
+ 10−2min

(
IAEMain

pert

(2·0.5) ,
IAETail

pert

(2·3)

)]
Td2
∈ [0, 10]

JI(θ) = sup
ω

σ̄ (S(ω)) , ω ∈ (10−2, 102) b1,2 ∈ [0, 1]

JT (θ) = sup
ω

σ̄ (T (ω)W (ω)) , ω ∈ (10−2, 102), s.t.J5 > 0.8

The antiwindup is performed by conditional integration when the output
signal is saturated [9]. The strategy to be implemented is a PI controller for
the main angle and a PID controller for the tail angle. A setpoint weighting
for the derivative action of c = 0 and a derivative filter of N = 20 will also be
used. Therefore, the MOOD procedure will be used to adjust the parameters
Kc1, Ti1, b1 for the PI controller and Kc2, Ti2, b2 and Td for the PID controller.
Both will be tuned under SISO design considerations.

A total of five objectives are defined (see Table 4.1). JE(θ), JU (θ), JC(θ),
and JT (θ) are defined according to Equations (4.11)) (4.12), (4.13) and (4.9)
respectively. Objective JI(θ) is included to prefer controllers with better dis-
turbance rejection.

The Θ∗
P and J∗

P from the MOOD procedure for PID tuning28 are shown in
Figure 4.4. A total of 471 non-dominated controllers were found (a controllers
subset Gk1i is identified for further analysis). The following geometrical re-
marks (GR) on the level diagrams and their corresponding control remarks
(CR) can be seen in Figure 4.4:

GR 1: It can be observed that two different subsets of solutions appear when
solutions with JU (θ) ≤ 1 are separated.

CR 1: The IADU performance indicator for control action is a quality indica-
tor to differentiate damping solutions along the Pareto front.

GR 2: For solutions with JU (θ) ≤ 1, the lower JU (θ), the higher JE(θ).

28A random search with the same number of function evaluations used by the MOEA was
performed for comparison purposes. This approach calculates a Pareto front approximation with
161 solutions. The approximation calculated by the MOEA dominates 49 solutions of the random
search approach; the random search approximation does not dominate any solution of the MOEA
approximation.
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Table 4.2: MOO statement for the state space controller approach.

min
θ∈R16

J(θ) ∈ R5

JE(θ) = Ts

[
max

(
IAEMain

step

0.4 ,
IAETail

step

2.4

)
+ 10−2min

(
IAEMain

step

0.4 ,
IAETail

step

2.4

)]
θi ∈ [−10, 10]

JU (θ) = max
(∑

∆uMain
step +

∑
∆uMain

pert ,
∑

∆uTail
step +

∑
∆uTail

pert

)
+ i ∈ (1, 2, . . . , 16)

10−2min
(∑

∆uMain
step +

∑
∆uMain

pert ,
∑

∆uTail
step +

∑
∆uTail

pert

)

JC(θ) = Ts

[
max

(
IAEMain

pert

(2·0.5) ,
IAETail

pert

(2·3)

)
+ 10−2min

(
IAEMain

pert

(2·0.5) ,
IAETail

pert

(2·3)

)]

JI(θ) = trace(K ∗K ′)

JT (θ) = sup
ω

σ̄ (T (ω)W (ω)) , ω ∈ (10−2, 102), s.t.J5 > 0.8

CR 2: For overdamped solutions, the higher the control effort (IADU), the
better the performance (IAE).

GR 3: For solutions with JU (θ) ≤ 1, the lower JE(θ), the higher JI(θ).

CR 3: For overdamped solutions, the better the performance (IAE), the worse
the disturbance rejection (JI(θ)).

GR 4: For solutions with JU (θ) ≤ 1, the lower JE(θ), the higher JT (θ).

CR 4: For overdamped solutions, the better performance (IAE), the worse the
robustness.

All of these points are well-known considerations in control theory. The
Pareto front enables the visualization of this tradeoff between objectives; and
the DM can choose a solution that meets his/her own needs and preferences.

4.3.3 State space feedback controller tuning

The above proposal used a PI-PID SISO strategy to address the control of a
MIMO system. Such an approach is sometimes not enough to gain satisfactory
control in a wide operational working zone, mainly because of the coupling
dynamics. For this reason, a matrix gain for a state space (SS) control approach
is selected as a second strategy (see Figure 4.3).

The MOOD procedure will be used to adjust a feedback gain matrix K2×8

to control the system. A total of five objectives are defined (see Table 4.2).
Objectives JE , JU , JC , and JT are again defined according to equations (4.11),
(4.12), (4.13) and (4.9). Objective JI is included to have preference over con-
trollers with lower numerical sensitivity, i.e. well balanced controllers at the
implementation stage.
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The Pareto front approximation J∗
P

29 is shown in Figure 4.5. As a result,
589 non-dominated solutions were found (a controller subset Gk2i is identi-
fied for further analysis). The following geometrical remarks (GR) and their
corresponding control remarks (CR) can be seen in Figure 4.5:

GR 1: For solutions with JU ≤ 1, the lower JU(θ), the higher JE(θ).

CR 1: For overdamped solutions, the higher the control effort (IADU), the
better the performance (IAE).

GR 2: For objective JI(θ), solutions matching the requirement JU(θ) ≤ 1

have the lower trace.

CR 2: Solutions with more balanced coefficients in the matrix gain are solu-
tions that offer less damping responses.

4.4 Experimental validation: The Twin Rotor MIMO

System

To validate both approaches, the setpoint pattern in Figure 4.6 is used on the
real TRMS 30. It is important to note that such a pattern is different from the
one used at the optimization stage. In this way, it will be possible to evaluate
and validate the MOOD procedure. The new pattern evaluates the perfor-
mance of a given controller in maintaining zero-reference (zone A); a setpoint
change in the main angle (zone B); a setpoint change in the tail position (zone
C); and simultaneous changes in reference (zone D).

4.4.1 PID controller - experimental results

A subset of three controllers (see Table 4.3) are selected from the Pareto set
(Figure 4.4) for further analysis on the TRMS. Controller Gk13 is selected due
to its performance on JE(θ); controller Gk11 due to its tradeoff for objectives
JU(θ) and JC(θ) (some performance is sacrificed in order to obtain a better
control effort and less coupling between the main and tail closed loops). Fi-
nally, controller Gk12 is selected due to its robustness (this is a controller ca-
pable of working with a larger set of plants because it has a smaller JT (θ)

value). In all cases, it is observed that the robustness requirement JT (θ) < 1

is not achieved. The reason for this could be: 1) it is not possible to use a

29A random search with the same number of function evaluations used by the MOEA was
performed for comparison purposes. This approach calculates a Pareto front approximation with
86 solutions. The approximation calculated by the MOEA dominates 85 solutions of the random
search approach; the random search approximation does not dominate any solution of the MOEA
approximation.

30Controllers from Tables 4.3 and 4.6 were implemented in a National Instruments PXI-1002
System.
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Figure 4.6: Reference trajectory for test on real TRMS. The idle state value for the main angle

is around 0.3 rad.

PID scheme to control the system; or 2) the weighting function for robustness
has not been chosen correctly (i.e. it is an excessive constraint) and the con-
trol engineer needs to evaluate if this constraint could be relaxed. After some
analysis on the closed loop frequency response, it is determined that it is pos-
sible to use these controllers in a small operation range. The performances of
these controllers with the reference pattern for the real test (see Figure 4.6) are
shown in Tables 4.4, 4.5 and Figure 4.7.

As expected, controller Gk12 had the worst performance, but fewer cou-
pling effects and the best control effort on zones C and D. Controller Gk13, as
indicated by the Pareto front, has the highest control effort in all cases and the
best performance on zones A and D. Finally, controller Gk11 presents a good
tradeoff between performance and control effort.

Table 4.3: PID controllers selected from Θ∗

P (Figure 4.4).

JE(θ) JU (θ) JC(θ) JI(θ) JT (θ) θ = (Kc1, Ti1, b1,Kc2, Ti2, Td2, b2)

Gk11 6.83 0.82 0.65 4.76 4.58 θ = (0.001, 0.006, 0.99, 0.269, 8.258, 1.420, 0.626)

Gk12 8.60 0.79 0.59 2.94 2.61 θ = (0.001, 0.008, 0.68, 0.2533, 8.45, 1.14, 0.84)

Gk13 6.81 3.76 2.74 4.76 4.58 θ = (0.001, 0.006, 0.70, 0.999, 7.396, 1.887, 0.6721)
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Table 4.4: Performance of PI-PID controllers on the real TRMS (Zones A and B)

Zone A

IAE IADU Obj

Main 4.76E+000 2.85E-002 J1 =1.31E-001

Gk11 Tail 1.07E+001 4.67E+000 J2 = 4.67E + 000

—– —– J3 =—–

Main 6.45E+000 3.05E-002 J1 =2.43E-001

Gk12 Tail 3.42E+001 4.81E+000 J2 =4.81E+000

—– —– J3 =—–

Main 3.58E+000 2.03E-002 J1 = 9.89E − 002

Gk13 Tail 8.17E+000 1.65E+001 J2 =1.65E+001

—– —– J3 =—–

Zone B

IAE IADU Obj

Main 3.73E+002 2.23E+000 J1 = 2.49E + 001

Gk11 Tail 1.14E+003 5.74E+001 J2 = 5.74E + 001

—– —– J3 =3.81E+000

Main 4.44E+002 2.11E+000 J1 =2.96E+001

Gk12 Tail 1.27E+003 5.91E+001 J2 =5.91E+001

—– —– J3 =4.24E+000

Main 3.86E+002 2.20E+000 J1 =2.57E+001

Gk13 Tail 3.12E+002 1.80E+002 J2 =1.80E+002

—– —– J3 = 1.04E + 000
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Table 4.5: Performance of the PI-PID controllers on the real TRMS (Zones C and D)

Zone C

IAE IADU Obj

Main 5.68E+001 3.45E-001 J1 =1.13E+001

Gk11 Tail 5.65E+002 4.26E+001 J2 =4.26E+001

—– —– J3 = 1.14E + 000

Main 5.71E+001 2.74E-001 J1 =1.28E+001

Gk12 Tail 6.42E+002 3.87E+001 J2 = 3.87E + 001

—– —– J3 = 1.14E + 000

Main 6.36E+001 3.69E-001 J1 = 8.64E + 000

Gk13 Tail 4.32E+002 1.21E+002 J2 =1.21E+002

—– —– J3 =1.27E+000

Zone D

IAE IADU Obj

Main 3.97E+002 2.36E+000 J1 =5.48E+001

Gk11 Tail 1.41E+003 7.45E+001 J2 =7.45E+001

—– —– J3 =—–

Main 6.03E+002 1.97E+000 J1 =7.76E+001

Gk12 Tail 1.87E+003 6.34E+001 J2 = 6.34E + 001

—– —– J3 =—–

Main 3.88E+002 2.19E+000 J1 = 3.70E + 001

Gk13 Tail 5.57E+002 2.24E+002 J2 =2.24E+002

—– —– J3 =—–
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4.4.2 State space approach - experimental results

A subset of six controllers (Table 4.6) was selected from the Pareto set (Figure
4.5), according to the control requirements and the closed loop frequency re-
sponse on the linear model. Notice that it is possible to fulfill the requirement
JT (θ) < 1, meaning that a larger set of plants can be controlled by the state
space approach. Controller Gk21 is selected because it is the controller with
the lowest 2-norm on the level diagram, while controller Gk22 is selected to
analyze the impact of JI(θ) on performance. Controllers Gk23 and Gk24 are
selected to validate the tradeoff achieved by decreasing the performance in or-
der to gain a better control action and less coupling effects between the main
and tail angles. The performance of these controllers with the reference step
pattern for the real test (see Figure 4.6) is shown in Tables 4.7, 4.8 and in Figure
4.8.

Table 4.6: State space controller and their performances at the optimization stage.

JE(θ) JU (θ) JC(θ) JI(θ) JT (θ)

Gk21 3.61 1.91 1.25 43.58 0.83

Gk22 4.82 1.41 0.53 201.52 0.83

Gk23 5.77 0.77 0.68 3.67 0.83

Gk24 7.93 0.65 0.71 2.96 0.83

Gk21 and Gk22 are controllers with outstanding performance at the ex-
pense of high control efforts (JU(θ)) and larger trace values (JI(θ)). Con-
troller Gk21 exhibits more coupling effects as was pointed out by JC(θ), and
noise sensitivity (JI(θ)). Controller Gk22 exhibits a better performance than
Gk21 due to coupling effects (JC(θ)), but also shows a higher noise control
effort (JI(θ)).

Controller Gk23 and Gk24 has almost the same performance for objectives
JU(θ), JC(θ), JI(θ), JT (θ) and it is possible to see the tradeoff predicted by
the Pareto front approximation. Controller Gk24 shows worse performance
than controller Gk23, but with less control effort.

4.4.3 Discussions

With the multiobjective approach and the LD tool it is possible to perform an
overall comparison between both control approaches. The comparison will be
not limited by using just a pair of solutions (controllers), and the whole set of
controllers will be used in accordance with the quality of their performances
along the Pareto front approximation.
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Table 4.7: Performance of the state space controller on the real TRMS (Zones A and B).

Zone A

IAE IADU Obj

Main 8.64E+000 3.07E+001 J1 =2.18E-001

Gk21 Tail 1.36E+001 2.17E+001 J2 =3.07E+001

—– —– J3 =——

Main 6.47E+000 7.71E+001 J1 = 1.88E − 001

Gk22 Tail 1.74E+001 2.90E+001 J2 =7.71E+001

—– —– J3 =—–

Main 9.96E+000 7.94E+000 J1 =2.79E-001

Gk23 Tail 2.39E+001 8.61E+000 J2 =8.61E+000

—– —– J3 =—–

Main 9.67E+000 6.71E+000 J1 =2.66E-001

Gk24 Tail 2.19E+001 5.11E+000 J2 = 6.71E + 000

—– —– J3 =—–

Zone B

IAE IADU Obj

Main 2.53E+002 1.61E+002 J1 =1.69E+001

Gk21 Tail 1.63E+002 1.24E+002 J2 =1.61E+002

—– —– J3 = 5.42E − 001

Main 2.11E+002 4.18E+002 J1 = 1.40E + 001

Gk22 Tail 3.46E+002 1.59E+002 J2 =4.18E+002

—– —– J3 =1.15E+000

Main 3.17E+002 4.85E+001 J1 =2.11E+001

Gk23 Tail 3.28E+002 5.72E+001 J2 =5.72E+001

—– —– J3 =1.09E+000

Main 5.79E+002 4.33E+001 J1 =3.86E+001

Gk24 Tail 3.28E+002 3.56E+001 J2 = 4.33E + 001

—– —– J3 =1.09E+000
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Table 4.8: Performance of the state space controller on the real TRMS (Zones C and D).

Zone C

IAE IADU Obj

Main 1.34E+002 1.57E+002 J1 = 1.01E + 001

Gk21 Tail 5.07E+002 1.10E+002 J2 =1.57E+002

—– —– J3 =2.67E+000

Main 4.86E+001 4.02E+002 J1 =1.25E+001

Gk22 Tail 6.26E+002 1.58E+002 J2 =4.02E+002

—– —– J3 = 9.73E − 001

Main 6.77E+001 3.70E+001 J1 =1.04E+001

Gk23 Tail 5.20E+002 4.23E+001 J2 =4.23E+001

—– —– J3 =1.35E+000

Main 1.06E+002 3.09E+001 J1 =1.46E+001

Gk24 Tail 7.28E+002 2.52E+001 J2 = 3.09E + 001

—– —– J3 =2.12E+000

Zone D

IAE IADU Obj

Main 2.90E+002 2.25E+002 J1 =3.01E+001

Gk21 Tail 5.34E+002 1.64E+002 J2 =2.25E+002

—– —– J3 =—–

Main 2.18E+002 6.37E+002 J1 = 2.96E + 001

Gk22 Tail 7.54E+002 2.48E+002 J2 =6.37E+002

—– —– J3 =—–

Main 3.42E+002 4.99E+001 J1 =3.61E+001

Gk23 Tail 6.64E+002 5.51E+001 J2 =5.51E+001

—– —– J3 =—–

Main 6.20E+002 5.15E+001 J1 =6.26E+001

Gk24 Tail 1.06E+003 4.23E+001 J2 = 5.15E + 001

—– —– J3 =—–
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Figure 4.8: Performance on the real TRMS of the MOOD-SS procedure on setpoint pattern.
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As objective JI(θ) corresponds to the particular implementation of each
controller, a comparison can be performed in the objective subset Js(θ) =

[JE(θ), JU(θ), JC(θ), JT (θ)]. A new level diagram, using both set of solutions
(with the ideal solution being the minimal offered by two approaches) is built
(see Figure 4.9). Again, it is possible to make some geometrical remarks (GR)
and their corresponding control remarks (CR):

GR 1: In objective JE there is a range of solutions where both approaches
coincide in the LD (Zone A).

CR 1: There are configurations for each controller capable of reaching the
same level of performance in the range IAE ≈ [6, 15].

GR 2: For the above mentioned range, solutions of the frontal state space
tend to have better values in JC(θ) and JT (θ).

CR 2: For the performance range IAE ≈ [6, 15] the state space controller
gives a better tradeoff for control effort and robustness than a PID con-
troller.

GR 3: Solutions below ‖Ĵ(θ)‖2 (Zone B) correspond to second front solu-
tions. These solutions tend to disperse with larger values in objectives
JU (θ), JC(θ), and JT (θ).

CR 3: The state space approach can reach closer values to the ideal solution.
Nevertheless, these solutions may include the worst values for control
effort, coupling effect, and robustness.

With such graphical analysis, it is possible to see the tradeoff gained by
using a modern control strategy such as a state space controller over a PID
controller. In some instances, it will be worthwhile seeing if a complex con-
trol technique is justified over a classical technique (such as a PID controller)
according with the DM preferences.

4.5 Conclusions on this chapter

In this chapter, a new MOOD procedure for controller tuning has been pre-
sented. With this procedure, it is possible to achieve a higher degree of flexi-
bility for selecting a solution that matches the desired level of tradeoff between
conflicting objectives, such as performance, control effort, and robustness. The
approach includes the use of meaningful performance objectives through sim-
ulation, and the use of a flexible tool to visualize m-dimensional Pareto fronts.

The MOOD procedure has been used to tune a controller for a non-linear
MIMO system. The controller tuning approach has been shown to be flexible
when tuning classical PID controllers and state space controllers. It has also
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Ĵ
(θ

)‖
2

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

J
U

(θ): Control effort (IADU) 

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

J
T
(θ): Robustness (Multiplicative uncertainty) 

6 8 10
0.1

0.2

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

J
C

(θ): Coupling (IAE) 

‖
Ĵ
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been shown to be reliable and robust enough to control the system with dif-
ferent reference patterns. This approach makes it possible to achieve a desired
tradeoff between performance and robustness, which leads to better imple-
mentation results on a real system than the results achievable by optimizing
just a performance measurement. As the tendencies are those predicted by J∗

P

from the optimization stage with the process model, the MOOD procedure is
validated as a tool for designing different control architectures.

Finally, using the level diagram tool a global comparison has been made
between different control approaches, and this is useful to determine if a com-
plex control technique is justified in preference to a classical technique that
matches the DM’s preferences. Further research will focus on more inter-
pretable objectives for robust control and stability.

Nevertheless, some issues still need to be addressed, due to some limita-
tions on the tools employed:

• Many objectives optimization instances are quite common; even if a
grouping technique is provided, the associated problems for this state-
ment remain: persistence of non-Pareto optimal solutions, and a huge
and dense Pareto front approximation. This complicates the DM’s task
of analyzing and selecting a solution to implement.

• Sampling for stabilizing controllers is still partially solved.

• Regarding visualization, design concepts comparison, which is valuable
to select one controller over another, is still difficult with the provided
tools. To the best of the author’s knowledge, there is not a visualization
approach specifically oriented to this purpose.

The aforementioned issues will be taken into account in order to improve
the MOOD tools used. This will lead to the contributions listed in Part III of
this Thesis.
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PART III:

Contributions on MOOD Tools

This part is devoted to amend the limitations found in the MOOD
tools used in Part II (Preliminary Contributions on Controller Tun-
ing). The first contribution is regarding the decision making pro-
cess, where tools and guidelines for design concepts comparison in
m-dimensional Pareto fronts are stated. The second contribution is
related to the inclusion of preference handling mechanisms into the
EMO process. This improves pertinence, convergence and provides
a mechanism to deal with constrained and many-objective optimiza-
tion statements. Although applications on the scope of this Thesis are
related to controller tuning, such improvements can be used in other
engineering fields.
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CHAPTER 5:

Level Diagrams for design concepts

comparison

In this chapter a new approach for design concepts comparison us-
ing Level Diagrams visualization is provided. It follows limitations
found on Chapters 3 and 4 to compare different MOEAs and con-
trollers (respectively) in m-dimensional Pareto fronts. Contents of
this chapter appear in the following paper:

• G. Reynoso-Meza, X. Blasco, J. Sanchis and J.M. Herrero.
Comparison of design concepts in multi-criteria decision making us-

ing level diagrams. Information Sciences, Vol. 221, Issue 1,
February 2013. Pp. 124-141.
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5

Level Diagrams for design

concepts comparison

There is nothing like looking, if you want to

find something. You certainly usually find

something, if you look, but it is not always

quite the something you were after.

Bilbo Baggins

5.1 Aim of this chapter

In this chapter, an improvement on Level Diagrams is developed for design
concepts comparison. The specifics aims of this chapter are:

• To develop a theorical framework for the visual comparison of design
concepts in m-dimensional objective spaces, bringing new facilities on
simplicity, persistence and completeness to the designer.

• To provide the designer with a GUI-tool with the aforementioned frame-
work in order to improve interactivity with the data analysis.

The remainder of this chapter is as follows: in Section 5.2 limitations of LD
for concepts comparison are discussed. In Section 5.3 the new framework for
concept comparison by means of LD is defined. In Section 5.4, the new LD
framework is validated as a practical tool for concept comparison with a set
of MOP. Finally, some concluding remarks of this chapter are given.
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5.2 Design concepts comparison

A further analysis on objective tradeoff by the DM could include the selection
and comparison of various design concepts (i.e., different methods) for solving
an MOP. However, the higher the dimension of the objective vector, the greater
the difficulty in performing that analysis. Moreover, it will be more complex
if the aim is to perform a comparison of two (or more) design concepts.

An analysis of the objective exchange when different design concepts are
used will provide a better insight into the problem at hand. This new anal-
ysis will help the DM to compare different design approaches, and evaluate
the circumstances where he/she would prefer one over another; furthermore,
the DM can decide whether the use of a complex concept is justified over a
simple concept. In this chapter, the LD capabilities are improved by defining
a new quality measure to perform an analysis between Pareto fronts (design
concepts) for a given MOP statement. This work has been developed based
on two assumptions:

• For the DM it is important to compare the degree of improvement of
one design concept over other(s). This could be justified by the fact that
some of the qualitative preferences of one design concept are important
to bear in mind during the final selection. If there are no preferences
for the design concepts under consideration, a global Pareto front could
be calculated with solutions from all design concepts; in such case, the
analysis on a single Pareto front described in [19] with LD visualization
would be enough.

• This visualization is complementary, i.e. it does not substitute the LD vi-
sualization technique shown in [19], but it gives additional information
to the DM.

In Chapter 4, an initial approach to compare design concepts with LD was
presented. Nevertheless, this analysis is difficult, because it is not possible to
have a quantitative measurement to decide which concept performs best. As
it is difficult to obtain such an insight with current norms, a new measurement
is required for this purpose.

The LD visualization also enables the comparison of Pareto fronts obtained
for different design concepts [119] (in this case, controller schemes). In such
visualization, it will be possible to analyze the different tradeoffs achieved
by different control solutions, and determine under which circumstances it is
justified to use one over another. For example, in Figure 5.1, it is possible to
see how a PID can achieve a better tradeoff than a PI controller between load
rejection and step setpoint change (Zone Y). In the same way, it is possible to
determine under which conditions their performance will be the same (Zone
W).
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To plot the LD, the LD visualization tool (LD-tool) 31 will be used. This is
a posteriori visualization tool (i.e. it is used after the optimization process) that
enables the DM to identify preferences zones along the Pareto front, as well
as selecting and comparing solutions. With this tool, it is possible to remove
objectives or to add new performance measurements, not used in the optimi-
zation stage. Furthermore, it is possible to integrate the DM’s preferences in
a lexicographic environment (as the one proposed by physical programming)
to identify preferred solutions.
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Figure 5.1: Typical LD comparison of a PI (♦) and a PID (©) controllers in a SISO system.

5.3 Quality measure to compare design concepts

As pointed in [119], when multiple design concepts are evaluated by means
of their Pareto fronts, it is necessary to have a measurement to quantify their
weaknesses and strengths. Both are essential to bring the usefulness of Pareto
fronts for conceptual design evaluation.

Several measurements have been developed to evaluate the Pareto front
approximations. Nevertheless, many are incompatible or incomplete [206]
with objective vector relations such as strict dominance, dominance or weak
dominance (Definitions 2, 3, 4).

To evaluate the relative performance between design concepts, the Iǫ bi-
nary indicator [206, 99] is used. This indicator shows the factor Iǫ(J∗

p1,J
∗
p2) by

which an approximation set J∗
p1 is worse than another set J∗

p2 with respect to
all the objectives. As detailed in [206], this indicator is complete and compati-

31Available at http://www.mathworks.com/matlabcentral/fileexchange/24042

http://www.mathworks.com/matlabcentral/fileexchange/24042
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ble, and is useful to determine if two Pareto fronts are incomparable, equal, or
if one is better than the other (see Table 5.1).

Table 5.1: Interpretations for the Iǫ indicator.

Iǫ(J
∗
p1,J

∗
p2) < 1 → Every J2(θ2) ∈ J∗

p2 is strictly
dominated by at least one
J1(θ1) ∈ J∗

p1.

Iǫ(J
∗
p1,J

∗
p2) = 1 ∧ Iǫ(J

∗
p2,J

∗
p1) = 1 → J∗

p1 = J∗
p2.

Iǫ(J
∗
p1,J

∗
p2) > 1 ∧ Iǫ(J

∗
p2,J

∗
p1) > 1 → Neither J∗

p1 weakly dominates
J∗
p2 nor J∗

p2 weakly dominates
J∗
p1.

Definition 11. The binary ǫ-indicator Iǫ(J
∗
p1,J

∗
p2) [206] for two Pareto front ap-

proximations J∗
p1,J

∗
p2 is defined as:

Iǫ(J
∗
p1,J

∗
p2) = max

J2(θ2)∈J∗

p2

ǫJ2(θ2) (5.1)

where

ǫJ2(θ2) = min
J1(θ1)∈J∗

p1

ǫJ1(θ1),J2(θ2) (5.2)

ǫJ1(θ1),J2(θ2) = max
1≤l≤m

J1(θ1)l
J2(θ2)l

, ∀J1(θ1) ∈ J∗
p1,J

2(θ2) ∈ J∗
p2 (5.3)

As the binary ǫ-indicator is a scalar measure between Pareto fronts, some
modifications are required to build a scalar measure for each design alterna-
tive on each concept. The quality indicator Q(J i(θi),J∗

pj
) 32 is defined for this

purpose.

Definition 12. The quality indicator Q(J i(θi),J∗
pj
) for two design concepts i, j ∈

[1, . . . ,K] is defined as:

Q(J i(θi),J∗
pj
) =





1 ifmin ǫJi(θi),J∗

pj
> 1

∧

min ǫJj(θj),J∗

pi
> 1

min
Jj(θj)∈J∗

pj

ǫJi(θi),J∗

pj
otherwise

(5.4)

32To avoid problems with this quality indicator when the objective vector has positive and
negative values or zero values are involved, a normalization in the range [1,2] for each objective
is used as a preliminary step.
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where:

ǫJi(θi),J∗

pj
= max

1≤l≤m

J i(θi)l
Jj(θj)l

,J i(θi) ∈ J∗
pi
, ∀Jj(θj) ∈ J∗

pj
(5.5)

with θi ∈ Θ∗
pi

, J i(θi) ∈ J∗
pi

, i 6= j.

This quality measurement and the LD enable visualizing regions in the
Pareto front where a design concept is better or worse than another. Further-
more, this offers a measurement of how much better one design concept per-
forms than the other (see Figure 5.2).

Table 5.2: Comparison methods using the Q(J i(θi),J∗
pj
) quality measure and its meaning.

Q(J i(θi),J∗
pj
) < 1 → J i(θi) ∈ J∗

pi
strictly

dominates at least one
Jj(θj) ∈ J∗

pj
.

J i(θ1) ∈ J∗
pi

has
an improvement over
a solution Jj(θj) ∈

J∗
pj

by a scale factor
of Q(J i(θi),J∗

pj
) (at

least) for all objectives.

Q(J i(θi),J∗
pj
) = 1 → J i(θi) ∈ J∗

pi
is not

comparable with any
solution Jj(θj) ∈ J∗

pj
.

J i(θi) ∈ J∗
pi

is Pa-
reto optimal in J∗

pj
or

J i(θi) ∈ J∗
pi

is inside
a region in the objec-
tive space not covered
by J∗

pj
.

Q(J i(θi),J∗
pj
) > 1 → J i(θi) ∈ J∗

pi
is strictly

dominated by at least
one Jj(θj) ∈ J∗

pj
.

A solution
Jj(θj) ∈ J∗

pj
has

an improvement over
J i(θi) ∈ J∗

pi
by a scale

of Q(J i(θi),J∗
pj
) (at

least) for all objectives.

For example, in Figure 5.2 the relationships described in Table 5.2 can be
seen. Firstly, due to the quality measurement, it is possible to quickly iden-
tify the s-Pareto non-optimal (any solution Q(J i(θi),J∗

pj
) > 1) from s-Pareto

optimal solutions (any solution Q(J i(θi),J∗
pj
) ≤ 1). Moreover, the quality

measurement enables us to assign a quantitative value about how better or
worse a solution is with respect another concept. Further analysis with this
quality measurement can be made for particular solutions, or for regions in
the LD.

Regarding particular solutions, the following remarks can be noticed for
design alternatives 1a, 2a, 1b and 2b (Figure 5.2b):
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Figure 5.2: Typical comparison of two design concepts using a 2-D graph (a), level diagrams

with quality measure Q(·, ·) (b) and level diagrams with 2-norm (c).
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• Q(1a,J∗
p2) ≈ 1.2. That is, among the solutions J2(θ2) ∈ J∗

p2 which dom-
inate objective vector 1a, the smaller k for a solution J2(θ2) such that
J2′ (θ2) = k · J2(θ2) is weakly dominated by 1a is k ≈ 1.2.

• Q(1b,J∗
p2) ≈ 0.8. That is, among the solutions J2(θ2) ∈ J∗

p2 domi-
nated by objective vector 1b, the bigger k for a solution J2(θ2) such that
J2′ (θ2) = k · J2(θ2) weakly dominates 1b is k ≈ 0.8.

• Q(2a,J∗
p1) ≈ 1.28. That is, among the solutions J1(θ1) ∈ J∗

p1 which
dominate objective vector 2a, the smaller k for a solution J1(θ1) such
that J1′(θ1) = k · J1(θ1) is weakly dominated by 2a is k ≈ 1.28.

• Q(2b,J∗
p1) ≈ 0.9. That is, among the solutions J1(θ1) ∈ J∗

p1 domi-
nated by objective vector 2b, the bigger k for a solution J1(θ1) such that
J1′ (θ1) = k · J1(θ1) weakly dominates 2b is k ≈ 0.9.

With regard to tendencies, the following remarks can be made:

• The lower J1(θ), the better the improvement of concept 2 (©) over con-
cept 1 (♦).

• For J2(θ) ∈ [0.055, 0.1] approximately, the lower J2(θ), the better the
improvement of concept 1 (♦) over concept 2 (©).

Regarding zones in Figure 5.2b, region A represents the zone where design
concept 2 (©) is better than design concept 1 (♦). Note that the design alterna-
tives from concept 2 have a quality measurement Q(J2(θ2),J∗

p1) < 1 and de-
sign alternatives from concept 1 have a quality measurementQ(J1(θ1),J∗

p2) >

1. The opposite is true for region B. Region C is a zone reached (covered) only
by concept 1 (and thus, it is impossible to compare both concepts). Finally,
region D represents a region where both concepts have almost the same ex-
change between objectives. Please note how this analysis is more difficult
with standard norms using LD (see Figure 5.2c).

Finally, note that although it is possible to build a s-Pareto front merging
the design alternatives of each concept and analyze its tendencies, it is difficult
to measure the improvement of one concept over another. This fact is mainly
due to the loss of information after building the s-Pareto front. The LD with
the quality measure enables a quantitative a-priori analysis between concepts,
and it is possible to decide, for example, if the improvement of one of them
is justifiable. For instance, the DM could decide that the improvement by a
factor of 0.9 for concept 2 is not justifiable, and decide to only retain concept
1.

While such comparison can be performed by visual inspection in a classical
2D-objective graph (see Figure 5.2a), such a task will be more complex when
three or more objectives are considered. Several examples are considered to
show the LD performing comparisons on m-dimensional Pareto fronts using
this quality measurement.
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5.4 Examples

In this section, four examples are analyzed, where different concepts are used
to obtain different tradeoffs between objectives. The following examples show
analysis on 2, 3, 5 and 6 dimensions for the objective space. The first exam-
ple is used to show that no information (completeness) or clarity (simplicity)
will be lost using the LD instead of a 2-D graphical analysis. The latter cases
are presented to illustrate the visualization capacity of LD using the quality
measurement for concept comparison in m-dimensional Pareto fronts. It is
assumed that any superfluous objective has been previously removed from
the analysis; i.e. all the information (concerning the number of objectives) re-
quired by the DM is depicted.

For all examples, the LD-ToolBox is used to retain the degree of inter-
activity with the supplied data. Finally, the Pareto fronts are calculated us-
ing the sp-MODE algorithm [148, 158], which uses the differential evolution
(DE) [183, 182, 41] algorithm, but any other algorithm or procedure could
be used since tools for the MCDM step are being developed in this chap-
ter. For the sake of simplicity, the different LDs will be referred as follows:
LD/front/measure. For example, LD/J∗

p /‖Ĵ(θ)‖2, means that a visual repre-
sentation of Pareto front approximation J∗

p with 2-norm in LD is presented.

5.4.1 Bi-objective truss design problem

The truss design problem is a classical MOO benchmark statement to test al-
gorithms, as well as decision making step procedures. The truss parameters
proposed in [165] are used with the design concepts stated in [121, 119]. Two
objectives are minimized: squared deflection (J1(θ) [cm2]) and total volume
(J2(θ) [cm3]), with decision variables the cross sections of the bars θ1, θ2, θ3
(see Figure 5.3. That is:

minJ(θ) = [J1(θ), J2(θ)] (5.6)

J1(θ) = L · (
θ1

sin γ1
+ θ2 +

θ3
sin γ2

) (5.7)

J2(θ) = 0.25 · γ3 + 0.75 · γ4 (5.8)

where




γ3

γ4


 =

L

E




a1 a2

a2 a3




−1 


F

F


 (5.9)
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a1 = θ2 + θ1 sin
3 γ1 + θ3 sin

3 γ2 (5.10)

a2 = −θ1 sin
2 θ cos γ1 + θ3 sin

2 γ2 cos γ2 (5.11)

a3 = θ1 sin θ cos
2 γ1 + θ3 sin γ2 cos

2 γ2 (5.12)

subject to:

θi < 2.0 (5.13)

θi > 0.1 (5.14)

σ ≥
E

L
(γ3 sin γ1 − γ4 sin γ1) sin γ1 (5.15)

σ ≥
E

L
γ3 (5.16)

σ ≥
E

L
(γ3 sin γ2 − γ4 sin γ2) sin γ2 (5.17)

The other parameters for the truss are: L = 1 m; γ1 = 450; γ2 = 300;
F1 = F2 = 20 kN ; E = 200e9 Pa (Young modulus); and maximum stress
accepted in each bar σ = 200E + 006 Pa.

L

F

F

3
g

4
g

P

q1 q2
q3

g2
g1

Figure 5.3: Bi-objective truss design problem

Whereas it could be the easiest (from a persistence point of view) to use a
straightforward approach with the SCp visualization, this example is included
and used to cover the following topics:



138 Chapter 5. Level Diagrams for design concepts comparison

• Bring a first approach to the LD visualization and design concept com-
parison with a (probably well known) multiobjective benchmark prob-
lem.

• Introduce some properties of the LD visualization.

In Figure 5.4, the objective exchange for both concepts and its LD/
{
J∗
p1, J

∗
p2

}

/ ‖Ĵ(θ)‖2 visualization is shown. It is important to notice that the LD visual-
ization by itself is not enough to make an analysis or a comparison between
design concepts. This is mainly because there is not a quantitative measure-
ment on the improvement of one over the other.

In Figure 5.5, the LD/
{
J∗
p1, J

∗
p2

}
/Q
(
J i(θi), J∗

pj

)
and the LD/ s-Pareto/

‖Ĵ(θ)‖2 visualizations are shown. In Figure 5.5a it is possible to identify some
interesting remarks:

• In region B, concept 1 (♦) is better than concept 2 (©). The opposite is
true for Zone D.

• The lower J2(θ), the better the improvement of concept 2 (©) over con-
cept 1 (♦).

• Region A is covered only by concept 1 (♦).

• In region C, both concepts offer the DM the same type of exchange be-
tween objectives.

With this visual inspection, the DM can decide if a 2% of improvement
between concepts is justifiable to change the structural design (assuming that
one of the concepts is currently being used). Furthermore, the DM knows that
if the concept design requires keeping the deflection J2(θ) ∈ [0.03, 0.04], then
she/he can select, for example, the easier structure to build.

5.4.2 Disc brake design

This is the disc brake design proposed in [139]. The design objectives to be
minimized are the mass of the brake (J1(θ) [Kg]), the stopping time (J2(θ)
[secs.]), and the engaging force (J3(θ) [N]). The decision variables are the inner
and outer radius of the disc (θ1 and θ2 respectively), the engaging force (θ3),
and the number of friction surfaces (γ). The latter is used to generate two
different design concepts: a disc brake design with 4 and 6 friction surfaces
respectively. Therefore, the following MOP is stated:



Part III: Contributions on MOOD Tools 139

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
400

600

800

1000

1200

1400

1600

J
1
(θ) : Deflection Squared [cm 2]

J 2(θ
) 

: T
ot

al
 V

ol
um

e 
[c

m
3 ]

 

 

0.025 0.03 0.035 0.04 0.045 0.05 0.055
400

500

600

700

800

900

1000

1100

1200
Design concept 1

Design concept 2

(a)

0 0.05 0.1 0.15 0.2

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

J
1
(θ) : Deflection Squared [cm 2]

‖Ĵ
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Figure 5.4: Objective exchange for two concepts in truss design example (a) and representation
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Figure 5.5: Concepts comparison for truss design example.
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minJ(θ) = [J1(θ), J2(θ), J3(θ)] (5.18)

J1(θ) = 4.9 · 10−5(θ22 − θ21)(γ − 1) (5.19)

J2(θ) =
9.82 · 106(θ22 − θ21)

θ3γ(θ32 − θ31)
(5.20)

J3(θ) = θ3 (5.21)

subject to:

θ1 ≥ 55 (5.22)

θ1 ≤ 80 (5.23)

θ2 ≥ 75 (5.24)

θ2 ≤ 110 (5.25)

θ3 ≥ 1000 (5.26)

θ3 ≤ 3000 (5.27)

0 ≤ (θ2 − θ1) (5.28)

0 ≤ 30− 2.5 · (γ + 1) (5.29)

0 ≤ 0.4−
θ3

3.14(θ22 − θ21)
(5.30)

0 ≤ 1−
2.22 · 10−3θ3(θ

3
2 − θ31)

3.14(θ22 − θ21)
2

(5.31)

0 ≤
2.66 · 10−2θ3γ(θ

3
2 − θ31)

3.14(θ22 − θ21)
− 900 (5.32)

This example is used to show:

• The complexity increase on visualization when the DM is required to
analyze more than two objectives.

• To introduce geometrical remarks and their physical meaning to the
problem at hand.

In Figure 5.6, the objective tradeoff in a 3D-objective plot, and the LD/{
J∗
p1, J

∗
p2

}
/‖Ĵ(θ)‖2 visualization are presented. It is important to notice the

complexity increases from 2 to 3 objectives; also, it is more difficult to identify
strengths and drawbacks for each of the design concepts. In Figure 5.7, the
LD/

{
J∗
p1, J

∗
p2

}
/ Q

(
J i(θi), J∗

pj

)
and LD/s-Pareto/‖Ĵ(θ)‖2 visualizations are

shown. Some remarks from Figure 5.7 can be made:

• Both design concepts guarantee a useful coverage on J3(θ).

• No single concept is able to fully cover J1(θ) or J2(θ).
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• According to the last observation, if J1(θ) ≤ 0.5 is required, concept
1 must be used; however, if J2(θ) ≤ 4 is required, concept 2 must be
selected.

• The bigger the mass of the brake, the better the improvement of concept
2 (©) over concept 1 (♦) in the range J1(θ) ∈ [0.6, 1.0].

Notice how the analysis becomes more difficult as the objective space in-
creases. In this example, using the LD/

{
J∗
p1, J

∗
p2

}
/Q
(
J i(θi), J∗

pj

)
visualiza-

tion, it is possible to decide under which circumstances one concept will be
preferred over another. For example, when the DM has a strong preference for
one concept (due to its flexibility or because it is less complex), he or she can
accept sub-optimal solutions. The following example will be used to show the
flexibility of the LD/

{
J∗
p1, J

∗
p2

}
/Q
(
J i(θi), J∗

pj

)
visualization to build a Pareto

front for a set of concepts filtered with preferences.

5.4.3 Parametric controller design

The next example is a parametric controller design G(s) for the control bench-
mark proposed at the American Control Conference (ACC) [194]. The MOP
statement described in [19] is used. It has six objectives: robust stability (J1(θ));
maximum control effort (J2(θ)), worst case settling time (J3(θ)); noise sensi-
tivity (J4(θ)); nominal control effort (J5(θ)); and nominal settling time (J6(θ)).
Two different controller structures G1(s) (design concept 1) and G2(s) (design
concept 2) will be evaluated:

G1(s) =
θ1s

2 + θ2s+ θ3
s3 + θ4s2 + θ5s+ θ6

(5.33)

G2(s) =
θ1s+ θ2

s2 + θ3s+ θ4
(5.34)

subject to:

−10 ≤ θi ≤ 25 (5.35)

J3(θ) ≤ 100 (5.36)

J4(θ) ≤ 1 (5.37)

J6(θ) ≤ 50 (5.38)

The aims with this example are to:

• Demonstrate the viability of the approach with more than three objec-
tives.

• Perform a simple interactive solution selection procedure.
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In Figure 5.8, the LD/
{
J∗
p1, J

∗
p2

}
/Q
(
J i(θi), J∗

pj

)
visualization is depicted.

This figure shows that concept 2 better covers the objective space. Also, there
are several solutions from concept 1 dominated by concept 2.

An inspection of LD/
{
J∗
p1, J

∗
p2

}
/Q
(
J i(θi), J∗

pj

)
enables to determine un-

der which circumstances one concept will be preferred over another. To show
this flexibility, it will be assumed that the DM has a strong preference for con-
cept 2, due to its simplicity and implementation facilities. Although concept
1 has a larger coverage, the DM observes that such covering implies a strong
degradation in objective J4(θ). Also, given the preference for implementing
concept 2, the DM decides that small improvements of concept 1 over concept
2 are not justifiable. With this, the DM can build a Pareto front for a set of
concepts filtered with his/her preferences (fs-Pareto front). For this particular
example, the following assumptions will be assumed:

• Concept 2 is preferred over concept 1, when covering the same objective
space (i.e., if both concepts have the same type of objective tradeoff, then
concept 2 will be always be selected).

• Solutions from concept 2 will be removed from the fs-Pareto front only
if Q(J1(θ1), J∗

p2) > 1.10 (i.e., there is an acceptance region of 10% for a
solution from concept 2 even if it is dominated by J∗

p1). That is, some
sub-optimal solutions could be accepted, given the simplicity of the de-
sign concept.

• Solutions from concept 2 will be inserted in the fs-Pareto front only if
Q(J2(θ2), J∗

p1) < 1
1.10 (i.e. a minimum improvement over concept 2 is

required for any solution from concept 1 to be considered.)

• The DM would like to incorporate the preferences defined in Table 5.3
to facilitate its selection procedure.

With the aforementioned preferences, an fs-Pareto front is built. This front
merges solutions from both concepts with a given set of preferences of the
DM. In Figure 5.9 the LD/fs-Pareto/‖Ĵ(θ)‖2 visualization is shown. From
this point onwards, the usual analysis on LD/front/measure using the LD-
Tool [19] can be performed. For example, a solution (designed with a star in
the aforementioned figure) could be selected to appreciate the tradeoff and
performance when compared with concept 1.

It is important to notice that, even with a large dimensional objective space,
the LD visualization remains useful for design alternative selection and con-
cept comparison. Such a filter over the s-Pareto front facilitates the DM anal-
ysis task, by allowing her/him to analyze the region and characteristics that
are important according to her/his preferences.
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Figure 5.8: Objective exchange visualization for parametric controller tuning example.
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Figure 5.9: Visualization with preferences (see table 5.3) for parametric controller tuning ex-

ample. The darker the solution, the most preferable according to the DM’s preferences.
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Table 5.3: Preference matrix for parametric controller design example. Three preference ranges

are defined: Highly Desirable(HD), Desirable (D) and Tolerable (T).

←HD→ ← D→ ← T→

Objective J0
i J1

i J2
i J3

i

Robust performance -1.00 -0.04 -0.02 -0.001

Maximum control effort 0.00 0.30 0.40 0.500

Worst case settling time 0.00 40.00 60.00 80.000

Noise sensitivity 0.00 0.50 0.60 0.700

Nominal control effort 0.00 0.30 0.40 0.500

Nominal settling time 0.00 30.00 40.00 50.000

5.4.4 Performance evaluation of MOEAs

The final example is a proposal for MOEA visual comparison using the pro-
posed approach. This example is used to:

• Make a proposal for MOEA visual comparison with more than three
objectives.

• Show how the comparison of three or more design concepts could be
performed.

Three different design concepts (MOEAs) are used to calculate a Pareto
front approximation for problem WFG6 (with 32 decision variables and five
objectives) from the benchmark test suit for multiobjective optimization de-
scribed in [84]. Design concepts to be used are:

Concept 1: A DE algorithm with the diversity/pertinency mechanism de-
scribed in [189].

Concept 2: A standard GA for multiobjective optimization.

Concept 3: A standard DE algorithm for multiobjective optimization.

A target vector solution is defined at J(θ) = [1.30, 2.24, 2.79, 5.24, 8.24] in
all cases. The GA algorithm uses a basic penalty-function mechanism for this
purpose. A total of 25 independent runs for each design concept was evalu-
ated and 2000 function evaluations are used.
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In order to keep simplicity as a requirement, all the proposals will be com-
pared with a reference Pareto front Jref

p (design concept 0) to avoid the com-
parison by pairwise design concepts. In this case, it is straightforward to gen-
erate such a Pareto front, since it is known. In other instances, a Pareto front
for reference could be generated by merging all the solutions obtained and
using a dominance filter. This would be helpful to visualize the degree of es-
trangement of design alternatives in a given design concept from the reference
front.

To evaluate the average performance of the design concepts, the m-dimen-
sional attainment surface is calculated as indicated in [98] 33. The attainment

surface at 50% (J̃∗
pi

50%
) is calculated for the design concept comparison. In

Figure 5.10 the LD/
{
J̃∗
p1

50%
, J̃∗

p2

50%
, J̃∗

p3

50%
}

/ Q
(
J i(θi), J∗

p0

)
visualization

is shown. It is possible to appreciate that design concepts 2 and 3 (circles and
points respectively) show almost the same performance in approximating the
Pareto front. Concept 1 (squares) shows a better performance, since it is closer
to 1 (the Pareto front for reference); furthermore, several solutions seem to be
in the Pareto front, or at least, are not dominated by the Pareto front for ref-
erence J∗

p0
34. This graphical inspection, as noticed in [98] is helpful because

it is important to have a visual validation for MOEA performance evalua-
tion when other metrics are used (such as hypervolume for instance). Notice
that while the performance metrics by themselves give an overall-quantitative
measure on Pareto front performance, this graphical inspection enables a vi-
sualization and comparison of the algorithm performance by sectors.

5.5 Conclusions on this chapter

In this chapter, a new quality measurement Q(J i(θi), J∗
pj) was defined to per-

form concept comparison using level diagrams (LD). With this measure, and
the flexibility of LD to visualize and analyze m-dimensional Pareto fronts, the
DM is able to obtain a better insight into objective tradeoffs for different con-
cepts. This was validated in a set of multi-criteria decision making problems
of 2, 3, 5 and 6 objectives.

Furthermore, with the Q(J i(θi), J∗
pj) quality measurement it is possible to

have a measure of alternative design improvements between design concepts.
With this feature, it is possible to build a Pareto front for a set of concepts fil-

tered (fs-Pareto) with the DM’s preferences. In this fs-Pareto front, the DM can
accept sub-optimal solutions for one concept when for example, the improve-
ment of one concept over another is small, and the use of the s-Pareto optimal
solution is not justifiable.

33C code freely available at http://dbkgroup.org/knowles/plot_attainments/
34J∗

p0 is calculated with 1000 solutions uniformly distributed in the known Pareto set.

http://dbkgroup.org/knowles/plot_attainments/
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Finally, the Q(J i(θi), J∗
pj) quality measurement is used to test multiobjec-

tive optimization algorithms since it can measure the improvement of one al-
gorithm over another. Although such evaluation can be done by means of
the original Iǫ binary indicator that calculates a single scalar for each Pareto
front; with the Q(J i(θi), J∗

pj) quality measurement it is possible to analyze
the regions in the objective space where an algorithm performs better, thereby
obtaining a better understanding of its weaknesses and strengths. This charac-
teristic could be desirable when the algorithms are evaluated with real-world
application problems.
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CHAPTER 6:

Physical Programming for

preference driven Evolutionary

Multiobjective Optimization

This chapter is devoted to develop and evaluate a new preference ori-
ented MOEA. Such contribution follows limitations found in Chap-
ters 3 and 4 regarding pertinence of the approximated Pareto front.
The mechanism proposed allows to handle the DM’s preferences in
an intuitive manner, assuring pertinent solutions but avoiding unin-
teresting ones. A paper with results from this chapter is under review.
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6

Physical Programming for

preference driven

Evolutionary Multiobjective

Optimization

I don’t know half of you half as well as I

should like, and I like less than half of you

half as well as you deserve.

Bilbo Baggins

6.1 Aim of this chapter

As commented before, one potentially desirable characteristic of a MOEA is
the mechanism for preference handling to calculate pertinent solutions. That
is, the capacity to obtain a set of interesting solutions from the DM’s point of
view.

The specifics aims of this chapter are:

• To develop a theorical framework for preferences inclusion in the EMO
process, in order to improve pertinency of solutions in the approximated
Pareto front and to deal with many-objective and constrained optimiza-
tion instances.

• To provide the designer with a Tool-box with the aforementioned frame-
work in order to improve pertinency capabilities in the sp-MODE algo-
rithm.
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In this chapter, Physical Programming (PP) is merged with MOEAs as an
auxiliary mechanism to improve pertinency of the calculated solutions. Such
approach will allow to have solutions more useful for the DM, since it pro-
vides a flexible and intuitive coding statement where the MOP is built from
his/her point of view. An algorithm to test its viability is developed; neverthe-
less it could be potentially used by any MOEA. The remainder of this chapter
is as follows: in Section 6.2 some preliminaries in multiobjective optimization,
physical programming and the MOEA to be used are presented. In Section 6.3
the preference handling mechanism is explained and evaluated in Section 6.4.
Finally, some concluding remarks are given.

6.2 Background on Physical Programming

Physical Programming (PP) is a suitable technique for multiobjective engi-
neering design since it formulates design objectives in an understandable and
intuitive language for designers. PP is an aggregate objective function (AOF)
technique [119] for multiobjective problems that includes the available in-
formation in the optimization phase. That enables the designer to express
preferences relative to each objective function with more detail. Firstly, PP
translates the designer’s knowledge into classes35 with previously defined
ranges36. This preference set reveals the DM’s wishes using physical units
for each of the objectives in the MOP. From this point of view, the problem is
moved to a different domain where all the variables are independent of the
original MOP (see Figure 6.1).

For each objective and set of preferences P, a class function ηq(J(θ))|P,
q = [1, . . . ,m] is built to translate each objective Jq(θ) to a new image. In the
new codomain, all the objectives are equivalent to each other. Afterwards, a

PP index Jpp(J(θ)) =
m∑
q=1

ηq(J(θ)) is calculated.

In this work, the implementation stated in [165] named as Global Physical
Programming (GPP), is a better fit for evolutionary optimization techniques
and will be used. This is due to the fact that the original method employs sev-
eral resources to build the proper class functions ηq(J(θ))|P, fulfilling a list
of convexity and continuity requirements. The interested reader might refer
to [165, 118] for a detailed explanation. For the sake of simplicity such details
are not reproduced here, since they will be used as basis for the development
to be presented in Section 6.3.

The Jpp(J(θ)) index is suitable to evaluate the performance of a design al-
ternative, but not that of the design concept. That is, if it is used as it is, it will

35The original method states 4 clases: 1S (smaller is better), 2S (larger is better), 3S (a value is
better) and 4S (range is better)

36According the original method: Highly Desirable (HD), Desirable (D), Tolerable (T), Unde-
sirable (U) and Highly Undesirable (HU)
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Figure 6.1: Physical Programming (PP) notion. Five preference ranges have been defined:

highly desirable (HD), desirable (D), tolerable (T) undesirable (U) and highly undesirable

(HU).

evolve the entire population to a single Pareto optimal solution. Therefore, it
must be merged with other(s) mechanism(s) to maintain diversity in the Pa-
reto front. Pruning mechanisms seem to be a promising solution for this pur-
pose. Therefore, GPP will be used with sp-MODE algorithm (see Algorithm
1.6 and references [158, 148]), which is a MOEA based on Differential Evolu-
tion algorithm [183, 125, 41] and spherical coordinates to prune J∗

P . Even if
similar algorithms use similar approaches [22, 102, 12], the use of a norm to
perform the pruning makes it suitable to incorporate preferences, as detailed
below.

6.3 Pertinency improvement mechanism by means

of global Physical Programming

Global physical programming is a tool which could be used in different ways
by MOEAs. In this case, it will be merged together with a pruning technique,
in order to decide which solutions will be archived in an external file. GPP
can be used as a selection mechanism in the evolved population and/or in the
store and replace mechanism in the external archive A.
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6.3.1 Global Physical Programming statements

Given a vector ϕ ∈ Rm, linear functions will be used for class functions
ηq(ϕ)|P as detailed in [165]37, due to its simplicity and interpretability. Firstly
an offset between two adjacent ranges is incorporated (see Figure 6.2) to meet
the one versus another (OVO) rule criterion [18, 20]. Given a set of preferences
P with M ranges for m objectives:

P =




J1
1 · · · JM

1

...
. . .

...

J1
m · · · JM

m




(6.1)

ηq(ϕ)|P, q = [1, . . . ,m] are defined as:

ηq(ϕ)|P = αk−1 + δk−1 +∆αk

ϕq − Jk−1
q

Jk
q − Jk−1

q

(6.2)

Jk−1
q ≤ ϕq < Jk

q (6.3)

where

α0 = 0 (6.4)

α1 ∈ R
+ (6.5)

αk > αk−1 (1 < k ≤M) (6.6)

∆αk = αk − αk−1 (1 ≤ k ≤M) (6.7)

δ0 = 0 (6.8)

δ1 ∈ R
+ (6.9)

δk > m · (αk + δk−1) (1 < k ≤M) (6.10)

The last inequality guarantees the one versus others (OVO) rule, since an
objective value in a given range is always greater than the sum of the others
in a most preferable range. Therefore, the Jgpp(ϕ) index is defined as:

Jgpp(ϕ) =

m∑

q=1

ηq(ϕ)|P (6.11)

The Jgpp(ϕ) has an intrinsic structure to deal with constraints. If the ful-
fillment of constraints is required, they will be included in the preference set
as objectives. That is, preference ranges will be stated for each constraint and
they will be used to compute the Jgpp(ϕ) index. The ηq(ϕ)|P is shown in Fig-
ure 6.2 for the specific case (to be used hereafter) of the following 5 preference
ranges:

37Hereafter, only 1S classes (the smaller, the better) will be considered.
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HD: Highly desirable if J0
q ≤ Jq(ϕ) < J1

q .

D: Desirable if J1
q ≤ Jq(ϕ) < J2

q .

T: Tolerable if J2
q ≤ Jq(ϕ) < J3

q .

U: Undesirable if J3
q ≤ Jq(ϕ) < J4

q .

HU: Highly undesirable J4
q ≤ Jq(ϕ) < J5

q .

Figure 6.2: New class definition for global physical programming.

Those preferences ranges are defined for the sake of flexibility (as it will
be shown) to evolve the population to a pertinent Pareto front. The following
definitions will be used (see Figure 6.3):

T_Vector: JT = [J3
1 , J

3
2 , · · · , J

3
m], i.e. the vector with the maximum value for

each objective in the tolerable range.

D_Vector: JD = [J2
1 , J

2
2 , · · · , J

2
m], i.e. the vector with the maximum value for

each objective in the desirable range.

HD_Vector: JHD = [J1
1 , J

1
2 , · · · , J

1
m], i.e. the vector with the maximum value

for each objective in the highly desirable range.

T_HypV: The hypervolume of the Pareto front approximation bounded by
JT .
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D_Hypv: The hypervolume of the Pareto front approximation bounded by
JD .

HD_HypV: The hypervolume of the Pareto front approximation bounded by
JHD .

T_J∗
P : the Tolerable Pareto front approximation where all solutions dominate
JT .

D_J∗
P : the Desirable Pareto front approximation where all solutions domi-

nate JD .

HD_J∗
P : the Highly Desirable Pareto front approximation where all solu-

tions dominate JHD .

Figure 6.3: Graphical representation of the definitions stated.

6.3.2 Population selection and archive update

The Jgpp(ϕ) index will be used as a selection mechanism in the evolutionary
technique. Nevertheless, using it through the entire evolution process does
not yield a practical approach. This is because the Jgpp(ϕ) would lead the en-
tire population to converge to a single solution, since the physical index con-
verges to a single Pareto optimal solution. To avoid this, a mechanism must
be designed to evolve the population to a zone of interest and afterwards,
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promote diversity. In this case, a switch operator is used in DE to change the
selection criteria (Algorithm 6.1) at a certain value Jmax

gpp .
This Jmax

gpp value needs to be previously defined. This upper bound on
Jgpp(ϕ) will push the population to evolve to a desired preference region. As
five preference ranges are defined, an intuitive selection of such a value is
Jmax
gpp = Jgpp(J

T ). This will guarantee the population evolves into the feasible
T_HypV and then, perform a selection based on dominance. With this, the
evolutionary process has a strong pressure to reach the T_HypV; furthermore,
it is assured that only tolerable Pareto optimal solutions will be contained in
J∗
P .

In the case of the archiving strategy to update A, Jgpp(ϕ) is used as pseudo-
norm measurement to select one solution into each spherical sector (see Algo-
rithm 6.2). With this, the most preferable solution according to the set of prefer-
ences P previously defined by the designer will be retained in each spherical
sector.

1 Read generation counter G;
2 Read offspring (child population) O|G and Subpopulation (parent) S|G;
3 for i=1:Solutions In Child Population do

4 Calculate the physical index Jgpp(J(u
i)) and Jgpp(J(θ

i));
5 if Jgpp(J(u

i)) > Jmax
gpp AND Jgpp(J(θ

i)) > Jmax
gpp then

6 if Jgpp(J(u
i)) < Jgpp(J(θ

i)) then

7 ui substitutes θi in the main population P |G
8 end

9 end

10 if Jgpp(J(u
i)) < Jmax

gpp AND Jgpp(J(θ
i)) > Jmax

gpp then

11 ui substitutes θi in the main population P |G
12 end

13 if Jgpp(J(u
i)) < Jmax

gpp AND Jgpp(J(θ
i)) < Jmax

gpp then

14 if ui ≺ θi AND θi ∈ P |G then

15 ui substitutes θi in the main population P |G
16 end

17 end

18 end

19 Selection procedure terminates. Return Parent population P |G;

Algorithm 6.1: DE selection procedure with global physical program-
ming.

6.3.3 Tolerable solutions handling

The previously mentioned feature could be enough if the DM will be satisfied
in considering solutions which could have all their individual objective values



162 Chapter 6. Pertinency improvement in EMO

1 Read generation counter G;
2 Read Â|G to be prune;
3 Read and update extreme values for Jref |G;
4 for each member in Â|G do

5 calculate its normalized spherical coordinates (Definition 3)
6 end

7 Build the spherical grid (Definitions 4 and 5);
8 for each member in Â|G do

9 calculate its spherical sector (Definition 6)
10 end

11 for i=1:SolutionsInParentPopulation do

12 if Jgpp(J(θ
i)) > Jmax

gpp then

13 θi is discarded
14 end

15 if Jgpp(J(θ
i)) ≤ Jmax

gpp then

16 Compare with the remainder solutions in A|G;
17 if no other solution has the same spherical sector then

18 it goes to the archive A|G+1

19 end

20 if other solutions are in the same spherical sector then

21 it goes to the archive A|G+1 if it has the lowest Jgpp(J(θi))

22 end

23 end

24 end

25 Pruning ends. Return A|G+1;

Algorithm 6.2: Spherical pruning with physical programming index.

in the tolerable region (for example). Nevertheless, most of the times, the DM
is willing to accept just some of the objectives in a given region (see Figure 6.4).
Such a feature can be incorporated in the pruning mechanism by modifying
Jmax
gpp . For example, it is assumed that the DM is dealing with a m objectives

problem. The following values 38 could be stated for Jmax
gpp :

• If Jmax
gpp = Jgpp(J

T ), then solutions with their m objectives in the Tolera-
ble region could appear in J∗

P .

• If Jmax
gpp = Jgpp([

Tolerable︷ ︸︸ ︷
J3
1 , J

3
2 , . . . , J

3
m−1,

Desirable︷︸︸︷
J2
m ]), then solutions with their m

objectives in the Tolerable region will not appear in J∗
P .

38without loss of generality, values are modified starting from objective m towards objective
1.
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• If Jmax
gpp = Jgpp([

Tolerable︷ ︸︸ ︷
J3
1 , J

3
2 , . . . , J

3
m−2,

Desirable︷ ︸︸ ︷
J2
m−1, J

2
m]), then solutions with m − 1

or more objectives in the Tolerable region will not appear in J∗
P .

• If Jmax
gpp = Jgpp([

Tolerable︷ ︸︸ ︷
J3
1 , J

3
2 , . . . , J

3
m−3,

Desirable︷ ︸︸ ︷
J2
m−2, J

2
m−1, J

2
m]), then solutions with

m− 2 or more objectives in the Tolerable region will not appear in J∗
P .

• And so on.

Figure 6.4: Handling of tolerable solutions. The algorithm will avoid (on the designer’s request)

solutions with several tolerable values (light solutions) according with the Jmax
gpp value defined.

In the example, bi-objective vectors with both values in the tolerable zone are omitted.

6.3.4 Multiple preferences coding

The designer may state more than one preference set P for a given MOP. This
could be the case of many-objective optimization, where the DM is willing to
accept some degradation in one objective, if he/she can assure outstanding
performance on the remainder (see Figure 6.5). It is assumed that the designer
defines K different preference sets; therefore, the Equation (6.11) is redefined
as:

Jgpp(ϕ) = min
k=[1,...,K]

(
m∑

q=1

ηq(ϕ)|Pk

)
(6.12)
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Figure 6.5: Multiple preference set definition.

6.3.5 Pareto front approximation size control

The GPP can be used as a mechanism to dynamically adapt the algorithm ac-
cording to the desired set of solutions. Instead of reducing the grid size, Jmax

gpp

will be modified to retain the most preferable solutions (Figure 6.6). This also
will facilitate the grid size selection. A threshold for a desired number of solu-
tions [car(J∗

P ), car(J
∗
P )] will be stated. A simple dynamic adaptation of Jmax

gpp

is described in Algorithm 6.3. With this mechanism, the pruning technique
will concentrate towards the HD-HypV, if the required number of solutions
in the T-HypV is beyond the bound car(J∗

P ).

1 if car(A|G) > car(J∗
P ) then

2 Sort elements on A|G according to their Jgpp(J(θ)) index;
3 Substitute Jmax

gpp value with the Physical norm of the car(J∗
P )-th

element;
4 end

5 Return A|G;

Algorithm 6.3: Dynamic size control.
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Figure 6.6: Dynamic size control. Less preferable solutions are omitted (on the designer’s

request) in the external archive A. The darker the solution, the more valuable according to the

preference set.

6.3.6 Algorithm proposal: sp-MODE-II. Discussions and in-

sights

With the aforementioned Algorithms 1.4, 6.1, 6.2 and 6.3, it is possible to re-
write Algorithms 1.2 and 1.3 in order to state a proposal using GPP to im-
prove pertinency of the J∗

P . Therefore, a spherical pruning with preferences
multiobjective differential evolution algorithm (sp-MODE-II) is presented (see
Algorithm 6.4). Some insights and discussions are commented below.

Using GPP or related approaches brings the additional task of defining K

preference sets P. Nevertheless, in several instances this supplementary effort
could be justifiable, if it brings a Pareto set approximation with more pertinent
solutions to the DM, facilitating the decision making step. Therefore the DM
must be willing to spend this additional effort at the beginning of the MOP
statement definition. If upper and lower bounds on objectives are known and
are sufficient to improve pertinency, a simple constraint coding could be used
[156].

A statement to discourage the usage of the approach presented here could
be the need to define the preference set P. It is fundamental to have an un-
derstanding of the objectives to define the preference ranges. Nevertheless, if
the DM has no idea on such values, it could be an indicative of a perfunctory
or precipitate selection of the design objectives. Therefore, perhaps the DM
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should ponder the design objectives stated. One of the advantages of MOEAs
concerns using more interpretable and meaningful objectives for the DM and
this aspect should be exploited.

Other mechanisms as goal vectors use one or more proposal vectors to
redirect the evolution process. Nevertheless, such vectors need to be carefully
chosen. A goal vector selected inside or outside of the Pareto front could affect
the algorithm performance. The presented proposal brings the flexibility of a
better redirection of the evolution process.

Finally, according to the number of solutions, the designer could adopt a
ten times the number of objectives rule of thumb, based on [119]. In such work,
it is noticed that for 2-3 objectives a set of 20-30 design alternatives could be
handled by the DM.

1 Generate initial population P |0 with Np individuals;
2 Evaluate P |0;
3 Apply dominance criterion on P |0 to get A|0;
4 while stopping criterion not satisfied do

5 Read generation count G;
6 Get subpopulation S|G with solutions in P |G and A|G;
7 Generate offspring O|G with S|G using DE operators (Algorithm

1.4).;
8 Evaluate offspring O|G;
9 Update population P |G with offspring O|G according to Jgpp(J(θ))

values (Algorithm 6.1);
10 Apply dominance criterion on O|G

⋃
A|G to get Â|G;

11 Apply pruning mechanism based on Jgpp(J(θ)) (Algorithm 6.2) to
prune Â|G to get A|G+1;

12 Apply dynamic size control on A|G+1 (Algorithm 6.3);
13 Update environment variables (if using a self-adaptive mechanism);
14 G = G+ 1;
15 end

16 Algorithm terminates. JP is approximated by J∗
P = A|G;

Algorithm 6.4: sp-MODE-II.

6.4 Examples

Different tests are defined to evaluate the presented proposal. In all cases,
parameters used for DE are F = 0.5 and Cr = 0.9 with an initial population
of 50 individuals (in accordance to Table 6.1). The subpopulation S|G uses half
of the individuals from P |G and half of the individuals from A|G. Regarding
the GPP index, values αk = k

10 , k > 0 and δk = (m+ 1) · (αk + δk−1), k > 1 are
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Table 6.1: Guidelines for sp-MODE-II’s parameters tuning.

Parameter Value Comments

DE algorithm

F (Scaling
factor)

0.5
Recognized as good initial choice according

to [183].

[0.8, 1.0]
Values recognized for non-separable

problems according to [155, 41].

Cr

(Crossover
rate)

[0.1, 0.2]
Values recognized for separable problems

according to [155, 41].

0.5

Trade-off value for separable and
non-separable problems. Default value used
(for example) by MOEA/D algorithm [199].

Np (Popu-
lation)

50

While a five to ten times the number of decision

variables rule has been recognized as a thumb
rule [183] for single objective optimization,

here it is proposed a default size of 50
individuals.

Pruning mechanism

βǫ (Arcs) 10 ·

m−1︷ ︸︸ ︷
[m, . . . ,m]

It is proposed for m-objective problems, to
bound the grid size to mm−1 hyper spherical

sectors.

Pertinency mechanism

Jmax
gpp Jgpp(J

T )

It is proposed as default value. Only
solutions with their m objectives in the

Tolerable region could appear in J∗
P . It will

be modified by the algorithm if the size
control mechanism (Algorithm 6.3) is

activated.

car(J∗
P ) 10 ·m

It is proposed as default value. In accordance
to [119].

αk
k
10 , k > 0

It is proposed in accordance to Equation
(6.6).

δk
(m+1) · (αk +

δk−1), k > 1

It is proposed in accordance to Equation
(6.10).
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Table 6.2: Preferences for the 3-bar truss design problem. Five preference ranges have been de-

fined: highly desirable (HD), desirable (D), tolerable (T) undesirable (U) and highly undesirable

(HU).

Preference Set A

← HD →← D →← T →← U →← HU →

Objective J0
i J1

i J2
i J3

i J4
i J5

i

J1(θ) 0.00 0.06 0.08 0.10 0.20 0.50

J2(θ) 0.00 550 650 750 1000 1500

G1(θ) <2E+008 <2E+008 <2E+008 <2E+008 2E+008 2E+008

G2(θ) <2E+008 <2E+008 <2E+008 <2E+008 2E+008 2E+008

G3(θ) <2E+008 <2E+008 <2E+008 <2E+008 2E+008 2E+008

used.

6.4.1 The 3-bar truss design problem

The first problem is the well-known bi-objective 3-bar truss design. The truss
design problem is a classical MOP benchmark statement to test algorithms,
as well as decision making step procedures. The truss parameters proposed
in [165] are used. Two objectives are minimized: deflection squared (J1(θ),
[cm2]) and total volume (J2(θ), [cm3]), where each bar is constrained to a
maximum stress σ < 2E + 008 [Pa]. Characteristics to be evaluated with this
benchmark problem are:

• The implicit constraint handling mechanism with Jgpp(ϕ) and the prun-
ing technique.

• The capacity to build a T_J∗
P , D_J∗

P and HD_J∗
P in one single run.

• Pareto front approximation control size.

As a rule of thumb, it will be stated that the DM looks for a Pareto set ap-
proximation with 10 ·m = 20 solutions (approximately). Preferences stated for
this problem are shown in Table 6.2. Notice that constraints are incorporated
as additional objectives; since the designer is just interested in calculating so-
lutions with Gi(θ) < 2E+008, no further specifications are required below the
tolerable value. These additional objectives are used to calculate the Jgpp(ϕ)

index, but they will not be used for partitioning the space, unless required.
The results of one single typical run are shown in Figure 6.7. The following

observations can be made:
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1. In Figure 6.7a, a typical run with a grid size of 500 spherical sectors is
shown. In this case, it is important to notice that the algorithm is capa-
ble of reaching the HD_J∗

P , but using computational resources without
regarding DM’s interesting areas.

2. In Figure 6.7b, the algorithm is executed again, with the same param-
eters, but using the Jgpp(ϕ) index. In this case, the algorithm spends
resources taking care of T_HypV.

3. Finally, in figure 6.7c, the algorithm is executed again, with the size con-
trol mechanism. Note how the algorithm concentrates in the HD_HypV,
sacrificing all solutions in the T_HypV, and retaining few solutions from
the desirable Pareto front.

Certainly, for bi-objectives problems (most of the cases) it is not difficult to
attain a Pareto front approximation such as the one in Figure 6.7a and apply
successive filtering to reach the highly desirable region. Nevertheless, with
cost function evaluations with high computational load (complex simulations
for example) it could be a desirable characteristic to evolve quickly to the de-
sirable zone.

Usually, it is not difficult to perform an analysis on bi-objective problems,
for tradeoff and preference articulation. Next, a problem with three objectives
is analyzed, to evaluate the flexibility of the Jgpp(ϕ) index.

6.4.2 The DTLZ2 benchmark problem

The second benchmark example is the DTLZ2 problem [45], with three objec-
tives and ten decision variables. The Pareto front is the surface contained in
the first quadrant of a hypersphere with unitary radius. It is used to show the
following characteristics:

• Capacity to build a T-J∗
P

• Capacity to build a T-J∗
P , with solutions with at least one objective in the

desirable hypervolume (or equivalently, solutions with two objectives in
the tolerable value).

Preferences stated for this problem are shown in Table 6.3. Furthermore,
it will be stated that the DM has some interest to keep the objectives in the
desirable zone and is willing to accept two of them (and not more) in the
tolerable region; for this reason, Jmax

gpp is adapted to Jmax
gpp = Jgpp([J

3
1 , J

3
2 , J

2
3 ]).

In Figure 6.8, results for the following algorithm executions are shown:

• Execution with no preferences (∗), used for comparison purposes.

• Execution to build a T-J∗
P (blue circles©).
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Figure 6.7: Algorithm performance in the bi-objective 3 bar truss design benchmark problem.
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Table 6.3: Preferences for the DTLZ2 benchmark problem. Five preference ranges have been de-

fined: highly desirable (HD), desirable (D), tolerable (T) undesirable (U) and highly undesirable

(HU).

Preference Set A

← HD →← D →← T →← U →← HU →

Objective J0
i J1

i J2
i J3

i J4
i J5

i

J1(θ) 0.00 0.05 0.10 0.40 1.00 10

J2(θ) 0.00 0.30 0.40 0.60 1.00 10

J3(θ) 0.00 0.50 0.80 0.90 1.00 10
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Figure 6.8: Performance of the tolerable solution handling. Pareto front approximation (red-∗),

tolerable Pareto front (blue-o) and Pareto front approximation with at most two values in the

tolerable zone (black-♦) are depicted.
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• Execution to build a T-J∗
P with at most 2 objectives in the tolerable zone

(black diamonds ♦).

Regarding the T-J∗
P , the algorithm reaches the zone according to the pref-

erences defined earlier. The (apparently) irregular distribution is owe to the
selection of the most preferable solution inside each spherical sector. With re-
gard the tolerable Pareto front with at most two objectives in the tolerable re-
gion, the algorithm is capable of avoiding solutions in the middle of the toler-
able region (J2(θ) ≈ [0.4, 0.5]), which corresponds to solutions with Jgpp(ϕ) >

Jgpp([0.4, 0.6, 0.8]) and consequently, not of interest to the DM (any solution
with Jgpp([0.4, 0.6, 0.8]) < Jgpp(ϕ) ≤ Jgpp([0.4, 0.6, 0.9]) has its three objec-
tives in the tolerable region). This fact shows the flexibility of the approach to
evolve its population towards different regions of interest and avoiding unin-
teresting regions to the DM.

The flexibility to reach regions of interest and the capacity to adapt the
archive size according to the desired number of solutions will allow the algo-
rithm to deal with many-objective optimization. A many-objective problem is
then used to show the ability of the approach to deal with higher dimensions.

6.4.3 Parametric controller tuning

The following example is a parametric controller design for the control bench-
mark proposed at the American Control Conference (ACC) [194]. The MOP
statement described in [19] is used. It has 6 objectives: robust stability (J1(θ)),
maximum control effort (J2(θ)), worst case settling time (J3(θ)), noise sensi-
tivity (J4(θ)), nominal control effort (J5(θ)) and nominal settling time (J6(θ)).
Additionally, a constraint on the overshoot in the nominal model is imposed:
G1(θ) < 2. One controller structure will be evaluated:

C(s) =
θ1s

2 + θ2s+ θ3
s3 + θ4s2 + θ5s+ θ6

(6.13)

Characteristics to be evaluated are:

• The implicit constraint handling mechanism with GPP and the pruning
technique.

• Capacity to build T_J∗
P , D_J∗

P and HD_J∗
P in a many-objective optimi-

zation framework.

• Capacity for Pareto front approximation control size.

The preference set in Table 6.4 is used. The calculated Pareto front for ref-
erence is depicted in Figure 6.9 using the LD-Tool39 which is an application

39GUI for Matlab is available at: http://www.mathworks.com/matlabcentral/
fileexchange/24042

http://www.mathworks.com/matlabcentral/fileexchange/24042
http://www.mathworks.com/matlabcentral/fileexchange/24042
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Table 6.4: Preferences for parametric controller tuning example. Five preference ranges have

been defined: highly desirable (HD), desirable (D), tolerable (T) undesirable (U) and highly

undesirable (HU).

Preference Set A

← HD →← D →← T →← U →← HU →

Objective J0
i J1

i J2
i J3

i J4
i J5

i

J1(θ) -0.01 -0.005 -0.001 -0.0005 -0.0001 0

J2(θ) 0.85 0.900 1.000 1.5000 2.0000 10

J3(θ) 14.00 16.000 18.000 21.0000 25.0000 50

J4(θ) 0.50 0.900 1.200 1.4000 1.5000 10

J5(θ) 0.50 0.700 1.000 1.5000 2.0000 10

J6(θ) 10.00 11.000 12.000 14.0000 15.0000 50

G1(θ) 2.00 2.000 2.000 2.0000 5.0000 10

developed in Matlab c© for Pareto front visualization using Level Diagrams
[19]. With the LD-Tool, a color scheme can be used to depict the interesting
solutions to the DM according to her/his preference set definition. A geo-
metrical remark is relevant in the figure: in J1(θ) two different and isolated
regions in the Pareto front fulfil the designer’s preferences.

Comparing the results from Figure 6.9 with the solution presented by the
ev-MOGA algorithm in [19] and provided within the LD-Toolbox where the
preference set is used a posteriori. While it is possible to identify the pertinent
regions in the Pareto front, a lot of computational resources were used in the
remainder areas of the objective space. With the usage of GPP for preferences
articulation it is possible to focus the searching process in the area of interest.
As a consequence in this case, the sp-MODE-II is capable of finding solutions
in the T-HypV but the ev-MOGA is not. This is due to the use of additional
information embedded in the optimization process provided by the DM.

6.4.4 Performance evaluation with other approaches

The last example is the pollution monitoring MOP stated and solved by the
IBEA algorithm in [189]. It states 5 objectives, each one representing the ex-
pected information loss in 5 different monitoring stations.
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minJ(θ) = [J1(θ), J2(θ), J3(θ), J4(θ), J5(θ)] (6.14)

J1(θ) = −u1(θ1, θ2)− u2(θ1, θ2)− u3(θ1, θ2) + 10 (6.15)

J2(θ) = −u1(θ1 − 1.2, θ2 − 1.5)− u2(θ1 − 1.2, θ2 − 1.5)

−u3(θ1 − 1.2, θ2 − 1.5) + 10 (6.16)

J3(θ) = −u1(θ1 + 0.3, θ2 − 3.0)− u2(θ1 + 0.3, θ2 − 3.0)

−u3(θ1 + 0.3, θ2 − 3.0) + 10 (6.17)

J4(θ) = −u1(θ1 − 1.0, θ2 + 0.5)− u2(θ1 − 1.0, θ2 + 0.5)

−u3(θ1 − 1.0, θ2 + 0.5) + 10 (6.18)

J5(θ) = −u1(θ1 − 0.5, θ2 − 1.7)− u2(θ1 − 0.5, θ2 − 1.7)

−u3(θ1 − 0.5, θ2 − 1.7) + 10 (6.19)

where:

u1(θ1, θ2) = 3(1− θ1)
2 exp−θ2

1
−(θ2+1)2 (6.20)

u2(θ1, θ2) = −10(θ1/4− θ31 − θ52) exp−θ
2
1 − θ22 (6.21)

u3(θ1, θ2) =
1

3
exp−(θ1 + 1)2 − θ22 (6.22)

subject to:

θ1 ∈ [−4.9, 3.2] (6.23)

θ2 ∈ [−3.5, 6.0] (6.24)

The IBEA algorithm is an indicator based MOEA [205], which uses the ǫ

indicator [206] to evolve the entire Pareto front approximation. When using a
T_Vector, D_Vector or HD_Vector it evolves the Pareto front approximation
towards the T_HypV, D_HypV and HD_HypV.

Characteristics to be evaluated are:

• The performance of the strategy with respect to a state of the art tech-
nique.

• The capacity to build multiple T_J∗
P , D_J∗

P and HD_J∗
P in many-objective

optimization instances.

• The capacity for Pareto front approximation size control.

Two instances will be evaluated: a single physical matrix A and two si-
multaneous physical matrices B, C (Table 6.6). In each case, 2000 function
evaluations are used and 50 solutions are required by the DM in J∗

P . An IBEA
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Table 6.5: Hypervolume achieved in 201 runs

Single Physical Matrix Simultaneous Physical Matrixes

Preference Set A Preference B Preference C

sp-MODE-II IBEA sp-MODE-II IBEA sp-MODE-II IBEA

Best 0 0 0.1782 0.0148 0.3987 0.0

Median 0 0 0.1241 0.0 0.3147 0.0

HD Worst 0 0 0.0293 0.0 0.0952 0.0

Mean 0 0 0.1187 0.00007 0.3091 0.0

std 0 0 0.0308 0.0010 0.0549 0.0

Best 1.2533 0.6902 56.8633 52.2928 123.9829 18.5836

Median 1.1586 0.6342 49.7769 9.1762 47.7898 6.0634

D Worst 0.5880 0.5611 21.0424 0.0000 20.8970 0.0000

Mean 1.1320 0.6324 48.1316 8.7044 47.7064 5.8899

std 0.0971 0.0219 6.2359 6.6696 9.9826 4.6920

Best 260.0377 259.1223 515.4334 585.4359 1.9292E+003 1.7819E+003

Median 146.6786 242.2504 429.8147 461.2593 1.3083E+003 1.5312E+003

T Worst 123.8105 216.6591 218.4111 257.7210 1.0425E+003 0.8677E+003

Mean 184.3619 242.0966 423.7853 456.3398 1.3138E+003 1.5044E+003

std 4.7779 7.2756 51.6358 40.5184 0.1173E+003 0.1073E+003
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Table 6.6: Preferences Set A for example 4. Five preference ranges have been defined: highly

desirable (HD), desirable (D), tolerable (T) undesirable (U) and highly undesirable (HU).

Preference Set A

← HD →← D →← T →← U →← HU →

Objective J0
i J1

i J2
i J3

i J4
i J5

i

J1(θ) 6 7 9 10 11 12

J2(θ) 6 7 8 10 11 12

J3(θ) 6 7 9 10 11 12

J4(θ) 6 7 8 10 11 12

J5(θ) 6 7 9 10 11 12

Preference Set B

← HD →← D →← T →← U →← HU →

Objective J0
i J1

i J2
i J3

i J4
i J5

i

J1(θ) 5 10 11 12 13 15

J2(θ) 5 9 10 11 12 15

J3(θ) 5 8 9 10 11 15

J4(θ) 5 7 8 9 10 15

J5(θ) 5 6 7 8 9 15

Preference Set C

← HD →← D →← T →← U →← HU →

Objective J0
i J1

i J2
i J3

i J4
i J5

i

J1(θ) 5 8 9 10 14 15

J2(θ) 5 8 9 10 14 15

J3(θ) 5 11 12 13 14 15

J4(θ) 5 11 12 13 14 15

J5(θ) 5 11 12 13 14 15
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using DE algorithm (ρ = 0.05) has been coded for this purpose. For both algo-
rithms values of F = 0.5 and CR = 0.9 are defined and 201 independent runs
are carried out.

In Table 6.5 the results of 201 independent runs for the best, median, worst
and mean values of the achieved HD_HypV, D_HypV and T_HypV are de-
picted. Statistical differences have been validated with Wilcoxon test at 95%
significance level [47]. Regarding instance 1, none of the algorithms is capable
of reaching the HD_HypV. The sp-MODE-II algorithm is able to achieve a bet-
ter performance than IBEA for D_HypV, at expenses of the T_HypV. Regard-
ing instance 2, only the sp-MODE-II algorithm is capable of finding solutions
in the HD_HypV for both preference sets. Again, sp-MODE-II presents the
same behavior when compared with IBEA for D_HypV and T_HypV. This is
due to the implicit pressure on Jgpp(θ) index to continue improving the solu-
tions obtained from the T_HypV to the HD_HypV.

Attainment surfaces for comparison (♦ for sp-MODE-II and x for IBEA) are
depicted in Figure 6.11 as described in [151] for MOEAs comparison in many-
objective optimization instances by means of Level Diagrams40. Taxonomy to
identify the visualizations is adopted from the same reference41. It is possible
to notice the following remarks on Figure 6.11:

Remark 1: In instance 1 (single preference condition) the 50% attainment sur-
face of the sp-MODE-II algorithm fails to converge at the D_HypV. This
impossibility is due to Objective 1: the algorithm fails to handle this ob-
jective to reach the T_J∗

P . As a consequence, the IBEA algorithm domi-
nates this attainment surface portion.

Remark 2: In the same case, when the 50% attainment surface of the sp-
MODE-II algorithm converges at the D_HypV, it tends to dominate the
IBEA algorithm.

Remark 3: According to instance 2 (simultaneous preference conditions), there
is a change in the covering for J1(θ) and J5(θ) (Figure 6.11b). That
could indicate structural differences between algorithms, since one of
them dominates the other in one of the objectives, at the price of being
dominated in the other.

Remark 4: According to Table 6.5, the IBEA is capable of reaching the HD_-

HypV of the preference set B, but incapable of reaching the HD_HypV

of the preference set C. In Figure 6.11b, it is possible to appreciate this
fact and it is possible to specify where it happens: in Objective J1(θ) the
IBEA fails to reach the HD_HypV of preference set C.

40Available for Matlab at: http://www.mathworks.com/matlabcentral/
fileexchange/39458

41LD/front/measure. For example, LD/J∗
p /‖Ĵ(θ)‖2 , means that a visual representation of Pa-

reto front approximation J∗
p with 2-norm in LD is presented.

http://www.mathworks.com/matlabcentral/fileexchange/39458
http://www.mathworks.com/matlabcentral/fileexchange/39458
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visualization for attainment surface per-

formance. Red ♦ for sp-MODE-II and blue x for IBEA are used. Detailed explanation on the

remarks is given within the thesis.
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6.5 Conclusions on this chapter

In this chapter, a mechanism for handling preferences in EMO using GPP has
been presented. Techniques for preference handling could be a desirable char-
acteristic for a MOEA, since they improve pertinency of solutions. Therefore,
it could make easier the DM’s task of analyzing and selecting a preferable so-
lution from the approximated Pareto front. The embedment of the articulation
of preferences in a MOEA could reinforce the holistic MOOD procedure.

The approach developed fulfills the requirements for preferences coding in
an intuitive and meaningful scheme in order to generate pertinent solutions.
As a consequence, pertinent approximations of the Pareto front are built. Fur-
thermore, the approach has shown to be effective for constrained and many-
objective optimization statements.

According to the examples provided, a competitive algorithm has been de-
veloped. Although it has been presented as a particular algorithm, the tech-
nique could be potentially applied to any EMO approach. The developed al-
gorithm (sp-MODE-II) is flexible to articulate preferences and is DM-oriented
since it provides features for multiple preference sets, size control of the ap-
proximated front (based on preferences) and capacity to handle the level of
tolerance of a design alternative.

The summary of using this framework is:

1. To code the DM’s preferences in an intuitive and meaningful language.

2. To include a constraint handling mechanism into the optimization state-
ment.

3. The possibility to refine the pruning mechanism, specifying which solu-
tions are not allowed to remain in the spherical grid, according the DM’s
preferences.

4. The possibility to create a control mechanism for the quantity of solu-
tions required in the Pareto front approximation, with regard for de-
signer’s interesting solutions.
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PART IV:

Final Contributions on Controller

Tuning

This part is devoted to present final contributions using the MOOD
procedure for controller tuning. Such contributions focus again on
multivariable processes (identified as a potential research area in
Chapter 2) and on many-objective optimization instances. Basic ideas
from Part II (Preliminary Contributions on Controller Tuning) are
used, and the limitations found on MOOD tools implemented are
amended with the developments from Part III (Contributions on
MOOD Tools). Firstly, a sampling mechanism explicitly designed for
PID controllers will be stated; secondly, it is used together with the
ideas and tools from Parts II and III for multivariable controller tun-
ing.
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CHAPTER 7:

Stochastic sampling of stable PID

controllers

Contributions on MOOD tools presented in Part III can be used
straightforwardly in controller tuning applications; nevertheless it is
worthwhile to develop explicit mechanisms to close the gap between
them and EMO, before facing specific engineering control problems.
In this chapter a stochastic sampling procedure for PID controllers is
proposed, to guarantee that (1) any sampled controller will stabilize
the closed loop and (2) any stabilizing controller could be sampled.
Contents of this chapter appear in the following conference paper:

• G. Reynoso-Meza, J. Sanchis, X. Blasco and J.M. Herrero. A

stabilizing PID controller sampling procedure for stochastic optimiz-

ers. The 19th World Congress of the International Federation of
Automatic Control. Accepted on February 13th., 2014.
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7

Stochastic sampling of stable

PID controllers

Control, control, you must learn control!

Grand master Yoda

7.1 Aim of this chapter

In general, stochastic optimizers are characterized by the randomness used in
the search process, which is helpful to avoid local minima. Evolutionary or
nature inspired algorithms are very popular stochastic optimizers and they
have been used extensively for PID-like controller tuning [152]. Such algo-
rithms use matching and mutation operators to induce such randomness into
the search process. Nevertheless, in the case of PID controller tuning, this pro-
cess has to be carefully performed; besides the problematic (and often uncom-
mented) preliminary step of defining the boundaries in the search process, not
all parameter combinations in a PID guarantees closed loop stability given a
nominal process.

The specific aim of this chapter is:

• To develop and implement a simple sampling procedure for stochastic
optimizers with a focus on first order plus dead time (FOPDT) processes,
in order to generate randomly PID parameters which guarantee closed
loop stability.

This procedure not only assures sampling stabilizing PID parameters but
also guarantees that all stabilizing controllers are taken into account. Such
sampling could be potentially used for any stochastic optimizer saving com-
putational resources to achieve an optimal solution (given a cost function) and

189
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improving its convergence. The remainder of this work is as follows: in sec-
tion 2 it is presented the sampling procedure, while in section 3 it is validated
its usefulness with two different test cases. Finally, some concluding remarks
are given.

7.2 Sampling Procedure

Firstly, it will be briefly explained how is characterized the subset of stabi-
lizing PID controllers C and afterwards, how to sample controller from such
subset.

7.2.1 Computation of stable set C

In this chapter FOPDT transfer functions P (s) and PID controllers C(s) are
considered. Both are described by the equations:

P (s) =
k

Ts+ 1
e−Ls (7.1)

C(s) = kp +
ki
s

+ kds (7.2)

where k is the process proportional gain, T the time constant and L the lag
of the system; kp, ki, kd the proportional, integral and derivative gains of the
controller. According to [169], the set C ⊂ R3 of stabilizing controllers given
the P (s) process is given by subsets T, ∆ and Q (Figure 7.1).

The range of kp values for which P (s) is stable is given by:

−
1

k
< kp < ku (7.3)

where ku is usually known as the ultimate gain

ku =
1

k

[
T

L
α1 sin(α1)− cos(α1)

]
(7.4)

and α1 is the solution of the equation

tan(α) = −
T

T + L
α, α ∈ [0, π] (7.5)

The complete stabilization region is given by:

1. For each kp ∈ [− 1
k ,

1
k ), the corresponding region in (ki, kd) space is the

quadrilateral Q of Figure 7.1.

2. For kp = 1
k , the corresponding region in (ki, kd) space is the triangle ∆

of Figure 7.1.
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3. For each kp ∈ [ 1k , ku), the corresponding region in (ki, kd) space is the
trapezoid T of Figure 7.1, where ku = 1

k

[
T
Lα1 sin(α1)− cos(α1)

]
.

Where relevant variables mj , bj , wj , j = [1, 2] are calculated as follows:

mj =
L2

z2j
(7.6)

bj = −
L

k · zj

[
sin(zj) +

T

L
zj cos(zj)

]
(7.7)

wj =
zj
kL

(1 + kkp)[1 + cos(zj)]

sin(zj)
(7.8)

with z1, z2 being the roots of

k · kp + cos(z)−
T

L
z sin(z) = 0 (7.9)

Therefore, set C is composed by subsets T (for kp ∈ [− 1
k ,

1
k )), ∆ (for kp =

1
k ) and

⋃
Q (for kp ∈ [ 1k , ku)).

7.2.2 Sampling from stable set C

It is stated that, given a subset S ∈ R3 and a process P (s), two important
features for PID C(s) parameter sampling from S should be fulfilled:

1. Any sampled controller C(s) from S must stabilize the closed loop.

2. Any stabilizing controller C(s) of the process P (s) must be contained in
S.

A common approach for feature 1 is to define bounds on the parameter
which avoid all non-stable but also some stable PID parameters; therefore,
feature 2 is not fulfilled. A second alternative, is to bound the search space
with all stable PID parameters, but including non-stable parameters, which
are verified while the algorithm is running. In such case, feature 1 is unful-
filled, and computational (CPU time) resources could be misspent.

To sample stabilizing controllers fulfilling both features, it is required to
sample on C. It is assumed that controllers matching kp > 0, ki > 0, kd > 0

are the only accepted by the designer to stabilize P (s). According to this an
injective function R3 → R3 to map from the unitary cube to C is defined:

F (a, b, c) = [kp, ki, kd] (7.10)

{a, b, c} ∈ [0, 1]

Where:
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Figure 7.1: PID stable regions.

kp = a · ku (7.11)

kd = c ·
T

K
(7.12)

ki =





b · kd−b1
m1

if kp ≤ 1/k

kd−b2
m2

+ b ·
[
kd−b1
m1
− kd−b2

m2

]
if 1/k < kp

(7.13)

The algorithm to generate stabilizing controllers is depicted in Algorithm
10.

Simple analytic solutions using Newton-Raphson optimization method could
be employed. Line 1 and 2 could be calculated off-line if a fixed FOPDT is un-
der consideration. If not required, line 10 could be omitted. In figure 7.2 a
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1 Read values k, T, L;
2 Calculate ku (Equation (7.4));
3 Read values a, b, c;
4 Calculate kp (Equation (7.11));
5 Calculate kd (Equation (7.12));
6 Determine roots zj , j = [1, 2] (Equation (7.9));
7 Determine values mj, bj , j = [1, 2] (Equations (7.6),(7.7));
8 Determine ki (Equation (7.13));
9 Return kp, ki, kd;

10 Return Ti = kp/ki Td = kd/kp;

Algorithm 7.1: Stable PID stochastic sampling.

simple random sampling using Algorithm is shown.
Next, it will be used this approach for several stochastic optimizers to eval-

uate its performance.
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(a) Stabilizing controllers in (ki, kd, kp) space.

Figure 7.2: Stabilizing controllers for system 1

s+1
e−0.1s (1e6 samples are plotted) from sto-

chastic sampling in the unitary cube.

7.3 Performance Evaluation

Three different stochastic optimizers to evaluate the performance of the sam-
pling will be used. In this chapter, it will be focused on single objective opti-
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mization, due to limitation of space. The optimizers under consideration are:

DE: Differential Evolution algorithm [41, 182, 183]. It belongs to the family of
evolutionary strategies, and it is a very popular and compact algorithm.
A version available from Matlab central is used.42

SA: Simulated annealing algorithm ([184]). A heuristic optimizer emulating
annealing process in materials for search in the decision space. The ver-
sion available in the Matlab optimization toolbox is used.

CMAES: Covariance Matrix Adaptation Evolution Strategy ([75]). An algo-
rithm from the family of estimation of distribution algorithms. The ver-
sion available from the authors for Matlab is used.43

In all cases, algorithms have been downloaded from their respective sources
and used with their standard parameters. That is, no further effort on tuning
algorithm parameters has been spent.

The process under consideration is the benchmark for PID control 2012 de-
scribed by [133]. It proposes a boiler control problem [132, 59] based on the
work of [141]. This work improves the model provided in [14] by adding a
non-linear combustion equation with a first order lag to model the excess oxy-
gen in the stack and the stoichiometric air-to-fuel ratio for complete combus-
tion. The non-linear explicit model is described by the following equations:

ẋ1(t) = c11x4(t)x
9

8

1
+ c12u1(t− τ1)− c13u3(t− τ3) (7.14)

ẋ2(t) = c21x2(t)

+
c22u2(t− τ2)− c23u1(t− τ1)− c24u1(t− τ1)x2(t)

c25u2(t− τ2)− c26u1(t− τ1)
(7.15)

ẋ3(t) = −c31x1(t)− c32x4(t)x1(t) + c33u3(t− τ3) (7.16)

ẋ4(t) = −c41x4(t) + c42u1(t− τ1) + c43 + n5(t) (7.17)

y1(t) = c51x1(t− τ4) + n1(t) (7.18)

y2(t) = c61x1(t− τ5) + n2(t) (7.19)

y3(t) = c70x1(t− τ6) + c71x3(t− τ6)

+c72x4(t− τ6)x1(t− τ6) + c73u3(t− τ3 − τ6)

+c74u1(t− τ1 − τ6)

+
[c75x1(t− τ6) + c76] [1− c77x3(t− τ6)]

x3(t− τ6) [x1(t− τ6) + c78]

+c79 + n3(t) (7.20)

y4(t) = [c81x4(t− τ7) + c82]x1(t− τ7) + n4(t) (7.21)

42http://www.mathworks.com/matlabcentral/fileexchange/38962
43https://www.lri.fr/~hansen/cmaesintro.html

http://www.mathworks.com/matlabcentral/fileexchange/38962
https://www.lri.fr/~hansen/cmaesintro.html
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Table 7.1: Default parameters of the SA algorithm. These values are obtained by executing in

Matlab c© R2009b the command line options=saoptimset(’simulannealbnd’).

AnnealingFcn: @annealingfast

TemperatureFcn: @temperatureexp

AcceptanceFcn: @acceptancesa

TolFun: 1.0000e-006

StallIterLimit: ’500*numberofvariables’

MaxFunEvals: ’3000*numberofvariables’

TimeLimit: Inf

MaxIter: Inf

ObjectiveLimit: -Inf

Display: ’final’

DisplayInterval: 10

HybridFcn: []

HybridInterval: ’end’

PlotFcns: []

PlotInterval: 1

OutputFcns: []

InitialTemperature: 100

ReannealInterval: 100

DataType: ’double’
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Table 7.2: Default parameters of the CMAES algorithm (Version 3.54.beta). These values are

obtained by executing in Matlab c© R2009b the command line options=cmaes.

StopFitness: ’-Inf stop if f(xmin) < stopfitness, minimization’

MaxFunEvals: ’Inf maximal number of fevals’

MaxIter: ’1e3*(N5)2/sqrt(popsize) maximal number of iterations’+

StopFunEvals: ’Inf stop after resp. evaluation, possibly resume later’

StopIter: ’Inf stop after resp. iteration, possibly resume later’

TolX: ’1e-11*max(insigma) stop if x-change smaller TolX’

TolUpX: ’1e3*max(insigma) stop if x-changes larger TolUpX’

TolFun: ’1e-12 stop if fun-changes smaller TolFun’

TolHistFun: ’1e-13 stop if back fun-changes smaller TolHistFun’

StopOnStagnation: ’on stop when fitness stagnates for a long time’

StopOnWarnings: ’yes ’no’==’off’==0, ’on’==’yes’==1 ’

StopOnEqualFunctionValues: ’2 N/3 number of iterations’+

DiffMaxChange: ’Inf maximal variable change(s), can be Nx1-vector’

DiffMinChange: ’0 minimal variable change(s), can be Nx1-vector’

WarnOnEqualFunctionValues: ’yes ’no’==’off’==0, ’on’==’yes’==1 ’

LBounds: ’-Inf lower bounds, scalar or Nx1-vector’

UBounds: ’Inf upper bounds, scalar or Nx1-vector’

EvalParallel: ’no objective function FUN accepts NxM matrix, with M>1?’

EvalInitialX: ’yes evaluation of initial solution’

Restarts: ’0 number of restarts ’

IncPopSize: ’2 multiplier for population size before each restart’

PopSize: ’(4 floor(3*log(N))) population size, lambda’+

ParentNumber: ’floor(popsize/2) AKA mu, popsize equals lambda’

RecombinationWeights: ’superlinear decrease or linear, or equal’

DiagonalOnly: ’0*(1100*N/sqrt(popsize)) C is diagonal for given iterations, 1==always’+

Noise: [1x1 struct]

CMA: [1x1 struct]

Resume: ’no resume former run from SaveFile’

Science: ’on off==do some additional (minor) problem capturing, NOT IN USE’

ReadSignals: ’on from file signals.par for termination, yet a stumb’

Seed: ’sum(100*clock) evaluated if it is a string’

DispFinal: ’on display messages like initial and final message’

DispModulo: ’100 [0:Inf], disp messages after every i-th iteration’

SaveVariables: ’on [on|final|off][-v6] save variables to .mat file’

SaveFilename: ’variablescmaes.mat save all variables, see SaveVariables’

LogModulo: ’1 [0:Inf] if >1 record data less frequently after gen=100’

LogTime: ’25 [0:100] max. percentage of time for recording data’

LogFilenamePrefix: ’outcmaes files for output data’

LogPlot: ’off plot while running using output data files’

UserData: ’for saving data/comments associated with the run’

UserDat2: ’’
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Where ẋ1(t), ẋ2(t), ẋ3(t), ẋ4(t) are the states of the system; y1(t), y2(t),
y3(t), y4(t) the observed states; cij , τi and ni are non-linear coefficients, time
constants and noise models, respectively, determined to improve the accuracy
oh the model.

The benchmark problem stated a 3x3 MIMO system with a measured load
disturbance:




Y1(s)

Y2(s)

Y3(s)




=




P11(s) 0 P13(s)

P21(s) P22(s) 0

P31(s) 0 P33(s)







U1(s)

U2(s)

U3(s)




+




P1d(s)

0

P3d(s)



D(s) (7.22)

Where the inputs are fuel flow [%], air flow [%] and water flow [%] while
the outputs are steam pressure [%], oxygen level [%] and water level [%]. This
is a verified model, useful to propose, evaluate and compare different kinds
of tuning/control techniques [69, 163, 137, 170, 160].

For such benchmark a reduced MIMO and SISO version were available
to evaluate different controller tuning procedures. For this chapter only the
SISO PID controller tuning (Figure 7.3), where the fuel flow is manipulated to
control the steam pressure, is considered.

Figure 7.3: SISO loop for Boiler benchmark (taken from [133]).

The benchmark also defined an index (Ibenchmark) to evaluate the perfor-
mance for a given controller. It is an aggregate objective function, which com-
bines ratios of IAE, ITAE and IAVU indexes using a base case PI controller
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([kp, Ti] = [2.5, 50]). More details can be consulted in [133]. The benchmark
index is used to tune a PID controller using an identified model G(s)44 to be
evaluated later in the original model.

G(s) =
0.3934

45.6794s+ 1
e−3.42s (7.23)

7.3.1 Performance test 1: Convergence improvement

The aim of the first test design is to validate the hypothesis that the stochastic
sampling will improve each algorithm performance to calculate optimal PID
parameters45. For this purpose, 2000 function evaluations have been used for
each algorithm and 51 independent runs are carried out. Each one will be
executed twice, in order to test the sampling proposal:

1. An execution using standard bounds on kp, Ti, Td.

2. An execution using the stochastic sampling previously explained.

Therefore, the following optimization problem is defined for the former
instance:

min J(kp, Ti, Td) = Ibenchmark|G(p(s) (7.24)

s.t.

kp ∈
(
0, ku|G(s)

]
(7.25)

Ti ∈ [0, 100] (7.26)

Td ∈ [0, 100] (7.27)

Re[λ] < 0 (7.28)

while for the latter:

min J(a, b, c) = Ibenchmark|G(p(s) (7.29)

s.t.

a ∈ (0, 1] (7.30)

b ∈ [0, 1] (7.31)

c ∈ [0, 1] (7.32)

In the former case, a basic penalty function is used to identify feasible from
non-feasible solutions. The results are shown in Tables 7.3, 7.4 and 7.5. In the

44This model was obtained with a step response experiment using the identification toolbox
of Matlab c©.

45Optimal according to the selected cost function Ibenchmark .
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case of the DE algorithm (Table 7.3), there are no statistical differences ac-
cording to the Wilcoxon test at 95% [47], although it can be notice that DE
algorithm without the coding is not capable of finding a suitable controller
in all executions. Regarding SA and CMA-ES algorithms (Tables 7.4 and 7.5)
the Wilcoxon test reveals that the instance using the sampling proposed leads
to better results on both cases. In each instance, algorithms seem to be con-
verging to a PID controller with parameters [kp, Ti, Td] = [3.99, 29.41, 0]. That
is, a controller without derivative gain. The performance of such controller
and its comparison with the reference case (using files and guidelines from
the benchmark) are depicted in Figure 7.4.

Table 7.3: Performance of DE algorithm in test 1.

Stochastic Sampling Standard bounds

minimum 0.6247 0.6247

median 0.6448 0.6480

maximum 22.0645 56.4709

mean 3.4526 6.7177

variance 37.4191 167.2447

success 51 47

Table 7.4: Performance of SA algorithm in test 1.

Stochastic Sampling Standard bounds

minimum 0.6247 0.6255

median 0.6248 0.6943

maximum 0.6847 0.9726

mean 0.6265 0.7415

variance 0.0002 0.0350

success 51 51
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Figure 7.4: Performance of the PI controller [kp, Ti] = [3.99, 29.41] and its comparison with

the reference case [kp, Ti] = [2.5, 50].
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Table 7.5: Performance of CMA-ES algorithm in test 1.

Stochastic Sampling Standard bounds

minimum 0.6247 0.6247

median 0.6247 0.6255

maximum 14.9956 18.3715

mean 0.9166 1.3141

variance 4.0489 11.8571

success 51 51

7.3.2 Performance test 2: multidisciplinary optimization

The aim of the second test design is to validate

• The efficacy of the proposal, due to a more efficient number of function
evaluations required.

• The usefulness on this sampling for multidisciplinary optimization de-
sign.

A PI for the aforementioned process will be tuned. Nevertheless, it will be
assumed a design phase for the boiler, where it is decided to carry a multi-
disciplinary design approach of plant design and control. As detailed in [161]
and [24], multidisciplinary optimization approaches could bring new and in-
teresting solutions for designer, since it shows a better performance than se-
quential design procedures. This approach has been used before with success
involving PI and PID controllers ([10, 13, 92, 103]).

It is assumed a hypothetic case where from the nominal model identified,
the plant could be (re)designed as:

G′(s) = f(l) =
0.3934 · (4− 3l)

45.6794 · (4− 3l)s+ 1
e−3.42s (7.33)

with free parameter l ∈ [0.7, 1.3]. In a physical sense, with a fixed step
reference change it means that:

• it is possible to (re)design a plant with a quicker response (i.e. , with a
lower time constant) but at the expense of more energy required to get
to the reference (i.e. , a lower gain).

• it is possible to (re)design a plant with a lower response (i.e. , with a
high time constant) that requires less energy to get to the reference (i.e.
a bigger gain).
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Only the CMA-ES algorithm will be used. The termination condition will
be defined by the algorithm itself. Therefore, the following optimization prob-
lems are defined:

min J(kp, Ti, l) = Ibenchmark|G′(p(s)=f(l) (7.34)

s.t.

kp ∈
(
0, max (ku)|G′(s)=f(l)

]
(7.35)

Ti ∈ [0, 100] (7.36)

l ∈ [0.7, 1.3] (7.37)

Re[λ] < 0 (7.38)

and

min J(a, b, l) = Ibenchmark|G′(p(s)=f(l) (7.39)

s.t.

a ∈ (0, 1] (7.40)

b ∈ [0, 1] (7.41)

l ∈ [0.7, 1.3] (7.42)

Again, in the former case, a basic penalty function is used to identify sta-
bilizing from non-stabilizing solutions. In Tables 7.6 and 7.7 the results are
shown. While there are not statistical differences (according Wilcoxon test) in
the value achieved in the benchmark index Ibenchmark, there are differences in
the function evaluations used (see Figure 7.5). Therefore, the sampling pro-
posal has been useful to reduce the quantity of function evaluations required
to get an optimal value.

7.4 Conclusions on this chapter

In this chapter, it has been presented a simple coding statement to sample
internal stable PID controllers given a FOPDT process. This coding could be
potentially used by stochastic optimizers, to improve their efficiency in the
global search procedure. In summary, the main advantages of this proposal
are:

• Less function evaluations used, since the algorithm is always sampling
candidate solutions in a space where all controllers stabilize the closed
loop.

• All the stabilizing controllers are contained in the space; therefore a priori

the algorithm is minding all the possible tuning configurations.
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Table 7.6: Performance of the CMA-ES algorithm in test 2.

Stochastic Sampling Standard bounds

minimum 0.5855 0.5855

median 0.5855 0.5855

maximum 0.5855 0.5855

mean 0.5855 0.5855

variance 1.8e-27 2.8e-14

success 51 51

Table 7.7: Function evaluation required by CMA-ES algorithm in test 2.

Stochastic Sampling Standard bounds

minimum 1815 2137

median 2417 3229

maximum 3537 4447

mean 2415 3146

variance 1.0e5 2.3e5
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Figure 7.5: Function evaluation required by CMA-ES algorithm in test 2.

• No guesses or hints are made about the decision search space for the
evolutionary algorithm; the search space is straightforward bounded.

• It is an approach suitable for multidisciplinary optimization, where the
system itself could be subject to (re)design.

While simple examples have been shown in this chapter, the approach is
suitable to face more demanding optimizations statements by including con-
straints. Limitations and future work are:

• The code is presented just for FOPDT processes; future work should
focus on extend the sampling to process of higher complexity.

• Only PI and PID controllers can be tuned with this procedure; it should
be extended to PID controllers with derivative filter and setpoint weight-
ing.

• It is limited to SISO processes; it will be interesting to use the same ap-
proach in MIMO statements.



CHAPTER 8:

Minding the gap: a preference

driven multiobjective optimization

design procedure for controller

tuning

This chapter is devoted to present final contributions on multivari-
able controller tuning using the MOOD procedure. For this purpose
basic ideas from Part II (Preliminary Contributions on Controller Tun-
ing) are used, while the limitations found on MOOD tools imple-
mented are amended with the developments from Part III (Contri-
butions on MOOD Tools). Likewise, the sampling mechanism stated
in the previous chapter is used, in order to improve convergence and
optimize computational resources. A paper with contents from this
chapter is currently under development.
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Minding the gap: a

preference driven

multiobjective optimization

design procedure for

controller tuning

It’s the end. But the moment has been pre-

pared for.

The 4th. Doctor

8.1 Aim of this chapter

In this chapter the developed tools for the MOOD procedure are implemented
in two control engineering benchmarks. The specific aims of this chapter are
to:

• Employ tools developed in Chapters 5, 6 and 7 for the MOOD procedure
in order to validate their usability for controller tuning purposes.

• State potential control engineering benchmark problems in order to serve
as a test suite for performance comparison among MOEAs and MCDM
methodologies.

The remainder of this chapter is as follows: in Section 8.2 a summary on
the MOOD procedure to be used is presented; Section 8.3 is dedicated to solve
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anew (for comparison purposes) the benchmark setup of section 3.3, the Wood
& Berry distillation column; Section 8.4 is devoted to propose a controller tun-
ing for the TITO version of the Boiler Control problem of [133]. Finally, some
concluding remarks are given.

8.2 MOOD procedure with preferences for multi-

variable PI controller tuning

This chapter is dedicated to PI controller tuning in MIMO processes by means
of the MOOD procedure. As commented in chapter 1, the MOOD procedure
consists of (at least) three main steps: the MOP definition (measurement); the
multiobjective optimization process (search); and the MCDM stage (decision
making). Tools and guidelines for each of these steps are commented below:

MOP definition: the preference inclusion methodology using the GPP index
will be used (Chapter 6) in order to be able to deal with many-objective
and constrained optimization instances, assuring a pertinent approxi-
mation of the Pareto front. The ten times the number of objectives thumb
of rule for the quantity of solutions required in the approximated Pareto
front commented in Chapter 6, based on [119], is adopted. Also a clear
distinction among design objectives and design objectives for decision
making is stated. That is, in which subspace the DM would like to per-
form a decision making analysis, by identifying objectives that should
be minimized and minded in the search process, but they are not meant
to be used for decision making.

EMO process: the sp-MODE-II algorithm (from Chapter 6) will be used be-
cause of its features regarding the expected Pareto front and the optimi-
zation instance (Chapter 1). In the former case, these features are related
to the capabilities to produce a well spread and pertinent Pareto front
(Features 2 and 3, respectively). In the latter case, because of its capabili-
ties to deal with constrained and many-objective optimization instances
(Features 4 and 5, respectively). Also, the stochastic sampling procedure
presented in Chapter 7 will be used; as this sampling is limited to single
loops, the overall stability is checked through the evolutionary process
and incorporated in the preference set as a constraint.

MCDM step: Level Diagrams will be used due to their capabilities to de-
pict m-dimensional Pareto fronts and for design concepts comparison,
developed in Chapter 5. The taxonomy to identify the visualizations is
adopted from the same chapter 46.

46LD/front/measure. For example, LD/J∗
p /‖Ĵ(θ)‖2 , means that a visual representation of Pa-

reto front approximation J∗
p with 2-norm in LD is presented.
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According to Chapter 2, while several works focus on PI-PID controller
tuning using EMO, few of them deal with MIMO instances. Furthermore, few
of them use some mechanism for pertinency improvement in many-objective
optimization statements for these problems. Therefore, it is justified to test
the MOOD procedure with the proposals contained in this thesis in the afore-
mentioned control engineering benchmarks. In all instances, it is assumed
that commonly used tuning techniques don’t fulfill all the designer’s require-
ments and therefore, the MOOD procedure is employed. A standard CPU47 is
used to calculate the Pareto front approximations for such benchmarks.

With the aforementioned tools and procedure, limitations detected on Part
II (preliminary contributions on controller tuning) regarding many-objective
optimization, merging design objectives and the quantity (and quality) of the
approximated Pareto front for the MCDM step are amended; as a consequence,
the results are further improved.

8.3 Benchmark setup: the Wood & Berry distilla-

tion column process

The first example is the well-known distillation column model defined by
Wood & Berry [16, 195], used previously in Chapter 3 and solved anew for
comparison purposes. The aims of this example are:

• To provide a many-objective optimization statement for MIMO processes,
in order to validate the sp-MODE-II algorithm.

• To provide a comparison between algorithm’s performance to build a
T_J∗

P , D_J∗
P and HD_J∗

P in many-objective optimization instances.

Three different algorithms (concepts) to approximate the T_J∗
P , D_J∗

P and
HD_J∗

P are used:

Concept 1: sp-MODE-II algorithm of Chapter 6.

Concept 2: A DE algorithm with the diversity/pertinency mechanism de-
scribed in [189], used for indicator based evolutionary algorithms (IBEA).
This technique, used previously in Chapter 6, is used because it is a state
of the art technique capable of handling design preferences.

Concept 3: A stochastic sampling approach. This process is used for compar-
ison purposes, since it has been noticed in [35] that for many-objective
optimization instances, stochastic sampling procedures could be com-
petitive with MOEAs.

47DELL T1500 computer, Windows 7 system, processor Intel Core i7, 2.93 GHz with 8.00 GB
RAM.
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For concepts 1 and 2, Cr = 0.5 and F = 0.5 are used in the DE mechanism
(general values in accordance with Tables 1.1 and 6.1). A budget of 6000 FEs is
fixed in three instances and the same stochastic sampling approach of Chapter
7 is used. A total of 201 independent runs are carried out in each case.

8.3.1 Design problem statement

The process P (s) (Equation (8.1)) will be controlled with a decentralized PI
controller structure C(s) (Equation (8.8)). The designer is interested in im-
proving the performance of the initial solution θ0 (stated by the BLT [109]
methodology).

P (s) =




P11(s) P12(s)

P21(s) P22(s)


 =




12.8e−s

16.7s+1
−18.9e−3s

21s+1

6.6e−7s

10.9s+1
−19.4e−3s

14.4s+1


 (8.1)

C(s) =




kp1

(
1 + 1

Ti1s

)
0

0 kp2

(
1 + 1

Ti2s

)


 (8.2)

The same objective statement from Chapter 3 is used:

min
θ

J(θ) = [−ki1,−ki2, Lcm,Ms1,Ms2,Mp1,Mp2] ∈ R
7 (8.3)

subject to:

0 ≤ θi ≤ 1, i = [1, 2, 3, 4] (8.4)

G1(θ) = Re[λ]max < 0 (8.5)

where ki1 =
kp1

Ti1
, ki2 =

kp2

Ti2
are the integral gains of controller C11(s) and

C22(s) respectively; Lcm (Equation (3.5)) is the closed loop log modulus; Ms1

and Ms2 are the maximum values of the sensitivity function (Equation (2.1))
for individual control loops 1 and 2 respectively; Mp1 and Mp2 are the max-
imum values of the complementary sensitivity function (Equation (2.3)) for
individual control loops 1 and 2, respectively.

Given the stochastic statement of the previous chapter, θi ∈ [0, 1] for i =

{1, · · · , 4} the constraint to improve stability of the original statement is no
longer needed. It is expected to achieve a solution with better J1(θ0), J2(θ0)

than the BLT (θ0) solution. Also, limits of (Ms1,Ms2) < 2.0, (Mp1,Mp2) < 1.5

and Lcm < 4.0 are imposed.
For the sp-MODE-II (Concept 1) the preference matrix is depicted in Table

8.1. For the IBEA technique (Concept 2), two different approaches are eval-
uated: using as preference vector Jpref = JT with ρ = 0.01 (named IBEA1)
and using Jpref = JD with ρ = 0.001 (named IBEA2). Since seven objectives
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are defined, 70 solutions are required by the DM in the approximated Pareto
front. Therefore sp-MODE-II algorithm uses a spherical grid of 70 arcs and a
population of 70 individuals; IBEA employs a population of 70 individuals.

8.3.2 Results and Discussions

In Table 8.2 the achieved T_HypV, D_HypV and HD_HypV are depicted.
Statistical significance was validated with the Wilcoxon test at 95% with Bon-
ferroni correction [47]. In Figure 8.1 a visual representation of such statistics
is shown. MOEAs were capable of reaching better T_HypV values than the
stochastic approach. This validates the usage of MOEAs to approximate the
T_J∗

P in the many-objective optimization instance of Equation (8.3). Regard-
ing the computational cost, a time base of 1180 seconds is used (median value
of the time required to evaluate 6000 FEs, with the available CPU resources, in
201 runs). Afterwards, the time required to execute each algorithm with the
same number of FEs for each run is calculated and divided by the time base.
This lead to the median values of time ratio depicted at the end of the Table
8.2. The dominance filter is the algorithm with the lower time performance
(less than 1% of additional computational cost), while for the IBEA algorithm
has the highest (more than 100% of additional computational cost).

Regarding the MOEAs, the sp-MODE-II algorithm was capable to approx-
imate solutions in the T_J∗

P and D_J∗
P Pareto fronts consistently. The IBEA1

approach is not capable of reaching the T_HypV for some executions, and is
incapable of reaching the D_HypV. The IBEA2 approach is able to find solu-
tions in the T_HypV for all executions, but not for the D_HypV.

In Figure 8.2 a LD /
{
J̃∗
p1

50%
, J̃∗

p2

50%
, J̃∗

p3

50%
}

/ Q
(
J i(θi), J∗

p0

)
visualiza-

tion of attainment surfaces of IBEA1 (Jp1, red ⋄), IBEA2 (Jp2, orange ©) and
sp-MODE-II (Jp3, yellow �) is depicted. A Pareto front approximation with
all the solutions from all executions of each design concept evaluated has been
used as reference front. The set of solutions close to 1 indicate48 that the algo-
rithm approximates better the T_J∗

P and D_J∗
P Pareto fronts. Since the sp-

MODE-II attainment surface lies practically on 1, it indicates its superiority
to reach the pertinent Pareto front approximation. The difference among al-
gorithms with objectives J1(θ) and J2(θ) can be noticed. While the attain-
ment surface of sp-MODE-II is inside the T_HypV, the attainment surfaces
of the IBEA1 and IBEA2 cover some part of the undesirable hypervolume. It
seems that the pressure mechanism of the sp-MODE-II algorithm, which fo-
cuses first on individual solutions getting to the T_HypV and afterwards on
the Pareto front approximation, is useful and makes the difference between
the approaches.

48According to que comparison methods developed for this visualization in Chapter 5 and
depicted in Table 5.2.
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Table 8.1: Preferences Set for experimental setup of Section 8.3. Five preference ranges have been defined: highly desirable (HD), desirable (D), tolerable (T)

undesirable (U) and highly undesirable (HU).

Preference Set

← HD →← D →← T →← U →← HU →

Objective J0
i J1

i J2
i J3

i J4
i J5

i

J1(θ) 1.6 · J1(θ0) 1.4 · J1(θ0) 1.2 · J1(θ0) J1(θ0) 0.8 · J1(θ0) 0.6 · J1(θ0)

J2(θ) 1.6 · J2(θ0) 1.4 · J2(θ0) 1.2 · J2(θ0) J2(θ0) 0.8 · J2(θ0) 0.6 · J2(θ0)

J3(θ) 0.0 1.0 2.0 4.0 8.0 16.0

J4(θ) 1.2 1.4 1.8 2.0 3.0 5.0

J5(θ) 1.2 1.4 1.8 2.0 3.0 5.0

J6(θ) 1.0 1.2 1.4 1.5 3.0 5.0

J7(θ) 1.0 1.2 1.4 1.5 3.0 5.0

G1(θ) <0.0 <0.0 <0.0 0.0 1.0 2.0



Part IV: Final Contributions on Controller Tuning 213

Finally, in Figure 8.3, the Pareto front approximation for the median value
T_HypV of the T_J∗

P for sp-MODE-II algorithm is presented. From here, the
DM will evaluate and analyze the approximated Pareto front to select a solu-
tion according to his/her needs. Given that the main aim of this benchmark
setup is to compare MOEAs, in the MCDM step it will be enough to select the
solution with the better GPP index. In Figure 8.4 the design alternative with
the minimum GPP index is compared with the BLT tuning under the same
experiments from Chapter 3.

Table 8.2: Pertinency level reached for benchmark setup 8.3. T_HypV, D_HypV and HD_-

HypV achieved in 201 independent runs for each design concept.

sp-MODE-II IBEA1 algorithm IBEA2 algorithm Random

algorithm T_Vector, ρ = 0.01 D_Vector, ρ = 0.001 Sampling

(0%, 99%, 100%) (0%, 0.5%, 100%) (0%, 74%, 100%) (0%, 0.5%, 68%)

Best 0.0E+000 0.0E+000 0.0E+000 0.0E+000

Median 0.0E+000 0.0E+000 0.0E+000 0.0E+000

HD Worst 0.0E+000 0.0E+000 0.0E+000 0.0E+000

Mean 0.0E+000 0.0E+000 0.0E+000 0.0E+000

std 0.0E+000 0.0E+000 0.0E+000 0.0E+000

Best 1.7E-009 8.3E-011 1.2E-009 4.2E-010

Median 5.3E-010 0.0E+000 8.2E-011 0.0E+000

D Worst 0.0E+000 0.0E+000 0.0E+000 0.0E+000

Mean 5.8E-010 4.2E-013 1.8E-010 2.1E-012

std 3.8E-010 5.9E-012 2.4E-010 2.9E-011

Best 7.7E-006 4.2E-006 1.6E-006 2.3E-006

Median 5.8E-006 2.6E-006 9.5E-007 3.7E-007

T Worst 4.0E-006 9.0E-009 1.6E-007 0.0E+000

Mean 5.9E-006 2.6E-006 9.4E-007 5.7E-007

std 7.3E-007 7.8E-007 2.6E-007 6.1E-007

Time Performance 1.7271 2.2051 2.2195 1.0059
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Figure 8.1: Pertinency level reached for benchmark setup 8.3. T_HypV and D_HypV achieved

in 201 independent runs for each design concept.
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sp-MODE-II (Jp3, yellow �) for the benchmark setup of Section 8.3.
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Figure 8.3: Pareto front approximation with sp-MODE-II algorithm of the benchmark setup of Section 8.3. Five preference ranges have been defined: highly

desirable (HD), desirable (D), tolerable (T) undesirable (U) and highly undesirable (HU).
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8.4 Benchmark setup: the Boiler Control problem

The process under consideration is the benchmark for PID control 2012 de-
scribed in [133]. It is a benchmark which proposes a boiler control problem
([132, 59]) based on the work of [141]. The aims of this example are:

• To provide a many-objective optimization statement for MIMO processes
under quasi-real conditions, in order to validate the MOOD procedure for
controller tuning.

Quasi-real conditions makes reference to the following steps:

1. Consider the (original) non-linear model simulation as the real process.

2. Step changes are used to obtain simplified linear models from the real

process.

3. Controllers are tuned using the aforementioned approximated models.

4. The selection procedure will be made according to experiments on the
approximated models.

5. The selected controller will be implemented in the real process.

The original problem stated a 3x3 MIMO system with a measured load
disturbance:




Y1(s)

Y2(s)

Y3(s)




=




P11(s) 0 P13(s)

P21(s) P22(s) 0

P31(s) 0 P33(s)







U1(s)

U2(s)

U3(s)




+




P1d(s)

0

P3d(s)



D(s) (8.6)

Where the inputs are fuel flow U1(s) [%], air flow U2(s) [%] and water flow
U3(s) [%], while the outputs are steam pressure Y1(s) [%], oxygen level Y2(s)

[%] and water level Y3(s) [%]. D(s) is a measured load disturbance. This is
a verified model, useful to propose, evaluate and compare different kinds of
tuning/control techniques ([69, 163, 137, 170, 160]).

Here the reduced TITO version of the benchmark is used:
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Figure 8.4: Performance of the BLT tuning and the controller with the lowest GPP index from

Figure 8.3 for a given setpoint change for benchmark setup of Section 8.3.
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


Y1(s)

Y3(s)


 =




P11(s) P13(s)

P31(s) P33(s)







U1(s)

U3(s)




+




G1d(s)

G3d(s)


D(s) (8.7)

with the proposed controller:

C(s) =




kp1

(
1 + 1

Ti1s

)
0

0 kp2

(
1 + 1

Ti2s

)


 (8.8)

8.4.1 Design problem statement

The identified reduced model49 at the operation point is shown in Equations
(8.9), (8.10) and depicted in Figure (8.5).

P (s) =




P11(s) P13(s)

P31(s) P33(s)


 =




0.3727e−3.1308s

55.68s+1
−0.1642

179.66s+1

0.0055·(166.95s−1)
31.029s2+s

0.0106e−9.28s

s


 (8.9)

G(s) =




G1d(s)

G3d(s)


 =




−0.78266e−17.841s

234.69s+1

−0.0014079e−7.1872s

7.9091s2+s


 (8.10)

The optimization statement to minimize is:

min
θ

J(θ) = [J1(θ), J2(θ), J3(θ), J4(θ), J5(θ)] (8.11)

subject to:

0 ≤ θi ≤ 1, i = [1, 2, 3, 4] (8.12)

G1(θ) = Re[λ]max < 0 (8.13)

Objectives stated are:

J1(θ): Stabilizing time for Y1(s) at presence of a step Load disturbance D(s).

49Nominal linear models have been identified using simple step tests with the Matlab c© iden-
tification toolbox.
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Figure 8.5: Identified reduced model of the Boiler process (benchmark setup from Section 8.4).
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J2(θ): Stabilizing time for Y2(s) at presence of a step Load disturbance D(s).

J3(θ) : Biggest log modulus for overall robustness (Equation (3.5)).

J4(θ): Maximum value of sensitivity function Ms for loop 1 (Equation (2.1)).

J5(θ): Maximum value of sensitivity function Ms for loop 2 (Equation (2.1)).

Design objectives to perform a MCDM stage are J1(θ), · · · , J3(θ). That
means that 30 solutions are required and the objective space is just partitioned
in three dimensions; notice that all five objectives are still minding due to the
preference matrix. The preference matrix for the design objectives is depicted
in Table 8.3. Given the stochastic statement of the previous chapter, θi ∈ [0, 1]

for i = 1, · · · , 4. A total of 25 runs are carried, and the Pareto front with the
median value of the T_HypV is used as representative solution for further
analysis in the MCDM step.

Table 8.3: Preferences Set A for experimental setup of Section 8.4. Five preference ranges have

been defined: highly desirable (HD), desirable (D), tolerable (T) undesirable (U) and highly

undesirable (HU).

Preference Set A

← HD →← D →← T →← U →← HU →

Objective J0
i J1

i J2
i J3

i J4
i J5

i

J1(θ) [s] 600 700 800 900 1500 2000

J2(θ) [s] 600 900 1000 1600 1800 2000

J3(θ) [-] 1.0 2 3 6 12 24

J4(θ) [-] 1.0 1.2 1.4 1.8 1.9 2.0

J5(θ) [-] 1.0 1.2 1.4 1.8 1.9 2.0

G1(θ) [-] <0.0 <0.0 <0.0 0.0 1.0 2.0

8.4.2 Results and Discussions

In Figure 8.6, the median value for the T_HypV of the T_J∗
P for the sp-MODE-

II algorithm is presented. It is important noting the compactness of the ap-
proximated Pareto front towards the D_HypV. This facilitates the DM proce-
dure to select a solution to implement. Also the simulation response of the
approximated design alternatives is depicted in Figure 8.7.



222
C

hapter
8.M

O
O

D
procedure

w
ith

preferences
for

controller
tuning

450 500 550 600 650
1

1.1

1.2

1.3

1.4

1.5

1.6

 J
1
(θ) : Stabilizing time 

steam pressure [secs]             

‖Ĵ
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Figure 8.6: Pareto Front of the benchmark setup of Section 8.4. Design alternative with the lowest GPP index (dark △) and the selected design alternative

(dark ⋆) are depicted.
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The preference set stated (Table 8.3) to calculate the GPP index has been
useful to incorporate the designer’s preferences among conflicting objectives.
Nevertheless, although this index has been useful to evolve the evolutionary
process towards the pertinent Pareto front, it is not capable to describe by
itself the tradeoff among objectives. That is, since the Pareto front is unknown
a priori, it is impossible to predict its shape by just analyzing the lowest GPP
index obtained. Therefore, the MCDM stage is still a necessary step for the
designer. By using the sp-MODE-II, it has been assured to have a pertinent
approximation of the Pareto front, with an interesting set of solutions from
the point of view of the designer. By consequence, it facilitates the decision
making process.

Two solutions are marked in the Figure 8.6: the design alternative with the
lowest GPP index (black △ in the approximated Pareto front) and a solution
which sacrifices a desirable value in J5(θ) (individual loop performance) in
order to get a better overall performance J3(θ) (black ⋆ in the approximated
Pareto front). The differences between both design alternatives can be appre-
ciated in Figure 8.7; the latter has a smooth response in the drum water level
when compared with the former. Given the above, this design alternative is
preferred over the one with the minimum GPP index.

This design alternative has been implemented in the real process, and the
performance index defined by the benchmark Ibenchmark is shown in Table
8.5. Such index is an aggregate objective function, which combines ratios
of the IAE, ITAE and IADU indexes using as a base case two PI controllers
[kp1

, Ti1 , kp2
, Ti2 ] = [2.5, 50, 1.25, 50]. More details can be consulted in [133].

Firstly, a PI digital implementation without filtering the measured signal
is employed. Notice that performance indexes related with ratios of IAE and
ITAE are better than the reference controller. Nevertheless, the performance
indicator Ibenchmark is worse in the case of Test 1 (Figure 8.8) and it has almost
the same performance than Test 2 (Figure 8.10). This is due to the weight-
ing factor used for the control action; the design alternative selected is more
sensitive to noise and therefore, the IADU ratio is bigger.

Using a first order filter with τf = 10, the performance related to the con-
trol action is improved50 and as a consequence, the overall index Ibenchmark

(Figures 8.9 and 8.11). Therefore, the proposed PI controllers have a perfor-
mance (regarding this metric) which is better than the reference controllers.

There are differences between performance on the nominal model and real
model with regard to stabilizing times. A more suitable approach would be to
define a reliable based optimization, using a stochastic sampling with the ex-
pected uncertainties in the models. In summary, the methodology is effective,
bringing a controller fulfilling all the requirements with a better performance
than the reference controller.

50Such filter still guarantees overall stability in the control loop for the nominal process of
Equation (8.9)
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A comparison in equal conditions with other approaches dealing with the
benchmark (refereed at the beginning of this benchmark setup) is not possible.
In [69] a feedforward mechanism is used that is not included in this proposal;
in [163] a data driven approach is used (i.e. a on the fly tuning technique); in
[137] a 2x2 PI controller matrix is proposed; finally in [170] and [160] results
reported are not evaluated under the benchmark guidelines.

Table 8.4: Simulation validation and performance achieved of the selected design alternative

(without filtering) for the benchmark setup from Section 8.4. Ratios of IAE (RIAE), ITAE

(RITAE) e IADU (RIADU) with respect to the PI reference case are depicted.

RIAE1 RIAE2 RIAE3 RITAE1 RITAE3 RIADU1 RIADU2 Ibenchmark(0.25)

Test1 0.8032 0.9991 0.5581 0.0000 0.0000 1.8736 9.8487 1.5117

Test2 0.7882 0.9647 0.2644 0.7137 0.0000 2.4576 4.8029 1.0169

Table 8.5: Simulation validation and performance achieved of the selected design alternative

(τf = 10) for experimental setup of Section 8.4. Ratios of IAE (RIAE), ITAE (RITAE) e IADU

(RIADU) with respect to the PI reference case are depicted.

RIAE1 RIAE2 RIAE3 RITAE1 RITAE3 RIAVU1 RIAVU2 Ibenchmark(0.25)

Test1 0.8042 0.9991 0.5614 0.0000 0.0000 0.9637 1.2320 0.8325

Test2 0.7093 0.9673 0.3307 0.7085 0.0000 0.7574 1.4825 0.7279

8.5 Conclusions on this chapter

With the aforementioned examples, ideas developed in Part II (Chapters 3
and 4) for multivariable controller tuning in many-objective optimization in-
stances were used. Gaps and limitations noticed in such preliminary contri-
butions were amended with the proposed tools from Part III.

The developed tools and methodologies from Part III have been validated
as useful in the MOOD procedure for controller tuning. The sp-MODE-II algo-
rithm (Chapter 6) has shown to be practical and useful for preference inclusion
into the evolutionary process. This allows to obtain pertinent Pareto front ap-
proximations for many-objective optimization instances. The stochastic sam-
pling approach (Chapter 7) has supported the evolutionary process, assuring
that any sampled controller is stable and furthermore, any stable controller
could be potentially sampled.

Finally, the methodologies for MOEAs comparison using attainment sur-
faces (Chapter 5) has been useful to identify limitations on MOEAs. Likewise,
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level diagrams have shown to be a useful tool for the MCDM step to select a
desired design alternative.

Limitations and future work are:

• The stochastic sampling procedure is used just for single PI control loops;
future work should focus on extending the sampling to MIMO pro-
cesses.

• Only PI and PID controllers can be tuned with this procedure; it should
be extended to (a) PID controllers with derivative filter and setpoint
weighting, and (b) more complex controllers.

• A strategy to design the feedforward compensator by means of the MOOD
procedure should be developed.

• Experimental validation on physical setups (as in Chapter 4) need to be
carried out.

• It should be worthwhile to evaluate different optimization instances for
multivariable controller tuning as multidisciplinary or reliable based state-
ments.

• While the LD visualization is a powerful tool to analyze an m-dimensional
Pareto front, it was also required to incorporate information from the
time response of the approximated (and pertinent) Pareto front. There-
fore, it seems to be a promising area for development to build visualiza-
tions approaches for the specific application of controller tuning.
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Figure 8.8: Performance of the PI controller [kp1 , Ti1 , kp2 , Ti2 , ] =

[1.533, 29.549, 5.315, 125.778] (without filter) and its comparison with the reference

case [kp1 , Ti1 , kp2 , Ti2 ] = [2.5, 50, 1.25, 50] for test 1 (JM = 1.5117) in benchmark setup

8.4.
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Figure 8.9: Performance of the PI controller [kp, Ti, kp, Ti] = [1.533, 29.549, 5.315, 125.778]

(τf = 10) and its comparison with the reference case [kp1 , Ti1 , kp2 , Ti2 ] = [2.5, 50, 1.25, 50]

for test 1 (JM = 0.8325) in benchmark setup 8.4.
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Figure 8.10: Performance of the PI controller [kp1 , Ti1 , kp2 , Ti2 , ] =

[1.533, 29.549, 5.315, 125.778] (without filter) and its comparison with the reference

case [kp1 , Ti1 , kp2 , Ti2 , ] = [2.5, 50, 1.25, 50] for test 2 (JM = 1.0169) in benchmark setup

8.4.
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Figure 8.11: Performance of the PI controller [kp1 , Ti1 , kp2 , Ti2 , ] =

[1.533, 29.549, 5.315, 125.778] (τf = 10) and its comparison with the reference case

[kp1 , Ti1 , kp2 , Ti2 , ] = [2.5, 50, 1.25, 50] for test 2 (JM = 0.7279) in benchmark setup 8.4.
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Conclusions of this thesis

This song is ending. But the story never

ends.

Ood Σ

I have devoted this thesis to addressing the controller tuning problem by
means of a Multiobjective Optimization Design (MOOD) procedure, employ-
ing Evolutionary Multiobjective Optimization (EMO). The main purpose was
to develop a holistic procedure that takes all the steps in the MOOD proce-
dure into account: the multiobjective problem (MOP) statement; the EMO
process; and the Multi-Criteria Decision Making (MCDM) step. Accordingly,
I have proposed tools and guidelines for each of these steps and validated
them through various experimental scenarios and examples. The contribu-
tions of this research were commented in the introduction, and partial conclu-
sions have been made in each chapter. Below some general conclusions are
discussed, as well as ideas for further research.

The multiobjective problem statement

Regarding the MOP, incorporating preferences has been shown to be a perfect
link for the three steps of the MOOD procedure, as it brings an alternative to
evolve the population towards the pertinent Pareto front, and consequently,
facilitates the MCDM step. It was important to develop a meaningful frame-
work for the designer in order to facilitate such preference inclusion. The GPP
approach was shown to be useful for this purpose and it was successfully
merged with MOEA.

It is true that using GPP or related approaches brings the additional task
of defining the preference sets. Nevertheless, in several instances, this supple-
mentary work can be justifiable if it brings a Pareto set approximation with
more pertinent solutions to the DM. Therefore, the DM must be willing to em-
ploy this additional effort at the beginning of the MOP statement definition.
If upper and lower bounds on objectives are known and are sufficient to im-
prove pertinency, a simple constraint coding can be used [156]. As commented
before, the preference set definition statement could discourage the use of this
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tool. It is fundamental to have an understanding of the objectives to define the
preference ranges. If the DM has no ideas regarding such values, this could be
indicative of a perfunctory or precipitate selection of design objectives. There-
fore, perhaps the DM shall ponder the design objectives stated.

The question from Chapter 2 regarding What kind of problems are worthwhile

addressing with MOOD? has been partially answered for PI-like controllers by
addressing MIMO processes. Nevertheless, developing more complex con-
trollers that cover more desirable features for EMO remains a potential appli-
cation (Table 2.6).

The evolutionary multiobjective optimization process

Regarding EMO, in this thesis the feature related to pertinency of solutions
has been exploited in order to design a mechanism (and algorithm) that closes
the gap between the search process and decision making.

This new algorithm with a preference inclusion mechanism enables an
improvement in the pertinency of the approximated Pareto front, and also
helps to deal efficiently with many-objective and constrained optimization in-
stances. Therefore, this is one of the main contributions of this thesis.

For the specific case of PID controller tuning, it has been stated that, given
a subset S ∈ R3 and a process P (s), two important features for PID C(s) pa-
rameter sampling from S should be fulfilled:

1. Any sampled controller C(s) from S must stabilize the closed loop.

2. Any stabilizing controller C(s) of the process P (s) must be contained in
S.

The sampling procedure presented in Chapter 7 deals successfully with
this issue. Nevertheless, other approaches should be evaluated for more com-
plex controllers, and in the case of the PID controller, to extend it to MIMO
processes, since the stability of the single loops does not guarantee the stabil-
ity of the overall process.

Future work should be oriented to multi-disciplinary optimization, where
a true holistic design procedure can be carried out. For this purpose, hy-
bridization techniques should be explored to guarantee the requirements for
stochastic sampling of the selected controllers and deal more efficiently with,
for example, expensive and reliability based optimization statements.

The multi-criteria decision making step

Design concept comparison for different types of controllers, or different algo-
rithms, to approximate a Pareto front, is a valuable tool for a visual inspection
of an m-dimensional Pareto front.
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Using the attainment surface to compare MOEAs seems to be a good al-
ternative. Nevertheless, due to the spreading nature of many-objective opti-
mization instances, it is necessary to ensure that algorithms are covering the
same Pareto front surface.

A new version of the LD-Tool has been developed and made available.
Since the question: is it possible to define visualization approaches for analyzing

multidimensional data and a multidimensional Pareto front that fits better for con-

troller tuning? remain unanswered, future work should be oriented towards
the development of visualizations specifically oriented to controller tuning.
As it has been noted in Chapter 8, time response information was valuable for
making a final decision on the design alternative to implement in the Boiler
benchmark setup from Section 8.4.

The multiobjective optimization design for controller tuning

procedure

The MOOD procedure has proven its usefulness for controller tuning; never-
theless, validation for other processes and physical devices needs to be carried
out. One of the objectives of this thesis is to highlight some useful guidelines
for this procedure. These are summarized below:

Mind the gap. There are several MOEAs available for practitioners. Any ef-
fort on new algorithms should be focussed on mechanisms to close the
gap between optimization and decision making instead of new evolu-
tionary techniques. A good starting point is analyzing the desirable fea-
tures of EMO that could be used for this purpose in controller tuning
(Table 2.6).

Ten times rule. Approximating a dense Pareto front is useful, however ap-
proximating a compact and pertinent Pareto front is even more useful.
Ten times the number of objectives seem to be a reasonable size for a
Pareto front approximation.

Tolerability is essential. It is fundamental to have an understanding of the
objectives to define a preference range.51 If the DM has no idea on such
values, that could be an indicative of a perfunctory or precipitate selec-
tion of the design objectives. Therefore, perhaps the DM should ponder
the design objectives stated.

Where to make a decision. In addition to design objectives and constraints,
a third category is included in this thesis: objectives that should be min-
imized and taken into account during the search process, but which are
not meant to be used for decision making.

51Or at least, the tolerable values for design objectives.
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Controller sampling. Any sampled controller must be stable; all stabilizing
controllers must be potentially sampled.

Keep it simple. The MOOD procedure is a powerful tool to analyze objec-
tive exchange and select a preferable solution. Nevertheless, it is not a
procedure that can be used for every design instance (and in this case,
for any controller tuning problem). The following two questions could
be helpful for identifying a potential design problem:

• Is it difficult to find a controller with a reasonable balance among design

objectives?

• Is it worthwhile analyzing the tradeoff among controllers (design alterna-

tives)?

If the answer is yes to both questions, then the MOOD procedure could
be an appropriate tool for the problem. Otherwise, tuning techniques
(rules) or AOF based approaches could fit better for the problem at hand.

Future directions

This investigation will now focus on developing new tools to address two dif-
fering MOPs: multidisciplinary and reliability based optimization statements.
The former statement will enable the engineering design process to be han-
dled in a fully holistic way. This is because various engineering fields will be
taken into account from the beginning of the design process. Mechatronic de-
vices will be a good starting point because mechanical design and control can
be easily merged. In the latter statement, reliability based approaches could
produce interesting results on robustness performance and it should be pos-
sible to obtain more information regarding the degradation of a performance
objective (in addition to the robustness measure). Frequency based measures,
despite their usefulness in obtaining a theoretical understanding on robust-
ness performance, could be meaningless from a practical point of view to the
DM.

Regarding the specific topic of controller tuning; firstly, stochastic sam-
pling for PID controllers will be generalized for PID/N controllers for MIMO
processes. Secondly, research will move to state space feedback controllers.
While PID controllers are the most used control structure, state space feed-
back controllers may be the second most commonly employed. This means
that developing a proper sampling procedure (similar to the procedure devel-
oped for PID controllers) is also a primary goal.

Contributions

Although the contributions of this thesis were focused on controller tuning
applications, the EMO process and the MOOD procedure are transversal re-
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search fields. This means that they could have an impact across different de-
sign domains. For instance, contributions on parametric model identification
[149], aerospace trajectory optimization [155], synthetic biology[154], multi-
disciplinary optimization [157], control education [18, 20], were addressed.
In some cases, these applications are under development and shaping future
post-doctoral research lines. These applications are listed in Chapter I.

Contributions explicitly related to and contained in this Thesis are com-
mented and listed below:

• A new visualization approach for design concept comparison in m-di-
mensional Pareto fronts.

• A new preference inclusion mechanism for evolutionary multiobjective
optimization to approximate a pertinent Pareto front; using this mech-
anism, many-objective optimizations and constrained optimization in-
stances can be solved efficiently.

• A new stochastic sampling procedure for a PID controllers in the evolu-
tionary optimization framework has been given.

• General guidelines for the MOOD procedure for controller tuning have
been made through examples.

Such results have been made available through the following publications:

• G. Reynoso-Meza, J. Sanchis, X. Blasco, M. Martínez. Evolutionary Al-
gorithms for PID controller tuning: Current Trends and Perspectives.
Revista Iberoamericana de Automática e Informática Industrial. 2013;
10: 251-268.

• G. Reynoso-Meza, X. Blasco, J. Sanchis, M. Martínez. Controller tuning
by means of evolutionary multiobjective optimization: current trends
and applications. Control Engineering Practice. July 2014, Vol. 28, Pp.
58-73.

• G. Reynoso-Meza, J. Sanchis, X. Blasco, J.M. Herrero. Multiobjective
evolutionary algorithms for multivariable PI controller design. Expert
Systems with Applications. Vol. 39, Issue 9, July 2012. Pp. 7895-7907.

• G. Reynoso-Meza, S. García-Nieto, J. Sanchis, X. Blasco. Controller tun-
ing by means of multiobjective optimization algorithms: a global tuning
framework. IEEE Transactions on Control Systems. Vol. 21, Issue 2,
March 2013. Pp. 445 - 458.

• G. Reynoso-Meza, X. Blasco, J. Sanchis and J.M. Herrero. Comparison of
design concepts in multi-criteria decision making using level diagrams.
Information Sciences, Vol. 221, Issue 1, February 2013. Pp. 124-141.
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• G. Reynoso-Meza, J. Sanchis, X. Blasco and S. García-Nieto. Physical
Programming for preference driven Evolutionary Multi-objective Opti-
mization. Applied Soft Computing. Submitted for review.

• G. Reynoso-Meza, J. Sanchis, X. Blasco and J.M. Herrero. A stabilizing
PID controller sampling procedure for stochastic optimizers. The 19th
World Congress of the International Federation of Automatic Control.
Submitted for review.

and in the following software available at:

www.mathworks.com/matlabcentral

MODE: Multi-objective Differential Evolution Algorithm with Spherical Prun-
ing c©. Software for MOEAs development at:
.../fileexchange/38962.

sp-MODE: Multi-objective Differential Evolution Algorithm with Spherical
Pruning c©. Software developed in [148] and used in Chapters 3 and 4:
.../fileexchange/39215.

LD-Tool: Level Diagrams for multiobjective decision making and Design Con-
cepts Comparison c©. Software developed in [151] and presented in Chap-
ter 5:
.../fileexchange/39458.

sp-MODE-II: Preference based Multi-objective Differential Evolution Algo-
rithm with Spherical Pruning c©. Software developed in Chapter 6:
.../fileexchange/authors/289050.

www.mathworks.com/matlabcentral
.../fileexchange/38962
.../fileexchange/39215
.../fileexchange/39458
.../fileexchange/authors/289050
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