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Thursday, October 1st, 2015 
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09:00 - 09.15 Opening Session: The relevance of Chemometrics for 
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09:15 – 09:50 Chemometrics in process industry            (Onno de Noord) 
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13:00-15:00 Lunch 

Chemometrics for Omics data 

15:00 – 15:35 Challenges in analyzing metabolomics data     (A. Smilde) 
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of Multiple Sclerosis                             (Lutgarde Buydens) 
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Chemometrics in Process Industry 
Onno E. de Noord 
Shell Global Solutions International BV, Amsterdam, The Netherlands 

Abstract 

Many aspects of chemometrics, according to a broad definition of the disci-
pline, can be encountered in process industry. Most directly related to manu-
facturing processes are applications of multivariate technologies in Process 
Analytical Chemistry (PAC) and Process Chemometrics. In Process 
Chemometrics measurements from base layer instrumentation, such as tem-
perature, pressure and flow sensors are used to extract information that can 
be used for Advanced Process Monitoring (APM), process diagnostics and 
trouble shooting. In PAC we use higher level chemical data, often coming 
from process spectrometers such as NIR. Multivariate methods are used to 
extract information on product qualities, process streams and feedstock 
characteristics. Typically the demands for industrial applications are differ-
ent from applications in (R&D) laboratories, in particular in terms of ro-
bustness.  
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Challenges in analyzing metabolomics data 
Age K. Smilde1,2,3,4

1. Biosystems Data Analysis, Faculty of Sciences, University of Amsterdam, Amsterdam,
The Netherlands.

2. Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Am-
sterdam, The Netherlands.

3. Department of Food Science, Faculty of Sciences, University of Copenhagen, Denmark.
4. COPSAC, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.

Abstract 

Metabolomics relies heavily on advanced instrumental techniques such as 
GC-MS, NMR and LC-MS. It can be used to probe metabolism in cellular 
organisms, to analyze metabolites in body-fluid samples, plant extracts and 
food to name a few examples. The purpose of these measurements is dictat-
ed by the biological question underlying the study. In analyzing metabolom-
ics data several crucial steps have to be undertaken; one of those is pro-
cessing the data in such a way that the biological question is answered. Due 
to the large amount of data and the high demands posed on the quality of the 
results of the study, data processing is a very important step. To this end 
techniques as PCA and PLS can be used but these are not sufficient: also 
dedicated tools such as ASCA, association networks and data fusion ap-
proaches are needed. Along with some challenges and pitfalls, these tools 
will be discussed and illustrated with real-life examples.    
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Chemometrics for a Better Diagnosis and Understanding of 
Multiple Sclerosis 
Lutgarde Buydens 

Radboud University Nijmegen, Institute for Molecules and Materials, The Netherlands 

Abstract 

While Multiple sclerosis is a major disabling disease of the Central nervous 
System (CNS) in young adults, little is known on the real cause of this dis-
ease; even diagnosis in an early stage is a non-solved issue.  

Cerebrospinal Fluid (CSF) is the bio fluid, which is in closest interaction 
with the Central Nervous System (CNS). It is therefore the bio fluid that 
best mirrors the biochemical status and processes in brain and CNS. Bio-
chemical changes are therefore most likely to be found by means of a com-
prehensive analysis of the CSF Other bio fluids such as plasma may also 
contain crucial information. 

Comprehensive analysis by a large variety of analytical technologies, yield 
however complex data for which chemometric data analysis and data mining 
have become crucial tools. Since no analytical platform on its own yields a 
comprehensive image of the biochemical status, data fusion has become 
widespread in the last decade. Many methods have been proposed, most of 
them restrict to a linear fusion strategy However, it is not realistic to assume 
that all biological or (bio)chemical data display  this simple linear behavior. 
In that case linear methods are bound to fail. In this lecture alternative ap-
proaches will be presented. One is based on the hierarchical fusion of mid-
level fusion models. Non-linear kernel fusion model allow to cope specifi-
cally with nonlinearities (1). We use our pseudo-sample approach (2,3) to 
reveal the contribution of the individual variables. In the lecture we will 
present results of fusion of CSF and plasma analysis data for a better diag-
nosis and search for biomarkers for Multiple Sclerosis. 
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Forensic characterization of similar and dissimilar sets of textile 
fiber extracts by three-way Excitation-Emission Matrix Fluores-
cence Spectroscopy in combination with second-order PARAFAC 
and MCR-ALS  

A. Muñoz de la Peñaa,b
, Matthew Rexb, Hector C. Goicoecheac, A. D. Campigliab,d 

aDepartment of Analytical Chemistry and IACYS, University of Extremadura, Badajoz, 06006, Spain, 
arsenio@unex.es, bDepartment of Chemistry, University of Central Florida, 4111 Libra Drive, P. O. 
Box 25000, Orlando, Florida 32816-2366, United States, mattew.rex@ucf.edu, cLaboratorio de Desar-
rollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y 
Ciencias Biológicas, Universidad Nacional de Litoral, Santa Fe S3000ZAA, Argentina, 
hgoico@fbcb.unl.edu.ar, dNational Center for Forensic Science, University of Central Florida, 12354 
Research Parkway, Suita 225, Orlando, Florida 32826, United States, andres.campiglia@ucf.edu 
. 

Abstract 
Trace textile fiber evidence is found at numerous crime scenes and plays an 
important role in linking a suspect to the respective scene.  In this communi-
cation, investigations into the fluorescence of the fiber dyes, and the fibers 
themselves, as well as methodology for discriminating between fibers using 
room temperature fluorescence (RTF) are reported.  Three-way Excitation 
Emission Matrix (EEM) data was found to give the greatest amount of spec-
tral information and provide the highest level of discrimination between non 
similar and similar fibers with the aid of second order PARAFAC and MCR-
ALS chemometric analysis.  

Keywords: Forensic science, textile fiber extracts, similar and dissimilar fi-
bers forensic comparison, PARAFAC, MCR-ALS. 

Resumen 
En numerosos escenarios de crimenes se encuentran evidencias basadas en 
trazas de fibras de tejidos, que juegan un papel importante para relacionar 
un sospechoso al correspondiente escenario. En esta comunicación se 
presentan investigaciones acerca de la fluorescencia de los colorantes de las 
fibras, y de las fibras mismas, así como una metodología para discriminar 
entre fibras utilizando fluorescencia a temperatura ambiente (RTF). Se en-
contró que las Matrices de Excitacion Emission (EEM), datos de tres vías, 
proporcionaron la mayor cantidad de informacion spectral y el mayor nivel 
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de discriminacion entre fibras similares y distintas, en combinación con los 
métodos quimiométricos de segundo orden PARAFAC y MCR-ALS.   

Palabras clave: Ciencia Forense, Extractos de fibras de tejidos, compara-
ción forense entre fibras similares y distintas, PARAFAC, MCR-ALS. 

Introduction 

Fibers are key trace evidence often found at a crime scenario. Analytical techniques that 
can either discriminate between similar fibers or match a known to a questioned fiber are 
highly valuable in forensic science. Cloths based on fibers usually contain additives such as 
dyes to impart color to a textile fiber. 

When fibers cannot be discriminated by non-destructive tests, a common approach is to 
solvent extract the questioned and the known fiber for further dye analysis. Established 
techniques for the analysis of fiber extracts include ultraviolet and visible absorption spec-
trometry, thin-layer chromatography and high-performance liquid chromatography (HPLC). 
(Blackledge 2007). Although the discriminating power of these techniques is well suited for 
those cases where the optical and/or chromatographic behaviors of dyes from a questioned 
and a known source are different, their selectivity falls short to differentiate between two 
fibers that have been dyed with highly similar dyes.This work focuses on the total fluores-
cence emission of fiber extracts. To the extent of our literature search, little efforts have 
been made to investigate the full potential of luminescence techniques for the problem at 
hand. Fluorescence microscopy for forensic fiber analysis has been reported (Chao 2007, 
Abu-Rous et al. 2007), but measurements were made with band-pass filters that take little 
advantage on spectral information. Recently, single fiber identification with nondestructive 
first-order fluorescence emisison principal component cluster analysis has been reported by 
our group (Appalaneni et al. 2014). The subject is of current interest, as is reported in a 
recent review on forensic comparison of synthetic fibers (Farah et al. 2015). 

Our approach takes RTF spectroscopy to a higher level of selectivity. In addition to the 
contribution of the textile dye to the fluorescence spectrum of the fiber extract, we investi-
gate the contribution of intrinsic fluorescence impurities – i.e. impurities imbedded into the 
fibers during the fabrication of the garments - as a reproducible source for fiber compari-
son. The accurate comparison of visually indistinguishable EEMs is best accomplished with 
the aid of chemometric analysis.The accurate comparison of EEMs requires the algorithm 
to determine the number of fluorescence components that contribute to the data set of exci-
tation and emission spectra and the emission and excitation profiles corresponding to each 
component. Among the algorithms that exist to compare almost identical EEMs, we chose 
second order parallel factor analysis (PARAFAC) and multivariate curve resolution alter-
nating least squares (MCR-ALS) (Anderson and Bro 2003, Tauler 1995).   
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Experimental 

Fibers were individually pulled from cloths using tweezers.  Each fiber was cut into a 
strand of appropriate length (4cm, 2cm or 5mm) using scissors or razor blades. Tweezers, 
scissors and razor blades were previously cleaned with methanol and visually examined 
under ultraviolet light (254 nm) to prevent the presence of fluorescence contamination. 
Each 4cm or 2cm strand was cut into pieces of approximately 5mm in length.  5mm strands 
were used as such. Fibers were solvent extracted following the procedure recommended by 
the Federal Bureau of Investigations (FBI) (Forensic Science Communication 1999). All 
pieces from one fiber were placed in a 6x50mm glass culture tube. 200 µL of extracting 
solvent were added to each tube. The tubes were sealed by melting with a propane torch. 
Sealed tubes were placed in an oven at 100° C for one hour.  Tubes were removed from the 
oven, scored and broken open.  The solvent was removed with a micro-pipette and placed 
in a plastic vial for storage. 

Excitation and fluorescence spectra were recorded using a commercial spectrofluorometer 
(FluoroMax-P from Horiba Jobin-Yvon) equipped with a continuous 100 W pulsed xenon 
lamp with broadband illumination from 200 to 2000 nm. Measurements were made by 
pouring un-degassed liquid solutions into micro-quartz cuvettes (1cm path length x 2mm 
width) that held a maximum volume of 400 µL. EEM from fiber extracts were collected at 
5 nm excitation steps and 1 nm emission steps, from longer to shorter wavelengths to re-
duce the risk of potential photo-degradation due to extensive sample excitation.  

Chemometric Analysis 

All chemometric calculations were done using MATLAB 7.0. Routines for PARAFAC and 
MCR-ALS were available in the Internet thanks to Bro (http://www.models.kvl.dk/source/) 
and Tauler (http://www.ub.edu/mcr/welcome.html), respectively. A useful MATLAB 
graphical interface was used for easy data manipulation and graphics presentation (Olivieri 
2014). This interface provided a simple means of loading the data matrices into the 
MATLAB working space before running PARAFAC and MCR-ALS. 

Results and Discussion 

Fibers and EEMs Collection for PARAFAC analysis. 

The investigated fibers were separated in three different sets. Set #1 included ten nylon 
fibers pre-dyed with Acid Red 151 and collected from different areas of the same piece of 
cloth. Set # 2 included ten nylon fibers pre-dyed with Acid Red 151 but collected from a 
different piece of cloth than the fibers in set #1. Set # 3 included ten cotton fibers pre-dyed 
with Direct Blue 1 and collected from the same piece of cloth. Each fiber from each set was 
individually extracted with ethanol and one EEM per fiber extract was recorded.   
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The spectral de-convolution of EEMs via PARAFAC provided the best fit for a five fluo-
rescence component mixture in the three cases. Figure 1 depicts the statistical grouping of 
the 30 EEM recorded from the individual extracts of the 30 fibers. The intercepts of the 
three PC values, which correspond to the maximum intensities of the first three spectral 
components of each EEM, place each EEM within a statistical (elliptical) domain. The 
statistical domain is defined using the bivariate method to achieve a confidence level of 
95%. Although PARAFAC groups EEMs from set #1 and #2 within the same statistical 
group, fiber extracts from set #1 show EEMs with similar PC values while EEM from set 
#2 show PC values scattered over the entire elliptical domain. Under this prospective, 
PARAFAC provides some sort of discrimination between fiber extracts from set #1 and #2.  

Figure 1.  Statistical Grouping of 30 EEM from the 30 Fibers in Sets #1, #2 and #3.  Set#1 is 
represented by blue circles, Set #2 by red and Set #3 by green circles. 

Fibers and EEMs Collection for MCR-ALS Analysis 

All MCR-ALS comparisons were made among EEMs recorded from ethanol extracts of 
each of visually indistinguishable pre-dyed nylon fibers. Acid Red 151 was extracted from 
two different pieces of cloths, ten fibers per cloth. Acid Yellow 17 and Acid Yellow 23 
fibers were collected from one piece of cloth. Figure 2 correlates the emission spectra of the 
five fluorescence components in each type of the Acid Yellow 17 and Acid Yellow 23 fiber 
extracts. The five correlations were made comparing the spectral intensities of the corre-
sponding components in each type of extract at each excitation and fluorescence wave-
length. From the calculated values of the correlation coefficients, it becomes readily appar-
ent that only three of the five components exhibit similar spectral profiles. Close 
comparison of the five pairs of excitation and fluorescence spectra support correlation coef-
ficients close to unity for three predicted components. Based on the prediction that two 
components only exist in one type of fiber extract, MCR-ALS is able to discriminate among 
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these two types of visually indistinguishable fibers. Similarly, MCR-ALS was able to dis-
criminate among Acid Red 151 extracts of fibers collected from two different cloths.  

Figure 2. Correlation of Five emission profiles extracted from EEM of extracts taken from 
nylon fibers dyed with Acid Yellow 17 and 23.  Five correlation coefficients are as follows top 

left-0.7564; top right-0.9696; middle left-0.9480; middle right-0.9677, bottom-0.8300 
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From powder properties to in-vitro performance of dry powder 
inhalers: a multivariate approach using Partial Least Square Re-
gression 

Andrea Eliaa,b, Marina Cocchia, Ciro Cottinia, Daniela Rioloa, Claudio Cafieroa, Ro-
berto Bosia, Emilio Luteroa 
aDepartment of chemical and Geological Sciences, Via Campi 103, 41126 Modena, Italyb, 
Chiesi Farmaceutici S.p.A., Dept. of Chemistry, Manufacturing & Control Parma, Italy. e-
mail: A.Elia@chiesi.com 

Abstract 
A multivariate apprach was used in order to study the correlations among the 
physical properties of bulk powders and the in-vitro performance of dry 
powder inhalers (DPI). PLS models were obtained for the prediction of the 
DPI performance using data from bulk powder characterization. Variable 
importance in projection (VIP) was used in order to assess the most influen-
tial rheological variables to estimate the performance. 

Keywords: Dry powder inhaler; PLS regression; VIP; rheological tests; 
DUSA; NGI; performance; correlation.. 

Introduction 

This study aims at investigating the correlations among the physical properties of bulk 
powders and the in-vitro performance of dry powder inhalers (DPI) (Atkins 2005), in order 
to generate models for predicting the DPI performance using data from bulk powder char-
acterization. Samples of bulk powder, belonging to scale-up process batches having differ-
ent formulations, process parameter and bulk size, were characterized by rheological, densi-
ty and particle size tests. In vitro performance was evaluated by a dosage unit sampling 
apparatus (DUSA) and a next generation impactor (NGI). Correlation between rheological, 
technological and performance properties were established using partial least square regres-
sion (PLS) (Brereton 1990, Wold et al. 1993). The Variable importance in projection (VIP) 
parameters were used  to rank the most influent rheological variables for modelling the 
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device performance (Favilla et al. 2013, Mehmood et al. 2012). Particle size, density and 
rate of flowability are significant for predicting the delivered dose of the API and the total 
quantity of powder related to each dose. Rehological variables, describing the degree of 
cohesiveness and the flow properties of powder, resulted correlated to the total amount of 
the active ingredient for different formulations. PLS-2 models were then tested on new 
samples. DUSA variables resulted better predicted compared to NGI variables. The predic-
tion error for external test set data was respectively 2.1% for the quantity of total powder 
and 1.9% for the quantity of active ingredient delivered at each dose. 

Figure 1. Variable Importance in Projection for Delivered Dose in PLS-2 Model 
calculated for DUSA variables. 
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Front-face fluorescence spectroscopy combined with second-order 
multivariate algorithms for the quantification of polyphenols in 
wine samples.  

M.C. Hurtado-Sáncheza, M. Cabrera Bañegilb, T. Galeano Díaza, I. Durán Merása 
aDepartment of Analytical Chemistry and IACYs, University of Extremadura, 06006 Badajoz, Spain, 
bCentro de Investigaciones Científicas y Tecnológicas de Extremadura, 06187 Badajoz, Spain 

Abstract 
The potential of front-face fluorescence spectroscopy combined with chemo-
metric methods was investigated for the quantification of the main polyphe-
nols presents in wine samples. Second-order mualtivariate algorithm was 
choiced with this aim, by employing excitation-emission matrices as analyti-
cal signal. Both PARAFAC and U-PLS/RBL algorithms were assessed and 
the last one was finally selected as optimum for the quantification of cate-
quin, epicatequin, vanillic acid, caffeic acid, gallic acid and resveratrol in 
red wine samples. U-PLS/RBL provided the best results and was selected as 
the optimum algorithm.  

Keywords: Polyphenols, Wine, Front-face fluorescence spectroscopy, Excita-
tion-emission matrix, Second-order multivariate algorithms. 

Resumen 
Se ha evaluado el potencial de la técnica de fron-face acoplada a métodos 
quimiométricos para la cuantificación de los principales polifenoles presen-
tes en muestras de vino. Para este fin se seleccionaron algoritmos de cali-
bración multivariante de segundo orden, mediante el empleo de matrices de 
excitación-emisión como señal analítica. Tanto PARAFAC como U-PLS/RBL 
fueron los algoritmos evaluados para la cuantificación de catequina, epica-
tequina, ácido vanílico, ácido cafeico,  ácido gálico y el resveratrol en mues-
tras de vino tinto. U-PLS/RBL proporcionó los mejores resultados y se fue 
seleccionado como óptimo. 

Palabras clave: Polifenoles, Vino, Fluorescencia front-face, Matrices de ex-
citación-emisión, Algoritmos de calibración multivariante de segundo orden.  
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Introduction 

Wine is a widely consumed beverage in Europe, especially in countries like Spain, Italy, 
and France. It is a complex solution containing different components with strong antimi-
crobial properties, such as a low pH (from 3 to 4), relatively high ethanol concentrations 
(10–15%) and some antimicrobial components (Gañan et al., 2009). In this sample, consid-
erable interest has been focused on the bioactive phenolic compounds, notably anthocya-
nins, flavanols, flavonols and resveratrol, since they possess many biological activities, 
such as antioxidant, cardioprotective, anticancer, anti-inflammation, antiaging and antimi-
crobial properties (Vallverdú-Queralt et al., 2015). Moreover, these compounds determine 
important sensorial characteristics, such as color, mouth-feel, astringency and bitterness. 
They are the main components responsible for the differences between red and white wines, 
especially for the color, taste, and mouth-feel sensations of red wines (Ivanova-Petropulos 
et al., 2015). The phenolic composition of the wine depends on the raw material and the 
type of vinification followed, which affects physical phenomena (diffusion from the solid 
parts, extraction of wood compounds, etc.), and chemical and biochemical phenomena 
(oxidation, degradation, condensation, etc.(Mulero et al, 2015). 

Many methods have already been developed to characterize and quantifie phenolic com-
pounds in wine by employing a wide variety of analytical techniques, being HPLC coupled 
to fluorimetric or mass detectors the technique most employed with this aim. However, 
these methods are very time consuming and are not particularly advantageous for the quan-
tification of a large number of samples. In this sense, characterization and quantification of 
compounds in wines and other kinds of samples based on analytical methods combined 
with chemometric treatment of data provides excellent robustness and efficiency. Physico-
chemical parameters, concentrations of wine components and instrumental signals can be 
used as multivariate data. Wine features, including origin, variety and winemaking practic-
es, can be evaluated from this source of information (Saurina, 2010).  

Otherwise, front-face fluorescence allows measurement of the fluorescence of powdered, 
turbid, and concentrated samples, as well as complex food matrices such as meat, fish and 
dairy products. In front-face fluorescence spectroscopy, the surface of a sample is simply 
illuminated by excitation light, and the emitted fluorescence from the same surface is 
measured, which minimises reflected light, scattered radiation and depolarisation phenome-
na. In this way, this technique allow the analysis of complex samples without pretreatment. 
Moreover, it is non-destructive, rapid, easy to use and not expensive.  

Dufour et al. (2006) employed rapid fluorescence measurements applied directly on wines 
for monitoring the variety, the typicality and the vintage of a collection of French and Ger-
man wines. This study showed that front-face fluorescence spectroscopy combined with 
chemometrics offers a promising approach for the authentication of wines. Airado-
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Rodríguez et al. (2011) also showed the potential of the autofluorescence of wine, through 
the measurements of excitation-emission matrices (EEMs) of untreated wine samples by 
front-face fluorescence, combined with the three-way method PARAFAC for the purpose 
of discrimination of wine according to the appellation of origin. 

Bearing in mind this information, front-face fluorescence spectroscopy combined with 
second-order multivariate algorithms method seems to be a very attractive methodology for 
the determination of phenolic compounds in wine. In this work, both PARAFAC and U-
PLS/RBL second-order algorithms has been assessed for the quantification of catequin, 
epicatequin, vanillic acid, caffeic acid, gallic acid and resveratrol in red wine samples fol-
lowing this methodology. 

Experimental 

To perform the chemometrics analysis, firstly, a calibration set was built with a full factori-
al design in the concentration ranges between 2.2-16.5, 1.72-9.72, 0.95-4.79, 1.92-9.6, 
11.31-64.08 and 0.20-5.81µg mL-1 for catequin, epicatequin, vanillic acid, caffeic acid, 
gallic acid and resveratrol, respectively. The corresponding volumes of the standard solu-
tions of each analyte were transferred into 10.00 mL volumetric flasks, containing 3 mL of 
tartrate buffer, pH 3.6, and 1.5 mL of ethanol and ultrapure water was added to the mark. 
For the analysis of catequin, epicatequin, vanillic acid, caffeic acid, gallic acid, excitation-
emission matrix of each solution were obtaianed in mode front-face in the ranges 240-290 
nm (each 5 nm, excitation) and 290-450 nm (each 0.5 nm, emission. Another excitation-
emission matrix of each solution were recorded in the wide spectral excitation range from 
300 to 350 nm (each 5 nm) and emission range from 330 to 400 nm (each 0.5 nm), for the 
analysis of resveratrol. The instrument was set up as follows: wavelength scanning speed, 
300 nm/min, monochromators band pass excitation/emission (nm/nm), 2.5/5 and detector 
voltage, 700 V.  

A set of 6 validation samples was prepared and processed in a similar way, having analyte 
concentrations different from the calibration ones and selected at random from the corre-
sponding calibration ranges. All calculations were done using MatLab R2008a, using the 
MVC2 routine, an integrated MatLab toolbox for second-order calibration developed by A. 
C. Olivieri et al. (2009). 

Once method was validated with standards, the analysis of wine samples was conducted. 
For that, the corresponding excitation-emission matrix of each analyzed red wine was rec-
orded without any pretreatment.  

With the objective of reaching a better knowledge of the concentration of the target ana-
lytes in analyzed wines samples, each wine was also chromatographied and the eluate was 
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fluorimetrically monitored at the λexc/λem (nm/nm) wavelengths: 270/313, 270/360, 
270/433. The chromatographic separation was carried out using a ZORBAX Eclipse XDB 
C-18 (4.6 x 50 mm, 1.8 µm) column An appropriate optimized gradient program was cho-
sen to carry out the elution of samples, with the objective of getting a good separation and a 
good profile of the fluorescent compounds in wine at each specific λexc/λem pair: as mobile 
phase methanol-formic acid-water (10:2:88, v:v) as solvent A and methanol-formic acid-
water (90:2:8, v:v) as solvent B with the following gradient program: 0 min, 100% A; 0-15 
min, 85% A;  15-25, min 70% A; 25-34 min, 30% A. 

Results and discussion 

Both PARAFAC and U-PLS/RBL algorithms have been evaluated regarding the quantita-
tion of the analytes in wine samples. A first phase in the data processing with different 
second-order algorithms is the estimation of the number of responsive components. In the 
case of PARAFAC, the core consistency diagnostic test (CORCONDIA) was employed for 
this aim, while with U-PLS the usual procedure is the well-known leave-one-sample cross-
validation procedure, according to Haaland and Thomas’ criterion. Among the excitation 
and emission ranges, an optimal region was selected for both calibration and prediction 
purposes in order to improve the results obtained and to remove Rayleigh scattering.  

In the analysis of validation samples, PARAFAC provided good results for the quantifica-
tion of vanillic acid and resveratrol, while U-PLS showed good recoveries for all the ana-
lytes. For that reason, this algorithm was selected for the analysis of the red wine samples. 
Wine samples were not submitted to any prior treatment. In this case, RBL was also re-
quired, with two unexpected components in most cases. Until now, good results just for 
vanillic acid, caffeic acid and resveratrol have been obtained. The concentration values 
obtained in the analysis of these analytes in some red wine samples by the U-PLS/RBL 
developed method and by chromatographic method are summarized in Table 1. 

Table 1. Comparison between the results obtained by U-PLS/RBL and HPLC-DAD (µg mL-1) 

Vanillic acid Caffeic acid Resveratrol 

U-PLS/ RBL HPLC-FLD U-PLS/ RBL HPLC-FLD U-PLS/ RBL HPLC-FLD 

Wine 1 1.05 0.89 7.77 8.03 0.58 0.67 

Wine 2 1.66 1.69 11.26 10.44 0.49 0.53 

Wine 3 1.74 2.06 12.87 9.3 1.74 1.91 

Wine 4 1.64 1.41 11.94 13.98 0.21 0.21 

Wine 5 1.12 1.13 9.39 9.05 0.95 0.95 

Wine 6 1.35 1.19 12.77 12.14 2.27 1.74 
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Conclusions 

Some of the principal phenolic compounds of wine such as gallic, caffeic, p-coumaric and 
vanillic acids, catechin, epicatechin, and resveratrol have been studied using front-face 
fluorescence spectroscopy in combination with chemometric techniques. U-PLS/RBL pro-
vided good results for the quantification of caffeic and vanillic acids and resveratrol in red 
wine samples. The method represents a new example of the power of coupling the partial 
least-squares algorithm with residual bilinearization for the resolution of very complex 
systems. Moreover, it can be classified as a green chemistry-precedure because allows good 
selectivity and sensitivity in avoiding the use of toxic organic solvents. In addition, the 
method is fast, and not need any previous pretreatment of the samples.  
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Test de migración de aminas aromáticas primarias desde utensi-
lios de poliamida a un simulante alimentario utilizando fluores-
cencia molecular de excitación-emisión y PARAFAC 
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Abstract 
A procedure based on PARAFAC decomposition and the standard addition 
method applied to EEM data was proposed. The unequivocal identification 
and quantification of three primary aromatic amines was possible despite the 
high overlapping signals after a strategy applied to recover the trilinearity. 
Also the  migration test cinetic has been modelled. 

Keywords: PARAFAC, Excitation-Emission Matrix, Primary aromatic 
amines, migration testing, Reglamento UE 10/2011. 

Resumen 
Se propone un procedimiento basado en una descomposición PARAFAC y 
una adición estándar aplicada a datos de EEM. Después de una estrategía 
para recuperar la trilinealidad, ha sido posible la identificación inequívoca y 
la cuantificación de tres aminas primarias aromáticas a pesar del elevado 
solapamiento de las señales. También se modela la cinética de migración. 

Palabras clave: PARAFAC, matrices de Excitación-Emisión,  Aminas aromá-
ticas primarias, test de migración, Reglamento UE 10/2011. 

Introducción 

En este trabajo se ha realizado un estudio de migración de aminas primarias aromáticas 
(PAAs) desde  utensilios de cocina de poliamida (nylon) a simulante alimentario (solución 
acuosa al 3% de ácido acético [Reglamento UE 10/2011]). Las aminas analizadas han sido 
la anilina (A), 2,4-diaminotolueno (2,4-TDA) y 4,4’-diaminodifenilmetano (4,4’-DMA) 
[EUR 24815 EN 2011]. Estas dos últimas están englobadas en el  grupo 2B (posibles carci-
nógenos). Los utensilios de nylon, como cazos, espumaderas y cucharas, que de forma 



Test de migración de aminas aromáticas primarias desde utensilios de poliamida a un simulante 
alimentario utilizando fluorescencia molecular de excitación-emisión y PARAFAC 

30 VI Chemometrics Workshop for Young Researchers (2015). 

habitual se utilizan para cocinar y freír contienen PAAs que pueden migrar desde estos 
artículos a los alimentos. La UE ha establecido un límite legal sobre el nivel permitido en la 
migración de 10 µg kg-1. 

La espectroscopía de fluorescencia molecular presenta un elevado potencial debido a su alta 
sensibilidad y facilidad de uso. Sin embargo, las señales  registradas procedentes de los 
analitos de interés pueden estar solapadas e incluso amortiguadas por la presencia de otras 
moléculas o iones. Las matrices de excitación emisión (EEM) son especialmente adecuadas 
para ser analizadas con técnicas de tres-vías, con el fin de obtener la separación de las seña-
les de los fluoróforos incluso en presencia de efecto amortiguador (Rubio L, et al, 2013). 
Además, cuando se utilizan métodos como PARAFAC con datos trilineales la descomposi-
ción factorial es única, de modo que los factores obtenidos matemáticamente se correspon-
den con los fluoróforos presentes en la muestra. La ventaja de “segundo orden” permite la 
identificación inequívoca y la cuantificación en presencia de analitos no calibrados.  

En este trabajo se muestra un procedimiento para recuperar la trilinealidad y utilizar la 
propiedad de segundo orden para determinar la cantidad de aminas e identificarlas usando 
PARAFAC y una adición estándar.  En este caso los fluoroforos de la matriz, que permane-
cen constantes al realizar la adición estándar, provocan un grave fallo de trilinealidad. El 
procedimiento quimiométrico utilizado para recuperar la trinealidad consiste en restar los 
factores relacionados con los fluoróforos de la matriz del tensor de datos original. De este 
modo se pueden identificar sin ambigüedad y cuantificar las aminas en las muestras de los 
test de migración. Este procedimiento ya ha sido utilizado en Rubio et al (2013) en la de-
terminación de pesticidas en matrices complejas. 

1.Experimental

Los espectros de excitación-emisión fluorescente de cada muestra se registraron a tempera-
tura ambiente en un espectrofluorímetro PerkinElmer LS 50B  rango  295-394 nm, cada 1 
nm para la emisión y 220-275 nm ,cada 5 nm en excitación; velocidad de 1500 nm min-1. 

Los patrones de calibrado utilizados en la adición estándar  son muestras que contienen las 
tres PAAs en concentraciones que se reflejan en la Tabla 1, todos ellos se prepararon en 
metanol y fueron añadidos a un extracto obtenido con el test de  migración al que había sido 
sometida  la cuchara (2 horas en contacto con  ácido acético 3% v/v  a 100 ºC). Este simu-
lante es el indicado en la normativa para alimentos ácidos. Este procedimiento simula la 
matriz de la muestra en la que luego se van a medir las aminas. El tensor de tamaño 
21×100×12, en el que 21 son el número de muestras, 100 las intensidades de emisión y 12 
las de excitación se le denominará en lo que sigue T1. Tensor que se utiliza entre otras 
finalidades para detectar los factores que están en la matriz.  Por otro lado,  las muestras 
para la cinética de migración se preparan sumergiendo otra cuchara (del mismo lote) en el 
simulante  a 100 ºC y tomando una muestra cada 15 minutos, renovando el simulante en 
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cada muestreo. Estos 6 extractos se evaporan a sequedad y se reconstituyen en metanol. 
Todas estas muestras constituyen el tensor 2 (T2) de tamaño 6×100×12  que ha se ha utili-
zado para realizar la curva de la cinética de migración. La Fig. 1A, muestra las curvas de 
nivel de una muestra de extracto de la cuchara después de la migración. Las Figs. 1B-1D 
son las curvas de nivel del mismo extracto al que se han adicionado las tres mezclas marca-
das con asterisco en la Tabla 1. Se observa un elevado grado de solapamiento.  

Tabla 1. Diseño de los patrones de calibrado de mezclas de las tres aminas. 

Núm. Canilina
(ppb) 

CDMA
(ppb) 

CTDA
(ppb) 

Núm.  Canilina
(ppb) 

CDMA
(ppb) 

CTDA
(ppb) 

1 2.5 5 25 9 10 2.5 100 
2 20 10 25 10 20 5 100 
3 10 20 25 11 2.5 10 100 
4 5 2.5 25 12 5 20 100 

5(*) 20 2.5 50 13(*) 2.5 2.5 200 
6 5 5 50 14 10 5 200 
7 10 10 50 15 5 10 200 

8(*) 2.5 20 50 16 20 20 200 

El software utilizado ha sido: PLS_Toolbox 6.0.1 para la versión de Matlab 7.12.0.635 para 
la realización de los modelos PARAFAC y STATGRAPHICS Centurion XVII. 

2.Resultados y conclusiones

El modelo PARAFAC construido incialmente con el tensor T1 no es trilineal, tiene un 
índice CORCONDIA del 13%. La Fig, 2 muestra los loadings en los tres perfiles y puede 
observarse en la Fig 2A. un  perfil constante correspondiente al fluoróforo contenido en la 
matriz. Se recupera la trilinealidad restando este factor del tensor origial. La descomposi-
ción PARAFAC resultante es trilineal, necesita 3 factores, y tiene un índice CORCONDIA 
igual a 98%. Siendo idénticos los otros dos perfiles (excitación y emisión) a los obtenidos 
en la descomposición anterior. La identificación de las tres aminas se hace calculando el 
coeficiente de correlación entre los perfiles espectrales obtenidos de PARAFAC y los es-
pectros originales de cada una de las muestras puras. En la cuchara sólo se detecta DMA.  

La ecuación ( ) ( )15131 4 b t
DMAC a . a e− −= + −  ajustada para la cinética del DMA,  muestra un 

decaimiento exponencial (Fig. 3). El modelo explica el 97.7% de la concentración de DMA. 

En conclusión, se propone un procedimiento rápido y sencillo que permite, con señales 
procedentes de fluorescencia de excitación-emisión junto con una descomposición PARA-
FAC, cuantificar e identificar inequívocamente tres aminas aromáticas primarias. Además 
se ha realizado un test de migración y se ha obtenido la ecuación de su cinética para el 
DMA, única amina encontrada en la cuchara de poliamida analizada. 
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Figura 1. A) muestra de cuchara λexc=230, λem=353 (máximo intensidad =60.2; B) muestra de cuchara con 
la mezcla 5*; λexc=235, λem=342 (máximo=252.7); C) muestra de cuchara  con mezcla 8*; λexc=240, 
λem=348 (máximo=244.1); D) muestra de cuchara con la mezcla 13*; λexc=235, λem=349 (máximo=174.3). 

Figura 2. Loading del modelo PARAFAC (T1) A) perfil muestral: muestras 3-18 (Tabla 1), muestras 1 y 
21 blancos, muestras 2 y 19-20 muestras test de  migración. 
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Figura 2 cont.. Loading del modelo PARAFAC (T1) B) Perfil de emisión, C) Perfil de excitación. 

Figura 3.. Datos experimentales de la cinetica de migración del DMA y modelo ajustada. 

Agradecimientos: Los autores agradecen la financiación del Ministerio de Economía y 
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Abstract 
In this communication several studies made in paprika samples are presented. 
One of them was a PARAFAC analysis to cluster paprika samples according 
their origin. Two groups were obtained, one of them with the samples be-
longing to the PDO “Pimentón de La Vera” and another group with those 
samples not belonging to this PDO. Another study performed was the quanti-
fication of quercetin and kaempferol by using fluorescence coupled to second 
order algorithms (U-PLS/RBL and N-PLS/RBL). Good results were obtained 
with synthetic samples and in the case of real samples these were better for 
quercetin, which is present in higher concentration in paprika samples .  

Keywords: flavonoids, paprika, fluorescence, parallel factor analysis, un-
folded-partial least-squares with residual bilinearization, multidimensional-
partial least-squares with residual bilinearization 

Resumen 
En esta comunicación se presentan varios estudios realizados en muestras de 
pimentón. Uno de ellos consistió en un análisis por PARAFAC para agrupar 
las muestras de acuerdo a su origen. Se obtuvo un agrupamiento de las mues-
tras según perteneciesen o no a la DOP “Pimentón de La Vera”. Otro estudio 
realizado en pimentón fue la cuantificación de quercetina y kaempferol lleva-
da a cabo mediante fluorescencia y algoritmos de segundo orden (U-
PLS/RBL y N-PLS/RBL), obteniéndose mejores resultados para la querceti-
na, ya que se encontraba en mayor concentración en estas muestras.  

.Palabras clave: flavonoides, pimentón, fluorescencia, análisis paralelo de 
factores, mínimos cuadrados parciales desdoblados con bilinearización resi-
dual, mínimos cuadrados parciales multidimensionales con bilinezarización 
residual. 
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Introduction 

In Spain, La Vera (Extremadura) is one of the main geographical areas where paprika is 
cultivated and produced. This product is a red powder obtained by grinding the dried pep-
per pods of some varieties of Capsicum annum L. This natural food product is commonly 
used as spice and colorant in cookery and to provide redness to meat products and commer-
cial sacues (Palacios-Morillo et al., 2014). La Vera paprika is recognized under Protected 
Designation of Origin (PDO) by the European Union and it is obtained from peppers which 
are dried by means of a characteristic drying system, peppers are smoked-dried (oak or 
holm oak wood fire), and the rest of peppers produced in other Spanish areas or in other 
countries are sun dried or hot air dried (Bartolomé et al., 2011). It is a slow process, lasting 
ten to fifteen days and it confers on the paprika its three fundamental characteristics: aroma, 
flavor, and color, providing the necessary heat for the perfect dehydration of the fruits. For 
this reason, in order to avoid fraudulent mixtures, it is important to have tools to differenti-
ate products according to their belonging or not to the PDO.   

This product is particularly rich in organic microcomponents with antioxidants properties 
(carotenes, tocopherols, capsaicinoids, flavonoid glycosides (flavonoids bound to various 
sugars)…), whose content in paprika depend on the variety of the peppers used to obtain 
the powder or the system employed. These compounds present absorbent and fluorescence 
properties which could be used to determinate them.  

Recently, spectroscopic and separative techniques together with multivariate and multiway 
chemometric tools have been commonly used for reducing the time of analysis and provid-
ing more information (Borràs et al., 2015). In this sense, analytical techniques combined 
with chemometrics for authentication and determination of contaminants in condiments 
have been used (Reinholds et al., 2015) and in order to discriminate foods according to 
some characteristic properties (Airado-Rodríguez et al., 2009; Palacios-Morillo et al., 2014; 
Di Bella et al., 2015). Between the most used chemometric techniques Prncipal Component 
Analysis (PCA) and Parallel Factor Analysis (PARAFAC) for first and second order data, 
respectively, are found. In addition, second-order algorithms present an advantage, which is 
the improved ability to get accurate concentration estimates of analytes of interest, even in 
the presence of uncalibrated interfering components (Escandar et al., 2014, Muñoz de la 
Peña et al., 2015).  However, in the case of a complex matrix, such as the paprika, few 
studies are found using spectroscopic techniques coupled to chemometric tools to classifi-
cate samples according their characterictic properties or quantify some of their main minor 
components.   

In this work, two parts with different aims were developed. One of these parts was explor-
ing the possibilities of the fluorescence properties of some of the main minor components 
present in paprika, trying to differentiate paprika samples according to they belong or not to 
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the Protected Design of Origin (PDO) “Pimentón de La Vera”. Another part of this work 
was intended to quantify a mixture of flavonoids in paprika samples using spectrofluorime-
try coupled to second order algorithms (PARAFAC, U-PLS/RBL and N-PLS/RBL).  

Experimental procedures and results 

a) Classification of paprika samples according their origin by using fluorescence
coupled to PARAFAC. 

The fluorescence components were extracted from 0.1 g of paprika samples with 20 mL of 
ethanol in an ultrasound bath for 10 min. The EEM matrices were registered. Excitation 
wavelengths were  increased from 200 to 295 nm at 5 nm steps; for each excitation wave-
length, the emission spectrum was obtained in the range 300 – 400 nm at 1 nm steps. 

With the aim of evaluating capabilities of EEMs to distinguish between samples of different 
origin, a PARAFAC model was contructed using the EEMs of a set of 48 samples of  “Pi-
mentón de La Vera” paprika samples and 19 of paprika samples fron other producers. A 
pretreatment of data set to remove the Rayleigh signals in all the EEMs used for PARA-
FAC analysis was performed (Bahram et al., 2006).   

Great differences in fluorescence signal were observed between the extracts of “La Vera” 
paprika samples and the extracts of the other types of paprika. The appropriate number of 
components for constructing the PARAFAC model was chosen and the 3D structures of the 
three PARAFAC components were obtained. The loading corresponding to the first com-
ponent did not match with the standard compunds mentioned in the introduction (carotenes, 
tocopherols, flavonoids or capsaicinoids) and the loading corresponding to the second com-
ponent was very similar to the EEM of the α-tocopherol. 

The score values corresponding to each PARAFAC component were plotted against each 
other in order to visualize possible systematic information contained in fluorescence data, 
with respect to the variable origin of the sample. It can be observed two clusters of the 
paprika samples according to their origin. 

The results showed that this methodology could be improved and used as a rapid tool to 
ensure the authenticity of “La Vera” paprika samples.  

b) Quantification of flavonoid compounds in paprika samples by using U-PLS/RBL,
N-PLS/RBL and PARAFAC. 

Firstly, flavonoids were extracted from paprika samples using a previously optimized ex-
traction procedure (0.5 g of sample and 20 mL of MeOH as extractant solvent for 30 min in 
the ultrasound bath). The analytes were retained in a C18 cartridge and eluted with 2.5 mL 
MeOH/H2O (85/25 v/v), after a previous cleaning step, in order to concentrate samples. 
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Secondly, an acid hydrolysis was performed and excitation-emission fluorescence matrices 
(EEMs) were obtained (excitation wavelengths from 400 to 470 nm at 5 - nm steps and 
emission wavelengths from 480 - 600 nm at 2 nm) using an optimized procedure based on 
the use of a basic medium to maximize the fluorescence signals of the analytes.  

In this wavelengths region, where flavonoids exhibited fluorescence, a PARAFAC analysis 
was performed similarly the previous case. However, in this case the samples were not 
differentiated as well as in the previously described. After that, a calibration set was con-
structed from the EEMs of standard samples and U-PLS/RBL, N-PLS/RBL and PARAFAC 
second-order calibration models were optimized and utilized for the quantification of the 
main fluorescente flavonoids of paprika, quercetin and kaempferol, in a group of samples 
belonging to the PDO “Pimentón de La Vera”, and another group of other different sam-
ples. PARAFAC did not allow to differentiate both analytes, however, U-PLS/RBL and N-
PLS/RBL allowed differentiate and quantify them separately. The results were compared 
with those obtained by a previously developed HPLC method and they were better in the 
case of quercetin because of the higher concentrations of this flavonoid in the analyzed 
paprika samples. 

Conclusions 

In the first part of this work fluorescence obtained in the UV region coupled to PARAFAC 
was utilized for the differentiation of paprika samples according to whether they belonged 
to the PDO “Pimentón de La Vera” or not. A clustering of PDO samples was appreciated.  

In the second part flavonoid compounds (quercetin and kaempferol) were quantify by using 
U-PLS/RBL and N-PLS/RBL. The results were correlated with whose obtained by liquid 
chromatography. Better results were obtained in the case of quercetin.  
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Abstract 
Three instrumental techniques, headspace-mass spectrometry (HS-MS), mid-
infrared spectroscopy (MIR) and UV-visible spectrophotometry (UV-vis) 
have been combined to quantify virgin olive oil sensory descriptors. The ref-
erence sensory values were provided by an official taste panel. Different data 
fusion strategies were studied to improve the predictions. Best PLS regres-
sion models were obtained for musty and fruity attributes. For all the attrib-
utes data fusion strategies shown an improvement of the predictions com-
pared to individual techniques.  

Keywords:.Olive oil, sensory attributes, data fusion, PLS regression 

Introduction 

Virgin olive oil is a highly appreciated vegetable oil with unique nutritional and organolep-
tic properties. Its sensory and chemical quality characteristics depend on olive variety, 
environmental factors, agronomic techniques and cultivation, production and storage condi-
tions. The European Community (EC), the Codex Alimentarius and the International Olive 
Oil Council (IOOC) have accorded maximum values of specific parameters to guarantee 
olive oil quality. 

To determine olive oil quality categories (extra-virgin, virgin or lampante) different physi-
co-chemical and sensory parameters are evaluated. The only homologated method to assess 
olive oil sensory attributes is the evaluation by an official taste panel. However, subjectivi-
ty, human variability, lack of standards and low throughput per day are some inherent prob-
lems associated to this methodology. 

Sensory attributes of olive oil are classified into ‘positive’ and ‘negative’. Positive attrib-
utes are mainly fruity, bitterness and pungency notes, as well as green grass, sweetness and 
astringency. The negative ones describe the defects of olive oil, and include fusty (along 
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with muddy sediment), musty-humidity, winey-vinegary, rancid and metallic. These senso-
ry descriptors depend on the content of volatile and non-volatile minor components.  

Alternative solutions to taste panels have been proposed, most of them using instrumental 
techniques, which offer advantages in terms of fastness, automation and precision. Volatile 
compounds can be analized by electronic noses (gas sensors or mass spectrometers) using 
different pre-concentration methods. Non-volatile compounds can be analyzed by electron-
ic tongues (liquid sensors or vibrational spectroscopic techniques such as mid-infrared). 
Color, although not considered in the evaluation by the taste panel, may influence the quali-
ty of the olive oil and color measurements, i.e. by UV-vis spectrophotometry, can provide 
helpful information. 

As olive oil sensory attributes are perceived as a mixture of gustative and olfactive sensa-
tions, the combination of data from different instrumental sources can provide complemen-
tary information and simplify the sensorial evaluation. Different data fusion approaches of 
the ‘spectral fingerprints’ obtained by different instrumental techniques can be applied to 
correlate to human sensory responses using multivariate pattern recognition techniques. In 
this study the main olive oil sensory attributes were quantified combining an electronic 
nose based on headspace mass spectrometry (HS-MS), an electronic tongue based on MIR 
spectroscopy and an electronic eye based on UV-vis spectrophotometry. Partial least-
squares (PLS) was used to correlate sensory data provided by a human taste panel follow-
ing the official method of the Olive Oil Council (COI/T20/Doc15). 

Experimental part 

Sensory analysis. Ten sensory attributes, six positive (fruity, bitter, pungent, green grass, 
sweet and astringent) and four defects (fusty, musty, winey and rancid) were evaluated by 
the panel for 343 olive oil samples from Catalonia during four harvests (2010-2014). De-
scriptors were scored in a scale between 0 and 10. 

Instrumental analysis. The 343 samples were analyzed with three instrumental techniques: 
an MS based e-nose and MIR based e-tongue and UV-vis based e-eye. The e-nose consisted 
on collecting the sample headspace with a solid phase micro-extraction (SPME) fiber and 
transferring it to an HP5973N MS detector (avoiding chromatographic separation). The m/z 
range was 50-350 amu. The e-tongue was a FT-MIR Nexus (Thermo Nicolet) spectrometer 
using a ZnSe crystal ARK multi-bounce over the range 4000–600 cm-1 and at 4 cm-1 resolu-
tion. The e-eye was a UV-Visible Heλios Gamma spectrophotometer (Thermo) acquiring 
within 300 – 1000 nm at 2 nm resolution. 

Multivariate analysis. To remove the seasonal variation between samples, a preliminary 
orthogonalization of the HS-MS and MIR data was applied 
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To find the optimal prediction model for each attribute, different spectral regions were 
considered along with different pre-processing options. PLS regression models were built 
and leave-one-out cross-validated. The lowest root mean square error (RMSECV) was the 
criterion used to select the optimal number of factors. The final models’ performance was 
confirmed by a test set validation. The average of ten different models was calculated using 
a random split into a training and test set, with 65% and 35% of the samples, respectively, 
in order to avoid test results depending on the particular split. 

PLS regression models were built for the individual data blocks (MS, MIR and UV-vis), for 
two-block fused data (MS + MIR) and for three-block fused data (MS + MIR + UV-vis), 
using low- and mid-level data fusion strategies. In low-level fusion raw data from individu-
al techniques were simply concatenated before model calculation and in mid-level fusion 
relevant features (independent scores from each individual PLS model) were extracted from 
the different data blocks and were concatenated into a single matrix. 

Results and discussion 

The best prediction models for each attribute, considering one-, two- and three-blocks, are 
summarized in Table 1, together with the detailed PLS results for a specific range of senso-
ry intensities and a final relative root mean square error of prediction (rRMSEP). Best mod-
els were obtained for musty and fruity attributes, with R2 higher than 0.6 and relative errors 
around 11%. Among the three instrumental techniques, in general, the best results were 
obtained with mass spectrometry, except for bitterness and fustiness. Good results with MS 
prove that volatile compounds may potentially contribute to aroma perception. In the case 
of bitterness the best one-block results were obtained by MIR, confirming the studies that 
have shown the relationship between this attribute and the polyphenol (non-volatile) con-
tent. However, for all the attributes, the best prediction results were obtained when applying 
data fusion, although in some cases the three-block data fusion only showed a slight im-
provement. Low-level data fusion was the best option to predict bitterness, pungency and 
astringency with only MS and MIR. Mid-level data fusion enhanced the prediction of the 
rest of the attributes, using two-blocks (MS + MIR) for mustiness and three-blocks (MS + 
MIR + UV-vis) for fruity, green grass, sweet, fusty, winey and rancid attributes. 



Prediction of olive oil sensory descriptors using instrumental data fusion and partial least squares (PLS) regres-
sion 

44 VI Chemometrics Workshop for Young Researchers (2015). 

Table 1. Test-validation PLS regression results (*) for all the attributes studied. Highlighted tech-
niques are the best strategies selected for each attribute. 

Attributes) ))Data)
Fusion) Technique) Range)

R2p) RMSEP)) rRMSEP)
(%))mean% SD% mean% SD%

Positive)attributes) )
Fruity)) One)block% MS% 0%–%7% 0.55% 0.05% 0.89% 0.07% 13.1%

% Two)blocksa% Low)level% % 0.63% 0.04% 0.79% 0.04% 11.6%

%
Three)
blocksb% Mid)level% % 0.62% 0.09% 0.77% 0.04% 11.3%

Bitter)) One)block% MIR% 1%–%7%% 0.50% 0.05% 0.67% 0.04% 11.2%

% Two)blocksa% Low)level% % 0.56% 0.06% 0.62% 0.04% 10.3%

%
Three)
blocksb% Low)level% % 0.54% 0.06% 0.64% 0.03% 10.7%

Pungent)) One)block% MS% 2%–%6.5% 0.26% 0.08% 0.63% 0.05% 16.2%

% Two)blocksa% Low)level% % 0.47% 0.07% 0.53% 0.04% 13.6%

%% Three)
blocksb% Low)level% % 0.45% 0.06% 0.53% 0.03% 13.6%

Green)
grass) One)block% MS% 0%–%5%% 0.47% 0.06% 0.83% 0.04% 17.3%

% Two)blocksa% Mid)level% % 0.54% 0.07% 0.77% 0.06% 16.0%

%% Three)
blocksb% Mid)level% % 0.58% 0.06% 0.75% 0.05% 15.6%

Sweet)) One)block% MS% 3.5%–%
5.5%% 0.36% 0.06% 0.32% 0.02% 16.0%

% Two)blocksa% Low)level% % 0.41% 0.05% 0.31% 0.01% 15.5%

%% Three)
blocksb% Mid)level% % 0.44% 0.07% 0.30% 0.00% 15.0%

Astringent))One)block% MS% 0%–%4%% 0.40% 0.07% 0.78% 0.04% 19.0%

% Two)blocksa% Low)level% % 0.56% 0.05% 0.66% 0.03% 16.1%

%% Three)
blocksb% Low)level% % 0.53% 0.03% 0.68% 0.03% 16.6%

Negative)attributes) )
Fusty)) One)block% UV)vis% 0%–%6.5%%0.54% 0.09% 0.95% 0.11% 15.1%

% Two)blocksa% Mid)level% % 0.54% 0.10% 0.92% 0.10% 14.6%

%
Three)
blocksb% Mid)level% % 0.64% 0.05% 0.84% 0.09% 13.3%

Musty)) One)block% MS% 0%–%7%% 0.64% 0.06% 0.93% 0.09% 13.5%

% Two)blocksa% Mid)level% % 0.71% 0.03% 0.82% 0.08% 11.9%

%% Three)
blocksb% Mid)level% % 0.71% 0.06% 0.82% 0.07% 11.9%

Winey)) One)block% MS% 0%–%4%% 0.58% 0.06% 0.70% 0.05% 17.9%

% Two)blocksa% Mid)level% % 0.59% 0.05% 0.69% 0.04% 17.7%

%% Three)
blocksb% Mid)level% % 0.63% 0.06% 0.67% 0.05% 17.2%

Rancid)) One)block% MS% 0%–%7%% 0.36% 0.07% 0.82% 0.08% 12.2%

% Two)blocksa% Mid)level% % 0.46% 0.09% 0.79% 0.11% 11.8%

%% Three)
blocksb% Mid)level% % 0.51% 0.07% 0.74% 0.09% 11.0%

(*)%Results%presented%as%mean%and%SD%(standard%deviation)%of%the%10%models%
R2p:%coefficient%of%determination%of%prediction;%RMSEP:%root%mean%square%error%of%prediction%
(test)set);%rRMSEP:%relative%RMSEP%
MS:%headspace)mass%spectrometer;%MIR:%mid)infrared%spectroscopy;%UV)vis:%ultraviolet)visible%
spectrophotometer%
Two)blocksa:%MS%+%MIR;%Three)blocksb:%MS%+%MIR%+%UV)vis%
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Visible-Near InfraRed Spectroscopy (Vis-NIRS) application for 
differentiation of fresh and frozen/thawed tuna fillets 
Martínez E. a*, Saitua E. a, Rodríguez R. a, Olabarrieta I. a, Pérez I. a y Reis M.M. b 
aAZTI-Tecnalia, Parque Tecnológico de Bizkaia, Astondo Bidea – Edif. 609, E-48160, Derio-Bizkaia. 
(* emartinez@azti.es, bFood Assurance and Meat Science Team, AgResearch, Ruakura Re-
search Centre, 10 Bisley Road, Hamilton, New Zealand. 

Abstract 
The fillet of fresh tuna is an expensive product sold on local and international 
market. When fished at locations distant to market whole fresh tuna is frozen at 
temperature bellow -60 ºC to extent its shelf-life and it is sold as a frozen or 
frozen/thawed product. However, sometimes a fraudulent practice is found in the 
market when fillets or loins from thawed tuna are sold as fresh at a higher price. 
When freezing and thawing operations are carried out at proper conditions it is 
difficult to differentiate between fresh and frozen/thawed fillets. In this work, we 
investigate the ability of Visible-Near InfraRed Spectroscopy (Vis-NIRS) to detect 
whether a sample of tuna is fresh or whether it has been frozen/thawed.  Fresh fillets 
obtained locally were subdivided in samples, which were scanned by Vis-NIRS and 
subsequently frozen. After four days the samples were thawed at 4°C for 24 hours 
and re-scanned by Vis-NIRS, i.e. each sample was scanned before and after 
freezing/thawing. Vis-NIR spectra (415 nm to 925 nm) were collected in two 
surfaces of the samples (original and bloomed surface). Two multivariate methods 
were compared to evaluate the Vis-NIRS as tool for differentiation between fresh 
and frozen/thawed samples, i.e.: Partial Least Square Discriminant Analysis (PLS-
DA); and Multi-Level Partial Least Square Discriminant Analysis (MLPLS-DA). 
Repeated double cross-validation was applied to compare the performance of the 
two approaches. MLPLS-DA showed higher success rate (96%, sensitivity=96%, 
specificity = 96%) compared to PLS-DA (81%, sensitivity=91%, specificity = 
71%).  Regression coefficients resulting from MLPLS-DA showed two spectral 
ranges of importance, one in the visible range and the other one in the near infrared 
spectral range. Overall results suggested that Vis-NIRS was able to detect the 
difference between fresh and frozen/thawed tuna samples. 
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Keywords: MLPLS-DA, PLS-DA, Vis-NIRS, NIR, fresh tuna, frozen tuna, 
thawed tuna. 

Introduction 

This work investigates the ability of Visible-Near InfraRed Spectroscopy (Vis-NIRS) to 
detect the effect of freezing/thawing applied to fillets of tuna (Thunnus thuynnus), contrib-
uting to the development of a non-invasive method for detection of the freshness of tuna 
fillets. As first step, in this investigation we compared Vis-NIR spectra collected from tuna 
samples before and after being frozen/thawed. The samples were obtained by cutting off 15 
fillets (790g ±215g) from different tuna fish, in pieces (67g±30g). Thus, the obtained sam-
ples or pieces varied in size and fat content.. By using this procedure we expected to pro-
duce a variation on the effect of freezing across samples, which would allow investigating 
Vis-NIRS in a more challenging situation. However, this could also mean that the effect of 
freezing could be affected by sample to sample variation (e.g. sample size). To deal with 
this type of problem it has been proposed the use of Multi-Level Partial Least Square-
Discriminant Analysis (MLPLS-DA), which allows separating the effect of treatment from 
variation among samples. Thus we applied MLPLS-DA and Partial Least Square-
Discriminant Analysis (PLS-DA) to evaluate ability of Vis-NIRS to detect whether a sam-
ple of tuna is fresh or frozen/thawed. 

Vis-NIR data were collected in two sub-sets. In the first one (sub-set 1, n=12 fillets) each 
fillet was taken from 4 °C to a room at 16 °C, and cut into 9 pieces, which were covered 
with plastic film (the fresh cut surface called ‘T’ was left upwards), and left for one hour in 
the room until they were scanned at 12.6±1.8 ºC. For three additional fillets (sub-set 2, n=3 
fillets), similar procedure was used with a slight modification: after the fillet was cut into 9 
pieces, they were left at room temperature (16 °C) covered with plastic film for one hour 
and then, a 5 mm slice of the transversal area was cut off for each of the nine pieces, which 
were left for another hour covered with plastic film at 16 ºC, and they were scanned at 
17.4±0.5ºC. The modification on the procedure for sub-set 2 was applied to generate a set 
of samples with a higher temperature for the fresh samples on Vis-NIRS scanning. Vis-NIR 
spectra were collected on the original external surface (called ‘S’) and on the transversal 
surface (‘T’), generated by cutting, for each of the nine pieces. After collecting the spectra, 
the samples were wrapped and frozen at -80 °C. After four days three samples of each fillet 
were transferred to 4 °C and left to thaw for twenty four hours. Then, the samples were 
transferred to a room at 16 °C and left to equilibrate for one hour, where they were 
unwrapped and weighted, and a slice of five millimetres was cut off from the same traversal 
section which was scanned by Vis-NIRS when fresh. The samples were then left for 1 hour 
with this fresh surface upwards and covered with plastic film. Afterwards, Vis-NIR spectra 
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were collected on surfaces ‘S’ (original external surface of the samples) and ‘T’ 
(fresh/bloomed surface) at 17.5±1.4 and 17.8±1.0 ºC for subset 1 and subset 2 respectively.  

The NIR equipment used to collect the data is composed by a spectrometer (AvaSpec 2048, 
Avantes, Netherlands), a light source (AvaLight-HAL,Avantes, Netherlands) and a fibre 
optic probe (FCR-7UVIR400-2-2.5x100,Avantes, Netherland), which is composed of 7 
optical fibres of 200µm core (6 illumination-fibres and one read fibre). The reflectance 
spectra acquired is integrated in AvaSoft 8 software (Avantes, Netherlands). 

Double cross validation (DCV) was applied to select the parameters of the classification 
models (Filzmoser et al. 2009, Westerhuis et al. 2010, E. Szymaníska et al. 2012). In double 
cross validation procedure the data set is first split in ‘ndcv’ sets (ndcv=3): one is used as 
test data set and the others are combined and used as calibration data set. The calibration 
data is used to fit a model. To fit this model it is necessary to identify the number of latent 
variables, which is done using cross validation procedure. In this case, the calibration data 
set is subdivided in ‘ncv’ sub-sets (ncv=4). The number of latent variables is increased 
from 1 to a maximum number ‘nlvmax’ (nlvmax=15). For each number of latent variables 
(1 to nlvmax) ncv models are fitted, by leaving each of ncv sub-sets out of the model 
fitting, and using the model fitted without that set to predict the data from the sub-set left 
out. Each sub-set is left out once, and at the end the predictions of the sub-sets which were 
left out are combined and the performance of the model is evaluated using the number of 
misclassified samples. The number of latent variables corresponding to the best 
performance (the minimum number of misclassified samples) is chosen. Then, a model is 
fitted with all samples from the calibration data set using the chosen number of latent 
variables and it is applied to the data from the samples of the test data set. This process is 
performed until all the ndcv sets have been used as test data set once.  Double cross 
validation is repeated twenty times and the average of the twenty predictions for each 
sample is presented. In this study the procedure was repeated three times, for each time 
only one sample per fillet was used. This procedure was applied for MLPLS-DA and PLS-
DA in similar subsets.  

MLPLS-DA and PLS-DA were carried out using toolbox from Biosystems Data Analysis 
Group from the University of Amsterdam (MLPLSDA) using Matlab R2013a (Version 
8.1.0.604, The MathWorks, Inc.). Data visualization was carried out in R v 3.2.0 (R Core 
Team, 2015) with package ‘lattice’. 

The results of prediction for MLPLS-DA and PLS-DA are presented in Figure 1. In this 
case, predictions for fresh (‘Frsh’) samples are expected to be lower than zero and samples 
that had been frozen/thawed (‘Frzn/Thwd’) higher than zero. Figure 1 shows that both 
models are able to detect the difference between fresh and frozen/thawed samples. 
However, PLS-DA seems to be affected by the ‘initial’ state of the sample, which is 
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suggested by the presence of offsets in the predictions of fresh samples. This is corrected by 
MLPLS-DA which considers the same sample as control and treatment. There were two 
sub sets of the samples (sub-set 1 and 2), which present different scanning temperatures for 
the fresh samples (12.6±1.8°C/17.5±1.4°C and 17.4±0.5°C /17.8±1.0°C). There is no 
indication that the temperature at time of scanning affected the predictions of MLPLS-DA 
as shown on Figure 1, where predictions for sub-set 1 (lower scanning temperature at fresh) 
are shown on the bottom row and for sub-set 2 (higher scanning temperature at fresh) are 
shown on the top row. 

Figure 1 – Predictions of MLPLS-DA and PLS-DA fitted to differentiate between 
fresh (Frsh) and frozen/thawed (Frzn/Thwd) tuna fillets. Predictions for fresh are 
expected to be lower than zero and for frozen/thawed higher than zero. Each line 
corresponds to one sample connecting prediction when fresh with prediction after 

being frozen/thawed. ‘S’ and ‘T’ represent the surface where Vis-NIR spectra were 
collected.Table 1 – Performance based on the number of misclassified samples for 

predictions of models MLPLS-DA and PLS-DA fitted to differentiate between fresh 
and frozen/thawed tuna fillets. 
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Table 1. Sensitivity/Specificity: percentage of positives/negatives correctly identified. NER: 
Non-error rate. 

Surface! NER!
Sensitivity(fresh)/ 

Specificity(frozen/thawed)!
Sensitivity(frozen/thawed)/ 

Specificity(fresh)!

MLPLS-DA! S! 87%! 87%! 87%!
T! 96%! 96%! 96%!

PLS-DA! S! 78%! 78%! 78%!
T! 81%! 91%! 71%!

Overall, the highest rate of correct classification is observed in spectra collected in surface 
‘T’. These results are an indication that Vis-NIRS is able to detect the difference between 
fresh and frozen/thawed samples. 
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Abstract 
The SMARCA4 gene is involved in small cell carcinoma of hypercalcemic 
type, a rare and aggressive type of ovarian cancer (Witkowski et al. 2014). In 
the promoter region of this gene, there is a wealth of guanine and cytosine 
bases that could lead to the formation of complex DNA structures such as G-
quadruplex and i-motif.  

In this context, we have focused our attention on the study of the solution 
equilibria of two long guanine- and cytosine-rich sequences found near the 
promoter region of the gene SMARCA4.   

The results show that the application of a multivariate approach allows the 
succesful resolution of systems involving i-motif and G-quadruplex struc-
tures. 

Keywords: G-quadruplex, i-motif, DNA, SMARCA4, Multivariate Analysis 

Introduction 

Recently, the study of complex structures of DNA, such as G-quadruplex and i-motif from 

guanine- and cytosine-rich regions, respectively, is being subjected to an intensive research. 

The core of G-quadrupex structure is formed by two or more tetrads, an ensemble of four 
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guanine bases linked by hydrogen bonds in almost the same spatial plane (Figure 1). This 

structure is stabilized by intramolecular and intermolecular stacking, and strong electrostat-

ic interactions with cations within the structure (Neidle and Balasubramanian 2006, Shafer 

and Smirnov 2001). On the other hand, the i-motif structure consists of two parallel-

stranded  duplexes that are intercalated in an antiparallel manner (Figure 2). The building 

block of the structure is a base pair involving one neutral cytosine and one protonated cyto-

sine at N3, known as the C-C+ base pair, bonded by three hydrogen bonds. The C-C+ base 

pair needs the protonation of one of the cytosines at N3, the pKa value of which is around 

4.5. For this reason the formation of a relatively stable i-motif structure needs a slightly 

acid environment. 

Figure'1.'G+quadruplex'structure.'(a)'3D'structure'of'parallel'G+quadruplex'showing'four'tetrads.'b)'four'gua+
nine'linked'by'hydrogen'bonds'in'the'same'plane'(tetrad)'in'the'presence'of'monovalent'ions. 

Figure'2.'i-motif structure. (a) the C·C
+

 base pair, (b) 3D structure of an i-motif showing seven C·C
+

 base 
pairs in four strands. 
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The formation of G-quadruplex by guanine-rich sequences has been widely studied because 

of their recent discovery in vivo and their possible role in biological processes like cancer. 

On the contrary, the formation of i-motif structures by complementary cytosine-rich se-

quences has received little attention due to their strong dependence on the pH. Nowadays, 

the proposal of potential roles in vivo, as well as nanotechnological applications has pro-

duced an increasing interest in the study of i-motif structures. In this context, it has been 

shown the formation in vitro of such structures in DNA sequences corresponding to the end 

of telomeres and to the promoter regions of several oncogenes, such as c-kit, c-myc or bcl-2 

(Day et al. 2014). 

The main aim of the proposed work is the study of the solution equilibria of two long gua-

nine- and cytosine-rich sequences found near the promoter region of the gene SMARCA4 

and the interaction of these with the porphyrin TMPyP4. The interest in the study of this 

gene lies in the fact that it is important in controling the cell differentiation induced by 

retinoic acid and glucocorticoids in both lung cancer and others (Witkowski et al. 2014). 

This ligand may be considered as a model ligand because it has been widely used for the 

study of G-quadruplex structures. 

Circular dichroism and molecular absorption spectroscopies have been used to determine 

the conditions under which both G-quadruplex and i-motif structures are formed (pH, tem-

perature, ionic strength). Multivariate data analysis based on hybrid- and hard-modeling 

methods has been used to recover qualitative and quantitative information about the species 

and conformations present in all experiments (Benabou et al. 2014, Bucek et al. 2010). In 

this study, we have been used hard-modeling such as EQUISPEC for acid-base titration 

(Figure 3) and DNA-ligand interaction,  and hybrid-modeling for melting experiments. 

Finallly, Size-Exclusion Chromatography (SEC) has been used to complement the results 

obtained from spectroscopy.  
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Figure 3. Experimental spectra of CD recorded throughout the acid-base titration of the SMC01 sequence. 
Pure spectra and proposed distribution diagrams obtained from EQUISPEC analysis. 

The results have been shown that the application of a multivariate approach allows the 
succesful resolution of systems involving i-motif and G-quadruplex structures.  
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Abstract 
The objective of this work was the development of a green method based on 
non-sophisticated instrumental for the quantification of sex hormones: seven 
natural and synthetic estrogens, three progestagens and one androgen. The ap-
proach involves isocratic high-performance liquid chromatography with dual 
diode array and fluorescence detection in a single run, coupled to second-order 
calibration. It takes advantage of: (1) chromatography, which allows total or 
partial resolution of a large number of compounds, (2) dual detection, which 
permits selection of the most appropriate signal for each analyte and, (3) se-
cond-order calibration, which enables mathematical resolution of incompletely 
resolved chromatographic bands and analyte determination in the presence of 
other sample constituents. A marked decrease is achieved in the consumption of 
organic solvents for cleaning, extraction and chromatographic separation, and 
experimental and elution times are shortened, with only a single solid-phase ex-
traction with C18-membranes. Outstanding selectivity is attained with the MCR-
ALS second-order algorithm, which allowed the green analyte determination in 
natural waters and sediments. Limits of detection in the ranges 6–20, 14–21, 
and 18–24 ng L−1 for estrogens, progestagens and the studied androgen were 
respectively achieved in real water samples. In sediments, they were 0.1–0.9, 
0.2–0.8, and 0.5–0.9 ng g–1. Relative prediction errors from 2 to 10 % for water 
samples and from 1 to 8 % for sediments were reached. 

Keywords: sexual hormones-environmental samples-MCR-ALS. 
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Introduction 

  The determination of sexual hormones in aquatic bodies and related environmental samples 
such as sediments is a very important activity in modern steroid hormone analysis (S. Görög 
2011). 

  Within the past few years, a new set of methods has arisen, the so-called "green analytical 
chemistry" (GAC) methods. The driving force has been the need to protect the environment, 
without negative impact on basic analytical properties(S. Armenta, S. Garrigues et al. 2008).  

In this context, the main objective of the present work was the development of a GAC method 
for the analysis of a significant number of sex hormones at part per trillion concentrations in 
environmental samples such as surface waters, underground waters and sediments. In the 
present work, single-run dual diode array detection (DAD) and fluorescence dectection (FLD) 
are applied for the determination of eleven analytes involving natural [estriol (E3), estradiol 
(E2), estrona (E1)] and synthetic [ethynilestradiol (EE2), diethylstilbestrol (DES), hexestrol 
(HEX), mestranol (MEST)] estrogens, endogenous [progesterone (PROG)] and synthetic 
[norethisterone (NOR), levonorgestrel (LEV)] progestagens, and a common precursor of male 
and female sex hormones, androstenedione (AE). The dual detection allows us to quantify: (1) 
estrogens, through the intense fluorescence displayed by most of them in the employed mobile 
phase, and (2) the remaining non-fluorescent hormones by their UV absorption properties. The 
benefits obtained by combining the applied analytical method with the chemometric algorithm 
multivariate curve resolution with alternating least-squares (MCR-ALS) (R. Tauler, M. 
Maeder et al. 2009) are demonstrated. To the best of our knowledge, this is the first time that 
eleven sex hormones are evaluated in challenging media using a GAC method, and second-
order calibration is applied to both high-performance liquid chromatography (HPLC)-DAD 
and HPLC-FLD matrices measured for a single chromatographic run.  

Results 

A calibration set was composed by ten samples. Eight samples of the set correspond to the 
concentrations provided by a semi-factorial for four overlapped analytes (E1, DES, AE and 
HEX) and equally spaced concentrations for those analytes with resolved bands. The remain-
ing calibration samples were a blank solution and a mixture of all the analytes at intermediate 
concentrations. For each sample, two matrices (HPLC-DAD and HPLC-FLD) were collected 
in an only chromatographic run under isocratic mode (ACN:H2O, 50:50 % v/v). The data 
matrices were collected each 1.8 s using wavelength from 200 to 330 nm in steps of 1 nm for 
the DAD, and each 1.5 s from 295 to 350 nm in steps of 1 nm for the FLD, setting the excita-
tion wavelength at 275 nm and the slit widths at 1 nm. Specifically, while low or non-
fluorescent compounds were chromatographically quantified through their UV signals (name-
ly, NOR, DES, AE, LEV, PROG and E1), the estrogens E3, E2, EE2, HEX and MEST were 
determined by fluorescence.  
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Due to the losses of trilinearity of chromatographic-spectral matrices the algorithm MCR-ALS 
was chosen for the chemometric analysis and performing matrix augmentation in the temporal 
direction (R. Tauler, M. Maeder et al. 2009). However, in the system under study, an addition-
al problem must be taken into account: some analytes exhibit very similar absorbance and 
fluorescence spectra. In this situation, if the full DAD and FLD chromatograms are processed, 
unsuitable results are obtained because the mathematical pseudorank is smaller than the chem-
ical rank (A. C. Olivieri and G. M. Escandar 2014). Therefore, to overcome this inconven-
ience, MCR-ALS was applied with matrix augmentation in the temporal direction in various 
selected time ranges, ensuring that each partial chromatographic region includes analytes with 
different spectral profiles. 

A validation set of ten samples were prepared and were analyzed chemometricly. The number 
of components in each data matrix was estimated by principal component analysis, and justi-
fied taking into account the presence of the corresponding analytes and background signals in 
each time region. Non-negativity restrictions were applied in both modes; unimodality re-
striction was applied in the elution time mode to the signals corresponding to the analytes. The 
selected ALS convergence criterion was 0.01 % (relative change in fit for successive itera-
tions), and in validation samples convergence was achieved in less than 20 iterations. The 
good recovery results in validation samples in addition to the elliptical joint confidence region 
(EJCR) (A. G. González, M. A. Herrador et al. 1999) test for the slope and intercept of the 
plot corresponding to each analyte. Because all ellipses include the theoretically expected 
values of (1,0) for slope and intercept, respectively, the accuracy of the applied methodology 
for these compounds in validation samples can be claimed. 

With the purpose of testing the applicability of the investigated method, two types of samples 
(water and sediment samples obtained from different sources) were selected as examples of 
environmental matrices. The investigated water samples were spiked with all analytes, com-
bining random values for estrogens (except E1 and DES), the ranges were 10-20 ng L–1 (low), 
25-35 ng L–1 (medium) and 40-52 ng L–1 (high), whereas for the remaining analytes they were 
19-32 ng L–1 (low), 46-65 ng L–1 (medium) and 81-99 ng L–1 (high). Before the inyection, the 
samples were subjected to a simple pre-concentration with a C18- membrane (pre-
concentration factor of 1:500). The sediment samples were spiked with standard methanol 
solutions in order to obtain concentration levels the range 2.5-24.3 ng g–1, frozen and lyophi-
lized. The fortified samples were subjected to a simple extraction procedure. And after the 
extraction the samples were subjected to the same pre-concentration procedure as the water 
samples.  

 In the real samples, the resolution of these systems represents a real analytical challenge. 
However, MCR-ALS, as other second-order algorithms, achieves the so-called “second-order 
advantage”, which avoids the major obstacle of traditional zeroth-order calibration methods 
applied to complex mixtures: the requirement of interference removal before the quantitative 
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analytical method is applied (A. C. Olivieri 2008). MCR-ALS data processing was similar to 
that for validation samples, but in addition to non-negativity in both modes and unimodality in 
the time mode restrictions, the correspondence restriction was applied to most samples, which 
fixes the sequence and the presence or absence of components in specific matrices (R. Tauler, 
M. Maeder et al. 2009). In real samples, with an unknown number of constituents, the number 
of components was estimated as in validation and varied between 6 and 10, depending on the 
sample and analyzed time region. The number of ALS iterations in these complex samples 
was less than 30 in most cases, with residual fits in the order of the expected instrumental 
noise associated with each detector. 

It is necessary to make a distinction between the presently proposed strategy, that only needs 
to remove suspended particles in some natural waters (e.g. river and underground water) from 
more strict extraction and/or clean-up protocols usually employed in chromatographic analysis 
coupled to MS or tandem MS for the determination of sex hormones in natural waters (Streck 
2009; S. Görög 2011). In our case, because of the second-order advantage, soluble sample 
constituents injected in the chromatographic column with the analytes do not interfere in the 
analysis, as is demonstrated with the successful MCR-ALS predictions. Regarding this latter 
issue, it is also remarkable how the amount of organic solvents is presently decreased using 
the proposed strategy, in comparison with that currently employed in sample pre-treatments 
for the analysis of the studied hormones in sediments (P. Labadie and E. M. Hill 2007; I. 
Matić, S. Grujić et al. 2014). 

The obtained results for the real water and sediments samples, in terms of the elliptical joint 
confidence region test with ellipses for each type of sample including the theoretically ex-
pected values of (1,0), indicate the accuracy of the used methodology. The relative errors of 
prediction are very acceptable (smaller than 10 %) taking into account the complexity of the 
studied samples.  

Conclusions 

Eleven sex hormones included in the group of endocrine disruptors have been analyzed by 
LC-DAD-FLD under an isocratic regime, in a short elution time, and applying a minimal 
sample pre-treatment. The flexibility of the multivariate algorithm MCR-ALS allowed the 
successful resolution of coeluted peaks belonging to analytes and interferents in challenging 
scenarios, such as those formed by natural waters and sediments. Since the length of the 
chromatographic run, the solvent consumption, the waste generation and the operator time are 
significantly reduced, while the frequency of sample processing is notably increased, the pro-
posed method meets the criteria defined in the framework of green analytical chemistry prin-
ciples and may allow to substitute more complex analytical methods. 
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A workflow based on MCR-ALS for feature detection in untar-
geted metabolomic experiments 
Elena Ortiz-Villanueva, Joaquim Jaumot y Romà Tauler 
Departamento de Quimica Ambiental, IDAEA-CSIC, Barcelona, España. 

Abstract 
In the last few years, the use of chemometric tools plays a crucial role to gain 
new knowledge in the –omics field. The inherent complexity of –omics data 
requires the application of multivariate data analysis tools. In this work, the 
potential of multivariate curve resolution alternating least squares (MCR-
ALS) as a feature detection tool is demonstrated for the analysis of untarget-
ed -omics data. The proposed workflow consists of the preliminary analysis 
of total ion current chromatograms (TICs) for exploratory purposes using 
principal component analysis (PCA) and partial least squares discriminant 
analysis (PLS-DA). Then, MCR-ALS is applied to selected regions of the mul-
tiple full-scan MS data sets. This strategy permits the resolution of a large 
number of elution profiles characterized by their chromatographic peaks and 
mass spectra. Finally, in the last step of the workflow, these resolved profiles 
allows the identification of the detected features (considering the resolved 
mass spectra) and the assessment of their statistical significance (considering 
the resolved elution profiles). Biological interpretation of the system under 
study can be gathered considering the final list of identified features. The ad-
vantages of the application of this method are shown for an untargeted LC-
MS metabolomic study related to bisphenol-A effects on zebrafish embryos. 

Keywords: Liquid chromatography-mass spectrometry, Metabolic profiling, 
Multivariate data analyses, Untargeted analysis  
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Resumen 
En los últimos años, los métodos quimiométricos han jugado un papel muy 
importante para obtener nuevos conocimiento en el campo de la ciencias 
ómicas. La complejidad de los datos ómicos hace necesaria la aplicación de 
métodos de análisis multivariante con el fin de extraer la máxima informa-
ción relevante. En este trabajo, el potencial del método de resolución multi-
variante de curvas por mínimos cuadrados alternados (MCR-ALS) como una 
herramienta de selección de variables se ha demostrado para el caso de da-
tos ómicos no dirigidos. El flujo de trabajo propuesto comienza con el análi-
sis exploratiorio preliminar de los cromatogramas de corriente iónica total 
(TIC) mediante análisis de componentes principales (PCA) y análisis discri-
minante por mínimos cuadrados parciales (PLS-DA). Seguidamente, se apli-
ca MCR-ALS al conjunto de los datos LC-MS. Esta estrategia permite la re-
solución de un gran número de perfiles de elución caracterizados por sus 
picos cromatográficos y sus correspondientes espectros de masas. Finalmen-
te, en el último paso del proceso, a partir de los componentes resueltos se 
puede obtener la identificación de los variables (a partir del espectro de ma-
sas resuelto) y la evaluación de su significación estadística (a partir de los 
perfiles cromatográficos resueltos). Esto permite obtener una interpretación 
biológica a los cambios observados en el sistema estudiado a partir de la lis-
ta de metabolitos identificados. Las ventajas de la aplicación de este flujo de 
trabajo se muestran para un estudio LC-MS metabolómico no dirigido basa-
do en la exposición de embriones de peces cebra a bisfenol-A. 

Palabras clave: Cromatografía de líquidos acoplada a espectrometría de 
masas,  Evaluación perfil metabólico, Análisis de datos multivariantes, Aná-
lisis no dirigido. 
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Introducción 

La metabolómica es un campo relativamente moderno que tiene como objetivo obtener una 
amplia cobertura de los compuestos de bajo peso molecular de los sistemas biológicos 
(Villas-Bôas et al. 2005, Hirayama et al. 2014). En los últimos años, las respuestas metabó-
licas a estímulos externos se han investigado ampliamente teniendo en cuenta los cambios 
en los niveles de concentración detectados por diferentes plataformas de análisis de alto 
rendimiento. Entre todas estas plataformas, destaca la espectroscopia de resonancia magné-
tica nuclear (RMN) (Puig-Castellví  et al. 2015) y, sobretodo, la espectrometría de masas, 
comúnmente acoplada a una técnica de cromatografía líquida (LC-MS) (Bedia et al. 2015), 
de cromatografía de gases (GC-MS) (Parastar et al. 2012)o a la electroforesis capilar (CE-
MS) (Ortiz-Villanueva et al. 2015). Actualmente, se ha puesto mucha atención a la aplica-
ción de LC con columnas de interacción hidrófilica (HILIC) debido a su capacidad  para 
llevar a cabo análisis a pequeña escala de compuestos pequeños y polares. Las herramientas 
de análisis de datos juegan un papel crucial para lograr extraer información de los datos y 
obtener una buena interpretación biológica. Por lo tanto, la necesidad de analizar grandes 
conjuntos de datos complejos procedentes de estudios de ómica con técnicas analíticas de 
alto rendimiento han alentado a los investigadores a desarrollar y aplicar herramientas de 
análisis de datos avanzadas (Trygg et al. 2007). 

En el caso concreto de los datos LC-MS, existen diferentes aproximaciones para el proce-
samiento de los datos como, por ejemplo, el ampliamente utilizado XCMS (Tautenhahn et 
al. 2008). Sin embargo, la utilización de herramientas quimiométricas durante el proceso de 
análisis facilita la obtención de más información. Por un lado, se puede llevar a cabo un 
análisis exploratorio preliminar sobre los cromatogramas de corriente iónica total (TIC) con 
el fin de establecer la posibilidad de diferenciar las muestras mediante métodos como el 
análisis por componentes principales. Otros métodos como el análisis por mínimos cuadra-
dos parciales discriminante (PLS-DA) pueden ser también utilizados con el fin de distinguir 
las muestras al mismo tiempo que se pueden identificar las regiones del cromatograma 
causantes de estas diferencias mediante el uso de métodos de selección de variables como 
los parámetros Variables Importance in Projection (VIPs) o la Selectivity Ratio (Trygg et 
al. 2007, Fasoula et al. 2105). Sin embargo, el estudio de los TICs podría conllevar la pér-
dida de la información más relevante debido a la presencia de picos superpuestos en los 
datos LC-MS originales. En consecuencia, la aplicación de métodos de resolución como, 
por ejemplo, la resolución multivariante de curvas por mínimos cuadrados alternados 
(MCR-ALS) (Tauler 1995) se puede proponer como una herramienta muy poderosa para 
llevar a cabo un análisis más profundo de los datos de LC-MS. Este método se ha demos-
trado especialmente útil para analizar múltiples tipos de sistemas multicomponentes y, 
recientemente, en casos de datos metabolómicos obtenidos mediante LC-MS (Gorrochate-



 A workflow based on MCR-ALS for feature detection in untargeted metabolomic experiments 

66 VI Chemometrics Workshop for Young Researchers (2015). 

gui et al. 2015, Farrés et al. 2105). Además, este enfoque propuesto proporciona la solución 
a problemas adicionales que se encuentran habitualmente en los datos LC-MS, como las 
contribuciones del ruido de fondo, una baja relación señal-ruido, la presencia de picos asi-
métricos y los leves desplazamientos en los tiempos de retención entre inyecciones.  

El objetivo de este trabajo es demostrar la utilidad de la aproximación basada MCR-ALS en 
el análisis de datos LC-MS para obtener información fiable en el estudio de datos metabo-
lómicos. La idoneidad de la aplicación de este método se demuestra en el caso de perfiles 
metabólicos de embriones de pez cebra (Danio rerio) expuestos a bisfenol-A (BPA) a dife-
rentes concentraciones (0, 1, 2 y 4 µg/mL de BPA). En la Figura 1 se muestra, como ejem-
plo, uno de los componentes resueltos. En la parte superior de la figura se observan los 
perfiles cromatográficos resueltos para el componente que permiten evaluar el efecto que 
tienen los diferentes niveles del contaminante en las muestras estudiadas. En la parte infe-
rior de la figura, se muestra el espectro de masas resuelto para el componente a partir del 
cual se puede llevar a cabo la identificación del metabólito y su interpretación biológica. 

Figura 1. Ejemplo de resolución de MCR-ALS: (A) Perfil de elución para 
cada mues-tra y (B) espectro de masas resuelto. 
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Estudio sobre un pre-procesado alternativo de datos ómicos para 
análisis no dirigidos 

Núria Dalmau, Carmen Bedia y Romà Tauler 
Departamento de Química Ambiental (IDAEA-CSIC), Jordi Girona 18-26, 08034, Barcelona 
nuria.dalmau@idaea.csic.es 

Abstract 

In this work an alternative procedure for the untargeted analysis of LC-MS 
data sets in omics field is presented. A preliminary pre-processing of data 
sets was based on the Regions of Interest (ROI) strategy. This methodology 
allows an important reduction of size without loss of resolution and accuracy 
on m/z measure and an easy data manipulation of mass data sets. This strat-
egy is based on the search of significant mass traces regions with high mass 
densities. The adjustment of ROIs parameters has been performed by the use 
of different dilutions of standard stock solutions mixtures injected in UHPLC-
ToF-MS instrument. The optimization of ROIs parameters resulted in new 
data matrices containing the same m/z accuracy as original data which con-
tain all valuable information in a reduced size. These data matrices were 
subjected to multivariate curve resolution-alternating least squares (MCR-
ALS) (Tauler 1995), which is a valid method for proper resolution of chro-
matographic profiles and mass spectra profiles with the same accuracy. Also, 
ROI parameters were optimized for the construction of augmented matrices 
from individual matrices containing information of different standard mix-
tures dilutions, in order to enable its further comparative analysis through 
MCR-ALS.  

Altogether, the optimization of ROI pre-processing parameters described in 
this work enabled the reduction of consuming times in the untargeted analy-
sis of large LC-MS datasets, without loss of information. 

Keywords: Regions of interest (ROI), multivariate curve resolution-
alternating least squares (MCR-ALS), untargeted omic analysis. 
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Resumen 

En este trabajo se presenta un procedimiento alternativo de análisis no diri-
gido de datos LC-MS para el análisis de datos ómicos. Se trata de un pre-
procesado preliminar de los datos a partir de la estrategia de las Regiones 
de Interés (ROI). Esta metodología permite una reducción importante del 
tamaño de los datos sin pérdida de resolución y exactitud en la medida de las 
m/z. Además, este pre-tratamiento permite una manipulación más sencilla de 
los conjuntos de datos de masas. Esta estrategia está basada en la búsqueda 
de regiones con densidades altas de masas con intensidades significativas. El 
ajuste de los parámetros de los ROIs se ha realizado a partir de los datos de 
mezclas de patrones a diferentes concentraciones conocidas, inyectadas en 
un instrumento UHPLC-ToF-MS. La optimización de los parámetros de los 
ROIs da como resultado una nueva matriz de datos con la misma exactitud 
m/z que los datos originales que contienen toda la información de interés en 
un tamaño mucho menor, lo que posibilita su análisis directo. Estas matrices 
de datos pueden entonces analizarse por el procedimiento de resolución mul-
tivariante de curvas por mínimos cuadrados alternados (MCR-ALS) (Tauler 
1995), el cual permite la resolución correcta de los perfiles cromatográficos 
y sus respectivos espectros de masas con la máxima exactitud. También, se 
han optimizado los parámetros de los ROIs para la construcción de matrices 
aumentadas formadas a partir de matrices individuales  de muestras de mez-
clas de patrones a diferentes concentraciones para su posterior análisis 
comparativo por MCR-ALS. 

En resumen, la optimización de los parámetros para el pre-procesado ROI 
descrito en este trabajo posibilita, sin perder información, una reducción del 
tiempo de procesado de los datos para los análisis no dirigidos. 

Palabras clave: Regiones de interés (ROI), resolución multivariante de cur-
vas por mínimos cuadrados alternados (MCR-ALS), análisis ómico no dirigi-
do. 



 Núria Dalmau, Carmen Bedia, Romà Tauler 

VI Chemometrics Workshop for Young Researchers (2015). 71 

Introducción 

En los últimos años la cromatografía de líquidos acoplada a espectrometría de masas (LC-
MS) ha evolucionado mucho permitiendo un gran avance en muchos campos de investiga-
ción, incluidas las disciplinas ómicas como la metabolómica y la lipidómica. 

Su uso más común y destacado es la identificación directa de compuestos (aproximación 
dirigida), posible para los analizadores de masas exactas como el tiempo de vuelo (ToF) o 
el Orbitrap. Estos permiten una elevada resolución de picos cromatográficos y la posibili-
dad de realizar determinaciones a bajas concentraciones de muestra. Por otro lado, el análi-
sis no dirigido de compuestos permite una interpretación más global de los perfiles ómicos. 
Esta aproximación no dirigida evita la focalización en unas especies determinadas  y abre la 
puerta a la interpretación general de los datos ómicos sin seguir hipótesis previas que pue-
dan hacer perder información. 

Los archivos de datos masivos (big data) obtenidos generan varias dificultades para su 
análisis. En primer lugar, se trata de archivos que requieren mucha memoria de almacena-
miento en el ordenador, lo que afecta a la velocidad general de análisis.  Además, en algu-
nos casos existen dificultades para exportar los datos a otras plataformas de trabajo que no 
sean las propias del equipo. Por último, se debe conocer cómo mide y adquiere los datos el 
instrumento, su precisión y su exactitud; parámetros importantes para la identificación 
posterior de compuestos. 

En nuestro grupo de investigación, el estudio de datos masivos obtenidos por LC-MS o por 
GC-LC y RMN, se ha basado en el método de resolución multivariante de curvas por mí-
nimos cuadrados alternados (MCR-ALS). Este método permite la resolución de los com-
puestos en este tipo de datos sin la necesidad de alinear u ordenar los picos, como se ha 
demostrado en estudios anteriores (Farrés et al. 2015, Bedia et al. 2015, Gorrochategui et al. 
2015). Debido a las enormes dimensiones de las matrices a analizar y a la naturaleza multi-
variante de los datos, la aplicación de MCR-ALS se había realizado mediante el análisis por 
separado de las submatrices de la matriz original divididas por ventanas de tiempo y con 
compresión (binning) de las unidades m/z. Este hecho suponía una pérdida de exactitud de 
m/z, un procedimiento laborioso de preselección de ventanas y un tiempo de análisis 
computacional muy largo. En este trabajo se presenta una posible mejora en el pre-
procesado de los datos que permite reducir la dimensión de las matrices sin pérdida de 
exactitud de m/z y agilizar así su análisis por MCR-ALS. Esta estrategia, llamada Regiones 
de Interés (ROI), está basada en la búsqueda de las intensidades de masas más relevantes 
que constituyen un pico cromatográfico entre los datos LC-MS obtenidos, lo que permite 
una mayor compresión de los datos originales sin perder la exactitud de las medidas de m/z 
en los espectros de masas. Los ROIs son las regiones con mayor densidad de puntos conse-
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cutivos con una intensidad de masas superior al límite de ruido establecido según el tipo de 
muestra y de equipo, como ejemplifica la Figura 1.  

Figura 1. Perfil de elución obtenido siguiendo el pre-procesado de Regiones de Interés (ROI) y 
sus correspondientes masas con intesidades significativas. 

Figura 2. Componente 7 obtenido del análisis MCR-ALS de la matriz aumentada 
(2.5, 5, 10 y 20 ppm) dónde se muestran el perfil de elución anterior para cada 

muestra de la matriz. También se representan los perfiles de elución y de masas 
del componente en segundos y m/z respectiva-mente. 
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En este trabajo se muestra la optimización de estos parámetros de ROI utilizando datos LC-
MS de mezclas de soluciones de patrones a diferentes concentraciones. Además se ha estu-
diado la formación de matrices aumentadas y posterior análisis con el método MCR-ALS 
para obtener los componentes más relevantes (Figura 2).  
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Abstract 
A recurrent issue in Chemometrics is the recognition of variables in complex 
records, such as those obtained when natural products are chromato-
graphed. This problem has been addressed by methods mainly based on peak 
alignment. Protein digestion with trypsin leads to complex mixtures of pep-
tides and therefore also to complex chromatograms. In this work, a classifi-
cation method for enzymes was developed. For this purpose, the enzymes 
were digested with trypsin, followed by liquid chromatography with spectro-
photometric detection at several wavelengths. The training set was construct-
ed with enzymes of three classes, belonging to industrial enzymes that are 
usual components of cleaners. The resulting complex chromatograms were 
treated by a program which was based on six identifiers (indices of peak 
identity), and on multiple comparisons at the local level between the chroma-
tograms of the training set. The final model, constituted by the pooled chro-
matograms of the classes, and whose elements were vectors containing the 
six peak identifiers, was used to classify the enzymes of the training set 
(cross-validation by leave-one-out). 

Keywords: Peak recognition, fingerprinting, liquid chromatography, diode 
array detection, protein analysis, trypsin digests, classificatory analysis 

Resumen 
Un problema recurrente en Quimiometría es el reconocimiento de variables 
en registros complejos, tales como los que se obtienen cuando se cromato-
grafían productos naturales. Este problema se ha abordado mediante méto-
dos basados principalmente en el alineamiento de los picos. La digestion de 
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proteínas con tripsina da lugar a complejas mezclas de péptidos, y por tanto, 
también se tienen cromatogramas complejos. En este trabajo se ha desarro-
llado un método de clasificación de enzimas basado en su digestión con trip-
sina, seguida de cromatografía líquida con detección espectrofotométrica a 
varias longitudes de onda. El conjunto de entrenamiento se construyó con 
enzimas industriales de tres clases, utilizadas como componentes habituales 
de productos de limpieza. Los complejos cromatogramas resultantes se trata-
ron mediante un programa basado en seis índices de identidad o identifica-
dores de pico, y mediante comparaciones múltiples a nivel local de los cro-
matogramas del conjunto de entrenamiento. El modelo final, constituido por 
los cromatogramas conjuntos de las clases, y cuyos elementos son vectores 
conteniendo los seis identificadores de pico, se utilizó para clasificar las en-
zimas del conjunto de entrenamiento (validación cruzada mediante leave-one 
out). 

Palabras clave: Reconocimiento de picos, huella dactilar, cromatografía lí-
quida, detector de fila de diodos, análisis de proteínas, digestos de tripsina, 
análisis clasificatorio 

Introduction 

In the detergent industry, the identification and quantification of enzymes is frequently 
demanded. This information is important for the quality control of some raw materials and 
manufactured products. In previous work, two methods capable of identifying the type of 
enzyme present in cleaners were proposed. These methods were based on total protein 
hydrolysis, followed by either direct infusion of the hydrolysate into a mass spectrometer 
(MS, Beneito-Cambra, 2008) or its injection in a liquid chromatograph with UV-Vis detec-
tion (Beneito-Cambra, 2009). Hydrolysis provides the amino acid profile of the samples, 
which can be used as a fingerprint to establish the enzyme class.  

However, certain proteases are capable of cutting the proteins by specific peptide bonds, 
yielding complex mixtures of peptides, much richer in information than the aminoacid 
profiles obtained by total hydrolysis of proteins. For this purpose, trypsin, an endoprotease, 
is widely used. Trypsin mainly cleaves proteins at the carboxyl side of the amino acids 
lysine and arginine. After digestion with trypsin, the application of a suitable analytical 
technique, followed by data treatment of the resulting peptide profile, should made possible 
the classification of the original protein. Using calibration standards, information leading to 
the identification of the enzyme would be also provided. High-performance liquid chroma-
tography (HPLC) and mass spectrometry (MS) are most frequently used to analyze the 
complex peptide mixtures resulting from trypsin digestion. However, due to the high price 
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of MS detectors and HPLC-MS interfaces, HPLC with UV-Vis spectrophotometric detec-
tors are much more commonly found in industrial laboratories for quality control. 

In this work, a method capable of classifying the enzymes present in household and indus-
trial cleaners and related raw materials is presented. Enzymes are precipitated with acetone, 
and the precipitate is digested with trypsin. Next, a chromatogram is obtained in reversed 
phase mode (HPLC-RP) using a UV-Vis diode array detector. Data treatment of the chro-
matogram is then used to retrieve the relevant information concerning the enzyme class. 
For this purpose, a program written in MatLab was used. Essential parts of the program 
were the algorithms capable of recognizing characteristic peaks of each enzyme class, in a 
process leading to establish a model of each class. These models were used to classify the 
enzymes of the training set (with leave-one-out cross-validation). 

Materials and methods 

The training set was constructed with three classes of enzymes typically found in the deter-
gent industry: proteases, amylases and cellulases. For each class, between 6 and 8 industrial 
enzyme concentrates from Novozymes (Bagsvaerd, Denmark), Biocon (Bangalore, India), 
ChemWorld (Barcelona), Enmex (Tlalnepantla, Mexico) and Genencor (Rochester, NY, 
USA) were collected and treated. The enzymes, initially in aqueous solution, were precipi-
tated with acetone. The precipitates were redissolved in water and treated overnight with 
trypsin at 37 ° C. Chromatograms of the digests were obtained with a Kinetex column 
(core-shell 2.6 microns, C18, 100 A, 100x3 mm, Phenomenex, USA), using a water-
acetonitrile gradient in the presence of 0.1% trifluoroacetic acid, at 25 ° C and at a flow rate 
0.4 mL/min. The chromatograms were recorded at three wavelengths: 214, 260 and 280 
nm. The program for data treatment was written in MatLab vs. 7.12.0 (R2011a). 

Results and discussion 

Within the useful time region of ca. 60 min, the chromatograms contained about 72,000 
points each. The program contained the necessary routines to establish the baseline, locate 
peaks, establish their limits and location of the maximum on the time scale, and complete 
the peak description by measuring up to six parameters per peak (peak “identifiers”, see 
below). The derivative of the chromatogram, with a working window of 90 points, was 
used to locate peaks and establishing their limits. Then, a couple of blank chromatograms 
(obtained with trypsin and without enzymes) were used to establish the trypsin peaks. The 
presence of a large and intense trypsin peak at the beginning of the chromatogram, and a 
characteristic group of less intense peaks at the end, largely facilitated this task. These 
peaks, common to all samples, were also used for alignment purposes. This was made by 
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establishing a reduced retention time, beginning at the first trypsin peak and finishing at the 
last one. 

After discarding the trypsin peaks, further data treatment was performed with the other 
peaks which contained the required information. Six indexes or “identifiers” containing 
information about the identity of each one of these peaks were established, namely the peak 
reduced retention time, peak relative area (percentage of total peak area for the recording at 
214 nm), reduced width of the peak base, peak area ratio at different wavelengths (con-
cretely, area ratios for 260/214 nm and 280/214 nm), and asymmetry factor. To measure the 
asymmetry factor, A1 was taken as the area from the left end of the peak to the position of 
the maximum, and A2 as the area from the maximum to the right end of the peak; finally, 
the asymmetry factor was calculated as A1/A2. For partially overlapped peaks, the asym-
metry factor was calculated for the peak area which surpassed the merging point with the 
adjacent peaks.   

For each chromatogram, and using the six peak identifiers, a matrix constituted by six rows 
and as many columns as identified peaks (typically between 70 and 150 peaks per chroma-
togram, this number mainly depending on the enzyme class) was then created. Next, the 
matrices of chromatograms belonging to a same enzyme class were compared in order to 
identify characteristic peaks of each class. For this purpose, the rows of the matrices were 
first normalized. In this way, the six peak identifiers were made equally important among 
them. However, after normalization, weigths were assigned to the identifiers. The weigths 
were established according to the relative relevance of each identifier, e.g. more weigth was 
given to the reduced retention time than to other identifiers; however, attemps to optimize 
the weigths according to any quantitative criterion were not made.  

Then, the chromatograms were compared by pairs, taking all possible pairs within each 
class. For each pair, a pooled chromatogram was created. For instance, to compare two 
chromatograms, A and B, each peak of A was first compared with all the peaks of B located 
within a reduced time window centered around the peak of A. The size of the window used 
was 5% of the reduced time total range. For each pair of peaks of A and B, the six peak 
identifiers were compared. For each peak identifier, a score was given to the candidate peak 
of B. High or low scores were given according to the similarity between the identifiers of 
the peaks of A and B. For each peak of A, the peak of B with the highest sum of scores, 
also meeting the condition of overcoming 80% of the maximal possible sum of scores (e.g. 
20 points out of a maximum of 25), was provisionally chosen as a characteristic peak of the 
class.  

Then, the same system of comparison of peaks by pairs using scores was applied to each 
one of the peaks of B. As indicated above, each one of them was compared to the peaks of 
A located within a window of A equal to the 5% of the reduced time total range. The peaks 
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finally accepted as characteristics of the class were those recognized as the same peak in 
both comparisons, A with B and B with A. The pooled chromatogram MAB, containing the 
accepted peaks and the average values of the six peak identifiers, was then created. It 
should be noted that the pooled chromatogram MAB was a matrix containing six rows (the 
identifiers, with average values of the paired peaks of A and B) and as many columns as 
accepted peaks. 

After treating all the possible pairs of chromatograms within a class, the resulting pooled 
chromatograms, MAB, MAC, MBC, etc., were further processed as follows. First, the pooled 
chromatogram having the largest number of accepted peaks (e.g. Mi) was successively 
compared to the other pooled chromatograms of the class (Mj being j ≠ i). This comparison 
was made again using scores, following a procedure similar to that previously used to com-
pare the original chromatograms of the standards. In this way, new pooled chromatograms 
which were representative of sets of four original ones were obtained. This process was 
repeated to obtain pooled chromatograms representing a larger number of original chroma-
tograms, until a single pooled chromatogram for each enzyme class was obtained. It should 
be noted that each chromatogram was in fact a matrix having six rows (the six average 
values of the peak identifiers) and as many columns as peaks have been accepted for the 
class. 

This process of comparisons by pairs of chromatograms and successive clustering of the 
pooled chromatograms had a shortcoming. Some peaks which were truly representatives of 
the class were excluded when they were not recognized as such in at least one of the com-
parisons. To reduce this limitation, the pooled chromatogram representing the N chromato-
grams of a class was compared with the N pooled chromatograms representing N – 1 chro-
matograms of the same class. This comparison was made reciprocally, but with some 
differences with respect to the procedure explained above. First, the distances between the 
six peak identifiers were used to recognize peaks as the same one; second, peaks which 
were not recognized as the same one were not excluded, but added to the final pooled 
chromatogram of the class.  

The pooled chromatogram of each class differed from that of the other classes in the num-
ber and location of the peaks. Therefore, an obvious classification method resulted from the 
comparison of the chromatogram of any new sample with the pooled chromatograms of the 
classes. For this purpose, cross validation (leave-one-out) was used. Thus, after excluding a 
chromatogram, the pooled chromatograms of the classes were obtained again. These were 
compared with the excluded chromatogram. Correct predictions were made in all cases by 
simply using the number of recognized peaks as the predictor. A 100% of correct predic-
tions was also achieved by using Euclidean distances in the space of the recognized varia-
bles. 
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underlying two object-wise linked data blocks 
Raffaele Vitalea, Johan A. Westerhuisb, Onno E. de Noordc, Age K. Smildeb, Alberto 
Ferrera 
aDepartamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica 
de València, Camino de Vera s/n, 46022, Valencia, Spain, bBiosystems Data Analysis, Swammerdam 
Institute for Life Sciences, Universiteit van Amsterdam, 1018 WV Amsterdam, The Netherlands and 
cShell Global Solutions International B.V., Shell Technology Centre Amsterdam, PO Box 38000, 
1030 BN Amsterdam, The Netherlands. 

Abstract 
A novel method for disentangling common and distinctive sources of variabil-
ity, which underlie two sets of data sharing the object dimension, is pro-
posed. 

Keywords: singular value decomposition, canonical correlation analysis, 
permutation tests, multiset data analysis, common and distinctive compo-
nents. 

Resumen 
En este trabajo, se propone un nuevo método de análisis multivariante sim-
ultáneo de dos conjuntos de datos, que comparten el mismo número de ob-
servaciones, para discriminar de manera directa la variabilidad común y es-
pecífica de cada uno de ellos.   

Palabras clave: descomposición en valores singulares, análisis de la correl-
ación canónica, pruebas de permutación, análisis simultáneo de distintos 
conjuntos de datos, variabilidad común y específica 

Introduction 

In many research and practical domains, it has recently become quite frequent to exploit 
multiple analytical platforms to comprehensively study the same system of interest. In these 
cases, an intriguing and challenging task is to distinguish the common and distinctive 
sources of variability (or components) underlying the various blocks of data, resulting from 
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the application of the different characterisation techniques and sharing the same number of 
objects (thus defined object-wise linked). Here, a novel method to achieve such disentan-
glement when two sets of measurements are dealt with, namely X1 (N×J1) and X2 (N×J2), is 
proposed. 

Modelling strategy 

The developed approach comprises five different steps: 

1. First, the total number of components underlying X1 and X2, respectively, is de-
termined by a Singular Value Decomposition (SVD)-based permutation test;

2. The number of common components shared by X1 and X2, Acom, is identified re-
sorting to a Canonical Correlation Analysis (CCA)-based procedure;

3. The profile of the common components is retrieved by applying SVD to the be-
tween-block covariance matrix X1TX2 and retaining the eigenvectors associated to
the first Acom eigenvalues:

X1TX2!=!UcomScomVcomT +Ecom (1) 

4. The common sources of variability are filtered out by deflation:
X1,dis!=!X1-X1UcomUcomT (2) 

X2,dis!=!X2-X2VcomVcomT (3) 

5. The distinctive components of X1 and X2 are extracted by performing SVD on
X1,dis and  X2,dis and retaining the eigenvectors associated to the first A1,dis and A2,dis 

eigenvalues1:
X1,dis!=!U1,disS1,disV1,disT +E1,dis (4) 

X2,dis!=!U2,disS2,disV2,disT +E2,dis (5) 

The potential of this method will be assessed in simulated and real case-studies and 
its possible extension for the analysis of data blocks sharing the variable dimension 
will be discussed. 
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Dynamic elementary modes modeling of non-steady state flux data 
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Abstract 
New methods are presented here aiming at decomposing non-steady state 
metabolic flux distributions into a meaningful set of dynamic elementary 
modes and its biological activation for data compression and discrimination 
purposes.  

Keywords: elementary mode, metabolic network, fluxes, concentrations, 
(non-)steady state. 

Background 

Principal component analysis (PCA) and multivariate curve resolution (MCR) models have 
been proposed to obtain a set of key pathways in metabolic networks, assuming steady state 
conditions (González-Martínez et al. 2014, Folch-Fortuny et al. 2015). These pathways or 
modules in the network are identified using the existing relationships between fluxes, 
measured experimentally. Recently, a new method called principal elementary modes 
analysis (PEMA) (Folch-Fortuny et al. submitted) has been proposed to model this kind of 
data. The methodology is based on the projection of the fluxes into a reduced set of 
elementary modes (EMs) of the metabolic network. The EMs are the simplest 
representations of pathways crossing the metabolic network. Basically, each EM connects 
substrates with end-products concatenating reactions in a thermodynamically feasible way.  

For non-steady state conditions, e.g. when measuring the concentrations of the metabolites 
at early stages after perturbation, different methodologies have been proposed, such as 
kinetic modeling (Teusink et al. 2000), 13C-metabolic flux analysis (MFA) (Wiechert 
2001), dynamic flux balance anlysis (FBA) (Mahadevan et al. 2002), the Goeman's global 
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test (Hendrickx et al. 2012), and a recently proposed approach combining time-resolved 
metabolomics and dynamic FBA (MetDFBA) (Willemsen et al. 2015). 

Here we define a new framework to model non-steady state metabolic fluxes. This 
methodology is based on adapting the PEMA model to work with deformed or dynamic 
EMs (dynEMs), i.e. EMs that are used partially at each time point. In this way we propose 
two methods: dynamic elementary modes analysis (dynEMA) to compress the data into a 
set of reduced explanatory dynEMs, and dynamic elementary modes regression 
discriminant analysis (dynEMR-DA) to identify the set of dynEMs whose activation pattern 
allows discriminating between different biological conditions. 

Methods 

PEMA 

PEMA is described here for the sake of understanding the elementary modes modeling in 
steady and non-steady state cases. PEMA uses the set of EMs from a given metabolic 
network as the candidates of the principal components in a classical PCA.  

From stoichiometric modeling, any stady state flux distribution ! = (!!, . . . , !!) can be 
decomposed as a positive linear combination of EMs (Llaneras and Picó 2008): 

! = λ! · !!
!

!!!
 

where K is the number of fluxes (matching the number of reactions in the network), 
!! = (!!!, . . . , !!") is the EM e, λe is the positive weighting factor of EM e, and E is the 
number of EMs needed to reconstruct the flux distribution x. 

When N flux distributions are considered, a PEMA model can be built as follows: 

! = ! · !! + ! 

where X is the !×! flux data matrix, P is the !×! principal elementary modes matrix, 
formed by a subset of E EMs; Λ  is the !×! weightings matrix; and F is the !×! residual 
matrix. It is worth noting that the values in Λ  are forced to be non-negative. 

In the PEMA algorithm, the principal EMs are chosen from the complete set of EMs in a 
step-wise fashion, including at each step the EM explaining more variance in flux data. The 
weightings associated to the principal EMs are obtained by solving: 

! = ! · ! · (!! · !)!! 
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Unlike the loadings in PCA, the principal EMs are not orthonormal, so the previous 
equation usually requires the computation of the pseudo-inverse of !! · !. 

dynEMA 

Non-steady state flux distributions cannot be decomposed as linear combinations of 
elementary modes, as in steady state. However, the EMs are indeed the simplest pathways 
along which the non-steady state fluxes have to flow, but not in a stable or constant fashion. 
Following this rationale the EMs can be deformed to fit this unstability. This is what we 
call a dynamic elementary mode (dynEM). To deform an EM we simply have to assign not 
a single coefficient multiplying the EM (Λ in PEMA) but a coefficient to each reaction 
activated by the EM.  

Thus, a single non-steady state flux distribution x can be decomposed as: 

! = !!
!

!!!
∗ !! 

where !! = (!!!, . . . ,!!") are the coefficients that deform reactions 1 to K in the selected 
dynamic EM e to reproduce the fluxes in x, and * is the Hadamard element-wise product. 

Let us consider now a set of non-steady state flux distributions, which are usually obtained 
from single experiment, measuring the concentration of the metabolites at different time 
points. The set of active dynEMs are obtained from the dynEMA model: 

! = (!!⊗ !!!) · [! ∗ (!!⊗ !!)] + !!
where A is the !"×! coefficients matrix, IN is the !×! identify matrix, 1E is a column 
vector of E ones, and ⊗ is the kronecker product. The other matrices are the same as in the 
PEMA model. 

The coefficients matrix A in the previous equation is indeed a !×!×! three-way matrix 
unfolded variable-wise, and each entry in the matrix !!"# represents the coefficient 
multiplying reaction k of EM e to reconstruct the flux xk at time point n. 

Using this modeling it is possible to study the time evolution of a dynEM, i.e. how the 
dynEM is deformed or dynamically used along all measured time points. 

dynEMR-DA 

When the aim is to establish differences between conditions, e.g. presence/absence of a 
compound or case/control studies, a discriminant model is needed. dynEMR-DA focuses on 
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finding which are the dynEMs with a strongly different time evolution or performance 
between conditions. For this, different experiments are combined in a single X matrix 
defined as multiset data, being the K fluxes the common mode. 

The algorithm of dynEMR-DA is as follows: 

1) For each EM:

1.1) Calculate the coefficients matrix A using dynEMA. 

1.2) Reconstruct the flux data using A and P. 

1.3) Fit a PLS model between the reconstructed data and the Y data. 

2) The EM whose PLS model explains most variance in Y is classified as the first dynEM.

3) Check the predictions of the PLS model. If the current model discriminates perfectly,
stop. If not, fix the first dynEM and repeat steps 1-3 to extract the second dynEM using, for 
more than one EM, a multiblock PLS model. And so on. 

It is worth noting that a perfect discrimination using dynEMs is achieved when all time 
points of one condition are perfectly classified and some time points of the other condition 
are assigned to the other class. This is due to the dynamic activation of the EMs in non-
steady state fluxes. The dynEM that discriminate between conditions may be activated not 
from the begining to the end of the culture but only at some time period in the middle, e.g. 
when a particular metabolite is produced/consumed. 

Results 

A dense in silico network is created to study the dynamic approaches presented here. Using 
dynEMA we are able to identify a few set of active dynEMs and study their evolution, 
identifying which reactions of the relevant EMs are used at each time point. To test the 
regression model, a small EM, artificially introduced in the network, and responsible of the 
changes in the discrete Y variable, is clearly identified by dynEMR-DA.  

Actual non-steady state flux data from Saccharomyces cerevisiae is also tested using this 
methodology to differentiate between aerobic/anaerobic conditions, usage/not usage of 
glucose, and high/low usage of glucose. 

Conclusion 

The framework proposed here permits decomposing non-steady state flux distributions into 
a set of active dynEMs. These techniques allows to create reduced dynamic models of flux 
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data while preserving biological and thermodynamical meaning. dynEMA and dynEMR-
DA have potential applications in bioprocess engineering to understand the small changes 
in cell metabolism at early stages of the culture. 
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data 
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Abstract 
A combination of N-PLS with LASSO penalization is presented here as a 
novel method for variable selection in N-way metabolomics data. Results of 
the method using different simulated data structures and also a real dataset 
are also presented..  

Keywords: variable selection, N-way data, LASSO, metabolomics. 

Background 

N-PLS is a useful tool to analyze multi-way data, reducing the inclusion of noise in the 
models and obtaining more robust parameters and, at the same time, producing easy-to-
understand plots. The LASSO (Tibshirani 1996) is a regularization method for linear 
regression which reduces variance by imposing a L1 penalty constrain to the least squares 
fit. This constrain shrinks the coefficients of the model, causing some of them to be exactly 
zero and thus performing variable selection at the same time.  

In some situations supervised projection methods such as N-PLS can produce models with 
very low bias in p>>n settings, but at the cost of a high variance (Stoica et al. 1998).  On 
the other hand, the variance reduction performed by LASSO comes at a cost of a noticeable 
increase in bias (Hastie et al. 2009). Squared error is a function of bias, variance and 
irreducible error: 

!"#$%&'!!""#"! = !!""#$%&'()#!!""#"! + !!"#$2 + !!"#$"%&' 
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This relation between bias and variance is also known as the bias-variance tradeoff, and is 
depicted in Figure 1. Since both low bias and high variance models and high bias and low 
variance models can actually be very inaccurate, we propose introducing L1 penalization in 
N-PLS as a way  to obtain a robust variable selection method which has the flexibility to 
smoothly adjust its bias-variance tradeoff by changing the amount of L1 penalization 
imposed on the model. 

Figure 1: Bias-variance tradeoff. High bias models show high prediction errors due to poor 
fitting to the sample data. High variance models show high prediction errors due to 

overfitting to the sample data and failing to generalize to new data. 

Methods 

The Lasso (Least Absolute Shrinkage and Selection Operator) is a shrinkage and selection 
method for linear regression. It minimizes the usual sum of squared errors, with a bound on 
the sum of the absolute values of the coefficients (L1 penalization). It shrinks some 
coefficient and sets others to 0, and hence tries to retain the good features of both subset 
selection (interpretation) and ridge regression (stability and precision in estimations). The 
original LASSO for least squares is as follows: 
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Subject to the restriction (penalization): 

Increasing the penalization by reducing s forces the parameters to zero, producing a simpler 
model by deselecting some features. Thus, assuming data are standardized, Lasso 
automatically selects the most relevant features and discards the others. 

To introduce the L1 penalization in the N-PLS algorithm we make use of soft-thresholding 
which can be derived as a solution of the LASSO lagrangian form: 

Our final LASSO-N-PLS algorithm is based on the sparse-PLS algorithm (Le Khao et al. 
2008) as follows:  

       Center X and Y, and unfold X (and Y when necessary) into a two-way matrix. 

       Let u be some column of Y, and set  f=1 

1. wT=uTX/uTu
2. Build Z by refolding w according to the modes dimensions
3. Determine wJ y wK by SVD
4. LASSO inclusion

a. Apply soft-thresholding on wJ:
b. Apply soft-thresholding on wK:
c. Input the new w as kron(wK, wJ)

5. t=Xw/wTw
6. q=YTt/norm(YTt)
7. u=Yq
8. Check for convergence. If it is achieved, continue; otherwise, go to 1
9. b = (TTT)-1TTu; where T=[t1 t2… tf]
10. X = X-twT and Y = Y-TbqT

11. f = f+1. Continue from step 1 until a good description of Y
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Results 

We have tested our implementation of the L1 penalized NPLS using simulation. Amount of 
penalization, λ, was determined by cross-validation. We compared the results provided by 
LASSO-N-PLS with the creation of random null distributions of VIP’s and weights, with 
posterior calculation of the statistical significance. Our method was also tested in a real 
dataset of liver regeneration metabolomics data. The method showed good ability for the 
reliable selection of those important variables comprised in large -omic data sets (Figure 
2). 

Figure 2: RMSE profile for different number of selected variables. In this specif case, 
lowest cross-validated RMSE was achived by selecting only 8 of the 80 variables in the 

data. 

Conclusion 

LASSO-N-PLS simplified data interpretation and variable selection, which is of utmost 
importance in the later development of targeted analysis focus on the determination of the 
biomarkers in a clinical scenario. In our real dataset, N-PLS combined with variable 
selection allowed us to select those metabolites that showed a higher association with liver 
regeneration.   
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Abstract 
Instrumental developments in sensitivity and selectivity boost the application 
of high resolution liquid chromatography – mass spectrometry (LC-MS) in 
metabolomics for biomedical research. Uncontrolled intra-batch effects in 
LC-MS are gradual changes in the instrumental response that reduce the re-
peatability and reproducibility of the analysis, decrease the power to detect 
biological responses and hinder the interpretation of the information provid-
ed, specially when a high number of samples are analyzed. Because of that, 
there is an interest in the development of chemometric techniques for the 
post-acquisition correction of the batch effect. In this work, the use of quality 
control samples and Support Vector Regression with a radial base function 
kernel (QC-SVRC) is proposed to correct intra-batch effects. The QC-SVRC 
method is compared to a recent reference algorithm based on robust cubic 
smoothing splines (QC-RSC). Initial results from the correction of data ob-
tained from the repeated analysis of a plasma sample showed that QC-SVRC 
improved data quality and slightly outperformed QC-RSC. 

Keywords: Intra-batch effect, Support Vector Regression (SVR), high resolu-
tion liquid chromatography – mass spectrometry, Metabolomics. 

Introduction 

High resolution liquid chromatography - mass spectrometry (LC-MS) is rapidly becoming 
the method of choice in metabolomics for biomedical research because of its increased 
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sensitivity, higher throughput and better metabolite coverage as compared to other tech-
niques such as nuclear magnetic resonance (NMR) or hyphenated gas chromatography 
(GC-MS). Besides biological variability among subjects due to e.g. age, sex, medical condi-
tions, drugs, food or the environment, high resolution LC-MS data includes unwanted in-
strumental variation. This variation can arise from e.g. minor changes in the injection vol-
ume, ideally as a normal white noise process with mean zero and constant variance, but also 
from e.g. gradual inlet interface contamination, drifts in detector sensitivity, temperature, 
ionization efficiency or column performance that modify the instrumental response (i.e. 
intra-batch effect). An accurate estimation of the variation in the instrumental response for 
each detected variable (metabolite) over the batch would allow an effective correction of 
the intra-batch effect and the shrinkage of the instrumental error. However, this estimation 
is troublesome as data is typically noisy. The intra-batch effect can be seen as a stationary 
or non-stationary process depending on the position within the batch (e.g. it can be negligi-
ble at the beginning and very significant at the end of the batch) and the size of the effect 
varies across metabolites. Because of that, the use of algorithms whith high generalization 
capabilities is required. The use of the response in pooled quality control (QC) samples 
dispersed evenly throughout the batch and Robust Splines fhas been recently proposed by 
Broadhurst et al. [1] or the fit and correction of the intra-batch effect (QC-RSC). Support 
Vector Regression (SVR) is a non-parametric and distribution free model developed by 
Vapnik that provides high generalization capabilities at a low estimation cost [2,3]. In the 
present study, SVR using a radial basis function kernel (RBF) was tested to model batch 
effects using data acquired from QC samples. The proposed QC-SVRC approach was eval-
uated and compared to the QC-RSC method using the repeated analysis of a single plasma 
sample as a model example. 

Results 

The use of QC-SVRC is evaluated using the repeated analysis (n=150) of a single plasma 
sample in a single batch by UPLC-ESI(+)-TOF-MS as a model example. This model exam-
ple facilitated the evaluation of the correction accuracy. 

For a training dataset x!"(!), y!"(!) x!"(!) ∈ R,   y!"(!) ∈ R, i = 1,… , n    (n = number of 
QCs in the training set) the SVR initially maps the sample data into a high dimensional 
feature space by means of φ(x). Then, a linear regression function is defined in the feature 
space as y! = f x!,w = w! ∙ φ x! + b, where w = weight vector and b = constant thresh-
old. As in Supporting Vector Machines (SVM), optimization in SVR is solved by quadratic 
programming through the	
  use of Lagrange multipliers and a kernel function K x! ∙ x! =
φ x! ,φ x!  to replace the inner product operation in the high dimensional feature space. 

The solution is then expressed as: 
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y = f x = α! − α!∗ K x!, x + b
!!∈!"

 

where α!, α!∗ are Lagrange multipliers, and the samples with non zero weights α!, α!∗ are 
called the Support Vectors (SVs) used for the construction of the SVR function. In this 
study, the kernel function used was the Radial Basis Function (RBF): 𝐾 𝑥! , 𝑥 =
exp  (−𝛾 𝑥 − 𝑥! !), where 𝛾 is the width of the RBF kernel. The accuracy of a RBF-SVR 
is determined by the 𝜀-insensitive loss parameter, the error penalty parameter C and the 
RBF kernel parameter 𝛾 [3,4]. The 𝜀-insensitive loss parameter is used to ignore training 
errors lower than a threshold value during model development and limit model overfitting. 
C is the cost associated with the training error. Large C values may lead to over- and small 
C values may lead to underfitting. Large RBF kernel  𝛾 values reduce the area of influence 
of the SVs and lead to model overfitting. To trade off training error against model complex-
ity using cross-validation (CV), different strategies for the selection of the optimal set of C , 
𝛾 and 𝜀 values can be found like e.g. grid search. However, this method is computationally 
intensive. Alternatively, the range of output values has been previously proposed to select 
the C parameter. However, to reduce the impact of outliers, the C value was defined as the 
difference between the 10th and 90th quartile of the output values in QC samples. The 𝜀-
insensitive loss parameter was defined, for each variable, as ±5% of the observed value in 
the first QC because the precision of the UPLC-MS system used in this work falls within 
the 10-15% range and so lower 𝜀-insensitive value would overfit the model. Finally, the 
optimum kernel parameter γ was selected by LOO-CV in the [2-6, 2-5,… , 26] range. As an 
example, Figure 1(top) shows the drift in the intensity of an endogenous metabolite (trypto-
phan, [M+H]+ C11H13N2O2

+, m/z = 205.0971, retention time = 3.1 min) across the batch 
measurement. The intra-batch effect was modelled using 18 evenly distributed samples as 
QC for the modeling of the intra-batch effect. Results from the QC-SVRC approach 
showed that a SVR function using 5 support vectors provided an accurate estimate of the 
intra-batch effect (see SVR-curve in Figure 1(top)). Figure 1(middle) shows mean square 
errors of leave-one-out cross validation as a function of γ, used for the selection of the op-
timal γ value and Figure 1(bottom) shows the corrected intensity of tryptophan. The gener-
alization capabilities of the SVR function lead to an effective removal of the intra-batch 
effect. Residual variation around the mean value in ‘non-QC’ samples could be attributed to 
a poor injection volume precision and the automatic integration of the chromatographic 
peaks. 
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Figure 1. Top) Intensity of  tryptophan monitored throughout the batch. The red 
line de-picts the calculated SVR function. The 𝜀 boundaries are given with the red 
dotted line; Middle) Mean Square Error of Cross Validation (MSECV) for QCs 

obtained as a function of the γ value. Red dot indicates the selected value; 
Bottom) Intensity of tryptophan after intra-batch effect correction. 

The QC-SVRC correction approach was applied for each variable across the data set. The 
correction accuracy was evaluated using the number of variables showing an RSD in non-
QC samples <15% as a figure of merit. Results depicted in Figure 2 showed that the preci-
sion of the analysis was greatly improved. Finally, results were compared to those provided 
by QC-RSC for the same data set. In this case, the accuracy of the QC-SVRC approach 
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slightly outperformed QC-RSC. However, it is difficult to estimate whether this difference 
is statistically significant or not. Further work will be carried out to evaluate the effect of 
the QC distribution within the batch on the correction accuracy using both, QC-RSC and 
QC-SVRC. 

Figure 2. Number of variables showing RSDsamples<15% before 
and after correction of the intra-batch effect using QC-RSC and 

QC-SVRC. Note: Total number of variables in the data set = 552. 
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Abstract 

The analysis of highly complex samples for which there are no standards 
available, such as medicinal herbs, is based on the comparison of chromato-
graphic fingerprints. In this work, a strategy is reported for high-performance 
liquid chromatography to measure the level of information in fingerprints 
through the concept of peak prominence, which is the protruding part of each 
visible peak with regard to the valleys that delimit it. Next, the peaks in the 
fingerprints are ranked according to the areas of the peak prominences, and 
the number of peaks exceeding an established threshold are discriminated to 
differentiate between peaks corresponding to real (significant) compounds 
and those severely affected by non-significant components or noise. Plackett-
Burman designs were applied to evaluate the impact of several extraction 
conditions on the number of significant peaks found in the fingerprints. The 
methodology was applied to green tea samples analyzed using acetonitrile, 
ethanol or methanol as extraction solvents, and a linear gradient where the 
acetonitrile content was raised from 5.0 to 42.5% (v/v) in 45 min. Maximal 
information in the fingerprints was obtained using methanol as extraction 
solvent, and high ultrasonication time and temperature. 

Keywords: Medicinal herbs; Green Tea; Fingerprint analysis; Reversed-phase 
liquid chromatography; Extraction yield; Plackett-Burman designs; Number 
of significant peaks. 
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Introduction 

The analysis of medicinal herbs is troublesome because of the amount of its components 
and the disparity of their concentrations, the difficulty in knowing the nature of the compo-
nents, and the absence of standards in the market that allow for their qualitative and quanti-
tative analysis. Chromatographic fingerprint analysis appears as a good alternative for the 
analytical control of such samples. Chromatographic techniques maximize the information 
content along the time domain, which is particularly valuable for analyzing fingerprints. To 
facilitate the recognition, chromatographic fingerprints containing a large number of peaks 
are desirable.  

A main objective in these analyses is to achieve maximal resolution between the chro-
matographic peaks, which is achieved by adjusting the separation conditions. Also, the 
extraction protocol can influence the results. It was found necessary to investigate the effect 
of the extraction conditions on the quality of the information obtained with fingerprints. 
A wide literature survey highlighted the disparity of extraction conditions reported in the 
literature by different analysts to process samples of medicinal herbs for fingerprint analy-
sis. Given the number of factors involved, the study in this work was conducted based on 
factorial designs. A commercial green tea was used as sample. 

In previous work, a peak prominence approach was developed, based on the automatic 
measurement of the protruding part of the chromatographic peaks to characterize samples 
with unknown compounds. Peak prominences were shown as a useful tool to recognize 
which peaks are significant for quantifying the information in a chromatographic finger-
print, without the need of standards. In this work, a protocol is described to evaluate the 
extraction yield of the components of a medicinal herb that is translated into a greater num-
ber of significant peaks in chromatographic fingerprints. 

In the working protocol, the baseline was first subtracted using smoothing cubic splines. 
Then, the chromatographic peaks were searched through the standard function of 
MATLAB “FINDPEAKS”.  With the default parameters, this function detects a very high 
number of peaks (often associated with noise). However, this way of operation was found 
preferable for relying on the analyst the decision of the selection of the significant peaks, 
starting from comprehensive primary information. 

After normalizing the peaks, software developed in our laboratory called "CHROM-
SCAN" was applied, which processes automatically, in significant information, the raw 
vector of maxima indexes given by FINDPEAKS. “CHROMSCAN” locates the optimal 
tangent points defining the limits for peak integration (those delimiting the two valleys at 
the sides of each prominence) (Figure 1). It also measures the peak areas and calculates the 
resolution level.  
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Figure 1. Screenshot of a MATLAB chromatogram corresponding to a green 
tea ex-tract. Tangents that define the prominence region for each peak are 

depicted. The peaks are numbered according to their elution order and those 
that exceeded a rela-tively peak area of 0.025% are marked in red. 

The peaks in the fingerprints are ranked according to the areas of the peak prominences, 
and the peaks exceeding an established threshold are discriminated to differentiate between 
those corresponding to real (significant) compounds and those severely affected by non-
significant components or noise. The peaks considered as significant are discriminated from 
those that can be assigned to noise assisted by a plot that represents the relative peak area of 
the chromatographic peaks for several replicated chromatograms, in descending order.  

Seven experimental factors that affect the extraction of the samples were studied: type 
and concentration of the extraction solvent, sonication time in an ultrasonic bath, treatment 
temperature, sample weight, and conservation time and temperature of the extracts.  Due to 
the high number of factors, factorial analysis using Plackett-Burman designs was applied. 
These designs have the advantage of allowing the exploration with a small number of ex-
periments. For each experimental factor, a high and a low value were established.  
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The incompatibility among some of the involved factors did not allow a comprehensive 
study using designs that considered all factors simultaneously, in order to set the most fa-
vorable levels. Therefore, these were divided in two groups of three factors: 

(i) First group: Concentration of the extraction solvent, and time and temperature of the 
treatment in the ultrasonic bath, which were considered altogether in a first step. This study 
was carried out in blocks for three types of hydro-organic mixtures with containing either 
acetonitrile, ethanol or methanol. Other blocks with pure water and the three pure organic 
solvents were also considered. 

(ii) Second group: Amount of sample, and time and temperature of conservation of the 
extracts, which were studied in a second step. 

 The Plackett-Burman designs used for this study can be represented as a cube with 
8 vertices, where each edge represents an experimental factor and each vertex an experi-
ment. Only 4 of the 8 experiments were inspected. Despite this partial inspection, it was 
possible to establish models to predict how many peaks would be expected using experi-
mental conditions non-assayed in the design, based on the data from the assayed experi-
ments.  

The proposed methodology to describe the information content of fingerprints, based on 
the measurement of peak prominences, showed conclusive results. The best solvent to carry 
out the extraction of the components in the analyzed sample was methanol, used in 30:70 
mixtures with water at high temperature (80°C) and applying a long ultrasonication time 
(60 min).  

The sample weight contributes very significantly to the number of peaks, and this was 
also larger when the conservation temperature increased (4°C against ‒10°C), probably due 
to the degradation of some compounds. In general, the analyses should be performed im-
mediately after obtaining the extracts, due to the degradation of the extracts , which con-
tributes to the number of peaks and should be avoided.  

Although the described approach was developed using a green tea sample, it is suitable 
for finding the best extraction and conservation conditions for other types of medicinal 
herbs, in order to get fingerprints with the maximal information. Currently, an approach is 
being developed in our laboratory to optimize the gradient program to analyze fingerprints 
of medicinal herbs or from other sources, by applying the proposed chromatographic objec-
tive function based on the measurement of peak prominences.  
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tral Raman images and  chemometric methods in metabono-
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Abstract 
Hyperspectral imaging can become a very useful tool in metabonomic studies be-

cause of the capability to provide chemical (spectra interpretation) and morphological (dis-
tribution maps) information about the sample and the environmental conditions.  

The aim of this study is to explore the potential of the combination of Raman hy-
perspectral images and chemometric methods for metabonomic studies on zebrafish, a 
model organism showing gene homology with humans. A methodological protocol includ-
ing zebrafish breeding, tissue cryosection, image acquisition (600 - 1800 cm-1 fingerprint 
region) and image data analysis and interpretation has been proposed. In order to assess the 
effect of chlorpyrifos-oxon (CPO) on zebrafish, images of control and CPO exposed fish 
samples have been acquired and analyzed.  

Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) (Jaumot et 
al. 2015) was used as a chemometric technique to analyze all images. MCR-ALS provides 
pure spectra and distribution maps of the sample constituents (de Juan et al. 2014). Multiset 
analysis has been used to analyze different images simultaneously because of the presence 
of common components in some images (de Juan et al. 2014). 

The results allowed us to distinguish different tissue regions in zebrafish.  The 
interpretation of Raman spectral signatures was easy due to the specific fine bands that 
helped to identify differences in tissues coming from control and CPO exposed samples. 
Based on the comparison of resolved signatures, we have been able to distinguish and char-
acterize differences in regions of the tissues studied, such as the melanin in the pigmented 
areas of the eye, iridophores in tail tissue or highly proteic regions related to the crystalline 
lens. 
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Abstract 

Environmental –omics consists of the characterization and quantification of biological 
molecules of an organism related to the exposure to an environmental stress. Analytical 
techniques used in –omics(e.g. immunoassays, NMR, HPLC-MS…) (Bedia et al. 2015) are 
usually destructive.  Hyperspectral images may be a potentially useful methodology in 
metabonomics because they provide spatial and chemical information and preserve the 
natural morphology of the samples. The aim of this work is to asses the potential of hyper-
spectral images acquired with differents platforms in order to carry out metabonomic stud-
ies on zebrafish embryos.  

Zebrafish embryos have been obtained by natural breeding. The age of the embryos in the 
experiment may vary from 5 to 8 days post-fertilization. Some of the embryos have been 
exposed to a pollutant stress (e.g. chlorpirypfos-oxon) during 24h and the rest have been 
used as control samples. The embryos have been frozen and embedded in Optimal Cutting 
Temperaure Compund (OCT) to perform cryosections of the parts of interest. Cryosec-
tioned tissues have been stored at -10º until the measurements have been performed. 

Hyperspectral images have been acquired using different spectroscopic platforms (FT-IR, 
Raman and Fluorescence). Multivariate curve resolution- alternating least squares (MCR-
ALS) (Jaumot et al. 2015, de Jaun et al. 2014, de Juan et al. 2014) has been used to analyse 
hyperspectral images. This method is appropriate to resolve multicomponent  systems and 
provides the distribution maps and pure spectra of the image constituents. 

Raman hyperspectral images in combination with MCR-ALS have shown some variations 
in the retinal pigmented epithelium and the crystalline lens after chlorpiryphos-oxon expo-
sure. FT-IR hyperspectral images permitted to clearly differentiate some areas of the 
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zebrafish tissues, but more sample replicates will be performed in order to improve the 
results obtained. Fluorescence images were acquired using different excitation modes (line-
ar and two-photon) to detect different kinds of fluorophores.  

MCR results from the analysis of the different hyperspectral image techniques will be pre-
sented. Pure spectral signatures and distribution maps of the different zebrafish tissues 
contributions will be described. MCR spectral signatures of control and contaminated sam-
ples will be compared to asses the effect of chlorpiriphos-oxon on zebrafish embryos. 
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Optimization of the chromatographic selectivity of 
o-phthalaldehyde amino-acid derivatives using diode array detec-
tion 
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Abstract 

Nowadays chromatographers are assisted by multichannel detectors, giving 
rise to second-order signals. It results thus surprising that the search of opti-
mal separation conditions is still being focused on reaching the best time se-
lectivity, neglecting the potential benefits of the spectral order. In this work, 
we use first and second-order multivariate selectivity as chromatographic ob-
jective functions to separate a mixture of 19 primary amino-acid derivatives. 
However, the use of second-order objective functions implies accepting a cer-
tain degree of overlap in the best separation conditions. Thus, for obtaining 
the pure profiles, orthogonal projection approach and alternating least-
squares were applied for cluster deconvolution.  

Keywords: Chromatographic objective function; Multivariate selectivity; 
Peak purity; Amino acids; Orthogonal projection approach; Alternating least- 
squares 
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Introduction 

Current HPLC instruments are able to yield two-way signals, where full spectra are col-
lected as a function of time. With such rich signals readily available, highly specific col-
umns are not so imperative for resolving complex samples at routine level. Hence, the usual 
strategy of finding the best separation conditions giving prevalence to the chromatographic 
resolution in the time order seems not too logical nowadays.  

With so-rich-in-information signals, the usual practice of focusing the search of the best 
separation conditions in the time order results rather surprising. However, a price should be 
accepted: using spectral information implies peak deconvolution. As far as the analyte 
contributions can be correctly retrieved by deconvolution from the spectrochromatogram, 
the found optimized separation condition will be acceptable. In this concern, two-way sig-
nals may be resolved without any peak shape assumption by self-modelling techniques, 
such as the orthogonal projection approach followed by alternating least-squares 
(OPA-ALS). This kind of deconvolution is more desirable than its one-way counterparts, 
which are based on forcing the accommodation of the overall signal to a linear combination 
of peak models, and consequently, they are more subjected to larger uncertainties. 

Another reason for supporting the active use of spectral information is the reduction of 
analysis time. By increasing the elution strength, the retention times decrease, but yielding 
overlapping among the peaks (i.e., shorter separation times imply minor peak capacity, 
which makes coelution more likely). As a consequence, deconvolution is needed to com-
plete the time selectivity. In this sense, a chromatographic objective function (COF) sensi-
tive to spectral differences would help to find out the separation condition giving rise to the 
most favorable overlap taking into account the spectral differences. Even in situations in-
volving two peaks with poor resolution in both data orders, nearly selective wavelength 
windows may exist, and consequently, the spectrochromatogram can be rich enough in 
analytical information to retrieve the underlying contributions.  

Several COFs have been considered for quantifying simultaneously time and spectral 
information. The easiest ones consisted of extending one-way COFs (COF1) to include 
spectra. A COF1 with particularly good performance is the one-way peak purity (P1), which 
can be defined as the analyte area fraction (time×absorbance) free of overlapping with 
regard to the chromatogram of its interferences. This COF can be easily extended to its 
two-way counterpart (the COF2 two-way peak purity, P2), by replacing area fraction by 
volume (time×wavelength×absorbance). 

An alternative to conventional COFs is using assessments derived from the net analyte 
signal concept (NAS), which has given rise to a number of associated figures of merit. One-
way NAS (NAS1) can be defined for single wavelength chromatograms as the fraction of 
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the analyte vector signal that cannot be explained as a linear combination of the vector 
signals of its interferences. The importance of NAS in Chemical Analysis is indeed ex-
treme. For instance, it can be demonstrated that multivariate calibration models build im-
plicit relationships between NAS and the concentration of the analytes, without an explicit 
calculation of NAS, and the IUPAC recommends using derived concepts to build and vali-
date models producing good predictions from highly unselective data. However, the useful-
ness of NAS reaches other ambits different from calibration. Thus, when the data are the 
underlying signals of the compounds in a chromatogram, NAS (and derived measurements) 
may help to rank the difficulties of a deconvolution, and its magnitude correlates well with 
the chromatographic resolution. 

In principle, the NAS definition is applicable to both single-wavelength chromatograms 
and spectrochromatograms, but it is sensitive to the signal size (i.e., analyte concentration 
and detector sensitivity) and data dimensions (i.e., matrix or vector size), and for these 
reasons, less sensitive NAS-derived figures of merit are better choices. An interesting one, 
identically applicable to measure the resolution, is the multivariate selectivity (SEL), which 
is related to the level of orthogonality of NAS with regard to the space spanned by multiple 
interferences. Multivariate selectivity ranges between 0 (in case of complete overlap) and 1 
(when there is no overlap). In previous work, we reported that SEL1 correlated with the 
deconvolution error for single wavelength chromatograms, being thus a useful tool to ap-
praise the difficulty of signals including overlapped peaks. Thus, SEL2 assessments can be 
expected to be good candidates to COFs.  

All these resolution expressions describe signal overlaps with different perspectives. 
The resolution measurements only accounting the separation in the time direction (P1 and 
SEL1) tend to find optimal conditions where the peaks are well separated, since they qualify 
negatively any peak overlap (especially P1). Meanwhile, those measurements that also 
include spectral information score situations of excessive overlap as valid. This can be 
risky, since predictions are affected by errors in peak position up to a certain extent (intro-
duced in the modelling step). Also, the impact of eluent mispreparation, or gradient genera-
tion, is more severe when the overlap is significant. This does not invalidate the conclu-
sions of the study: better models or more careful experimentation is just required. These 
possible errors constitute another level in the optimization problem. In addition, the pres-
ence of heterocedastic noise, a poorly subtracted baseline, and any non-linearity, would 
lead to less favorable deconvolutions. These issues are also beyond the scope of this work, 
which focuses on the selection of the most favorable gradients.  

When spectral information is available, the most economical way of outlining the sepa-
ration problem is performing first the optimization attending only to the time order, using 
P1. If the resolution is satisfactory, we have arrived in a short time to the optimal separation 
conditions and the spectral order is not needed. In case the resolution was not satisfactory, 
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we should calculate SEL2 for the experimental conditions that offered the largest P1 scores. 
If one or more of these conditions gives a SEL2 score for the critical peak pair exceeding 
0.80, then the deconvolution of the overlapped peaks can be expected to be favorable. On 
the contrary, in case the 0.80 threshold for the critical pair is not exceeded in any separation 
condition, or the analysis time is too large, then the SEL2 calculation should be extended to 
the whole grid of experimental conditions. The Pareto plot of SEL2 scores against the analy-
sis time will assist in the selection of the best separation conditions. 

In previous work, the proposed approach was applied to the separation of a mixture of 
25 phenolic compounds, which remained unresolved in the chromatographic order using 
linear and multi-linear gradients of acetonitrile-water. An application is here reported for a 
mixture of the OPA-NAC derivatives of the 19 proteic amino-acids derivatives, which 
constitute a critical separation example owing to the spectra similarities. Several separation 
conditions are examined: isocratic elution, linear and multi-linear gradients, and multi-
isocratic separations. When full separation in the time order is demanded, isocratic and 
gradient elution could resolve the mixture but at too high analysis times. However, using 
COFs considering spectral information, experimental conditions could be found with ac-
ceptable analysis times at the cost of some coelution, which nevertheless could be fully 
resolved by multivariate deconvolution. In all instances, the analysis times could be consid-
erably reduced. Several signal-to-noise levels were examined to appraise the influence of 
non-idealities. The results were correct in a wide range of conditions, up to SNR ca. 100. 
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Prostate Diffusion Weighted-Magnetic Resonance Image Analysis 
using Multivariate Curve Resolution Methods 

Eric Aguado-Sarrió, José Manuel Prats-Montalbán, Alberto Ferrer 
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Abstract 
Multivariate Curve Resolution (MCR) has been applied on prostate Diffusion 
Weighted-Magnetic Resonance Images (DW-MRI). Different physiological-
based modeling approaches of the diffusion process have been submitted to 
validation by sequentially incorporating prior knowledge on the MCR con-
straints. Results validate the biexponential diffusion modeling approach and 
show the capability of the MCR models to find, characterize and locate the 
behaviors related to the presence of an early prostate tumor.  

Keywords: MCR, Multivariate Image Analysis, Diffusion, Magnetic Reso-
nance, Prostate, Tumor. 
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Resumen 
Se han aplicado los métodos de resolución multivariante de curvas (MCR) a 
imágenes de resonancia magnética de difusión en próstata (DW-MRI). Dife-
rentes aproximaciones basadas en fenómenos fisiológicos se han aplicado 
con el objetivo de validar los modelos de forma secuencial, incorporando el 
conocimiento “a priori” que se tiene del proceso en las restricciones del mo-
delo MCR. Los resultados permiten validar la aproximación biexponencial 
en difusión, además de mostrar la capacidad de los modelos MCR para en-
contrar, caracterizar y localizar los comportamientos relacionados con la 
presencia de tumores precoces en la próstata. 

Palabras clave: MCR, Análisis multivariante de imágenes, Difusión, Reso-
nancia Magnética, Próstata, Tumor. 

Introducción 

En el estudio de carcinomas precoces, dos de los principales indicadores de la presencia de 
un proceso tumoral son la vascularización y el incremento de la densidad celular. Cuando 
un grupo de células en crecimiento presenta demandas de oxígeno y nutrientes anormal-
mente altas, el tejido reacciona creando nuevos vasos sanguíneos (angiogénesis) o desarro-
llando los ya existentes (neovascularización). Por otro lado, el proceso biológico asociado a 
elevadas densidades celulares que conlleva a la aglomeración celular en los tejidos se de-
nomina celularización. La combinación de ambos procesos es lo que normalmente determi-
na la presencia de un tumor precoz como un primer paso en oncogénesis. Una manera de 
analizar esta combinación de procesos es por medio del estudio del proceso de difusión en 
los tejidos (Charles-Edwards and De Souza 2006), el cual es un proceso físico que sucede 
debido a la agitación térmica de las moléculas de agua en el interior del cuerpo humano. 
Estos movimientos translacionales dependen, además de otros factores, de la estructura del 
tejido según su organización celular. Cuando el tejido está altamente celularizado, las mo-
léculas de agua presentan mayor restricción al movimiento debido a que disminuye el espa-
cio intersticial y a la presencia de un mayor número de interfases de membrana celulares. 
Sin embargo, cuando el tejido se encuentra altamente vascularizado, las moléculas se en-
cuentran en un espacio no restringido dentro de los vasos, y los movimientos son aleatorios, 
con menor restricción, en todas las direcciones espaciales. 

El proceso de difusión se puede evaluar mediante técnicas de imagen de resonancia magné-
tica ponderada (DW-MRI). Esta técnica no invasiva permite proporcionar imágenes de alta 
resolución que son sensibles a los movimientos de las moléculas de agua dentro de los 
tejidos. Dependiendo de la configuración del equipo de resonancia magnética y basándose 
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en la duración y la amplitud del campo magnético aplicado, a la adquisición de imágnes se 
la asocia a un parámetro conocido como valor-b (Le Bihan 1991, Lemke 2011). La señal de 
la imagen asociada a cada píxel disminuye a medida que aumenta el valor de b. Esta ate-
nuación de la señal depende de las características del tejido, siendo más rápida si el tejido 
se encuentra vascularizado y mucho más lenta si el tejido está altamente celularizado. El 
rango de las diferentes atenuaciones de señal entre estos dos tipos de tejido para el mismo 
valor de b es la base del estudio de los diferentes comportamientos presentes en el proceso 
de difusión. 

Con el objetivo de modelizar la caída de la señal, los espectros se pueden ajustar con dife-
rentes expresiones ó modelos matemáticos. El modelo más ampliamente utilizado en el 
ambiente clínico es el modelo monoexponencial de difusión (Le Bihan 1991) con el coefi-
ciente de difusión aparente (ADC) como parámetro, este modelo supone que existe una 
única caída exponencial para el modelado de la señal. El principal problema del modelo 
monoexponencial es que no tiene en cuenta los diferentes mecanismos del proceso de difu-
sión. Actualmente, una manera de solventar estos problemas es empleante un modelo biex-
ponencial. Este es un modelo más complejo, ya que considera dos comportamientos, difu-
sión rápida y lenta, ponderados mediante un nuevo parámetro llamado fracción vascular (f), 
que se corresponde con la proporción de tejido vascular en un vóxel. Este modelo también 
es conocido como “intra-voxel incoherent motion” (IVIM) (Le Bihan 1986), debido a los 
dos tipos de movimientos considerados, relacionados con celularización (difusión lenta) y 
vascularización (difusión rápida). A pesar de que el modelo IVIM es teóricamente más 
apropiado según el criterio fisiológico, el modelo monoexponencial es, actualmente, el más 
utilizado en la práctica médica para modelar el proceso de difusión. 

Una posible alternativa para analizar los comportamientos de difusión es mediante la apli-
cación de modelos estadísticos multivariantes, con los que es posible aprovechar la relación 
entre píxeles. Cuando se trabaja con imágenes, la aplicación de este tipo de modelos se la 
conoce como Análisis Multivariante de Imágenes (MIA) (Geladi and Grahn 1996, Prats-
Montalbán et al. 2011). La principal característica de este tipo de modelos es la capacidad 
de estudiar el conjunto completo de píxeles al mismo tiempo, extrayendo las fuentes de 
variabilidad causadas por las estructuras latentes presentes en las imágenes. De esta forma, 
estos modelos pueden ayudar a proporcionar nuevos modelos no-paramétricos que permitan 
explicar los principales comportamientos de difusión extraídos a partir de las imágenes 
DW-MRI. También pueden ser útil para comprobar la adecuación de las diferentes aproxi-
maciones propuestas en la literatura (mono y biexponencial). 

La principal técnica de análisis multivariante es PCA (Análisis de Componentes Principa-
les) (Jackson 1991). Sin embargo, existen dos problemas cuando se aplica PCA a los datos 
de DW-MRI: 
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1) No se puede introducir información a priori en el modelo.
2) La ortogonalidad de los componentes principales es una limitación para modelar

los diferentes comportamientos de difusión que no son necesariamente ortogona-
les.

Con el objetivo de evitar estos problemas, es posible emplear técnicas más flexibles, como 
es el caso del modelo “Resolución Multivariante de Curvas” ó MCR, el cual ha sido aplica-
do anteriormente a imágenes dinámicas de resonancia magnética (Dynamic Contrast En-
hanced-MRI) (Prats-Montalbán et al. 2014).  

Los objetivos de este trabajo son: 

1) explorar la capacidad de los métodos MCR para modelar los diferentes comporta-
mientos asociados al proceso de difusión a partir de imágenes DW-MRI, ayudando
a los especialistas a detectar y caracterizar tumores precoces en la próstata.

2) Validar la adecuación de los diferentes modelos teóricos más comúnmente aplica-
cdos en la práctica clínica, mediante la incorporación secuencial de restricciones
en el algoritmo MCR empleando el conocimiento “a priori” que se tiene sobre el
proceso de difusión.

3) Proporcionar nuevas imágenes de biomarcadores que permitan complementar a los
más comúnmente usados en el diagnosis clínico.

Figura 1. Modelo MCR (99% de variabilidad explicada). (a) mapa de scores asociado a d1 
(difusión lenta, línea sólida azul). (b) Mapa de scores asociado a d2 (difusión rápida, línea verde 
punteada). (c) mapa de RSS (residuos al cuadrado). (d) Comportamientos proporcionados por 

el modelo MCR. 
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Abstract 
Optimal Design Of Experiments (DOE) in Mixture Design problems, in 
which the ratios of the different ingredients being blended are at least as im-
portant as their absolute quantities to achieve the final product desired prop-
erties, is here approached for both the situation in which data analysis will 
be made using classical tools such as Ordinary Least Squares (OLS) or Gen-
eralized Least Squares (GLS) as well as when it is to be made using methods 
based on Projection to Latent Structures (PLS). A comparison of the results 
achieved in both cases is made in order to evaluate to which extent building 
an optimal DOE in the latent space or in the original space influences the 
performance of a predictive model when using PLS-based methods for data 
analysis. 

Keywords: Mixture Design, Optimal Design of Experiments, Design of Ex-
periments, DOE, Projection to Latent Structures, Partial Least Squares, PLS, 
Ordinary Least Squares, OLS 
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Introduction 

Mixture design problems are those in which the ratios (r1, r2 … rJ) of the J different compo-
nents - or raw materials- of a blend are at least as relevant as their absolute quantities in 
terms of their influence on the final product properties of interest (Y). Different processes 
from the chemical, pharmaceutical or bioprocess sector can be addressed as mixture design 
problems where the process conditions (Z) and - in some cases - the raw materials proper-
ties (x1, x2 … xJ) are also considered. 

Due to the fact that the raw materials rates must sum up to 1 - or 100% - perfect collinearity 
among these variables is always present in this kind of problem. Traditionally a repara-
metrization of the classical polynomials - the Scheffé models - has been used in order to 
cope with this issue. As an example, the usual interpretation of α0,  αi, αij in the polynomial 

! ! = !! + !! · !!
!

!!!
+ !!" · !! · !!

!

!!!

!

!!!
 

makes no sense since α0 would correspond to the expected value for Y for a mixture with 
no ingredients at all, αi would be the change in such expected value when the ratio ri of the 
ith ingredient is increased in one unit without changing the ratios of the rest of the ingredi-
ents, and so on. Instead, when the constrain !!!

!!! = 1 is taken into account the previous 
polynomial can be reparametriced to the Scheffé polynomial  
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where !! would be the expected value of Y when only one ingredient of the mixture is pre-
sent and !!" is related to deviations from the ideal mixture for a mixture with only the ith 
and jth component. 

Although this reparametrization allows model fitting using techniques such as Ordirary 
Least Squares (OLS) or Generalized Least Squares (GLS), classical Design of Experiments 
(DOE) cannot be used. Extensive analysis on this matter has been made in the literature, 
pointing at standardized optimal designs of experiments depending on the degree of the 
polynomial, as long as the shape of the mixture space remains a simplex - a triangle if there 
are 3 ingredients, tetrahedron for 4 ingredients… (Cornell 2002, Snee 1976). 

However, when restrictions imposed on the rates of the ingredients - lower and upper 
bounds other than 0 and 1, and possible linear constrains - change the shape of the space in 
a way that it stops being a simplex, these standardized DOEs are no longer usable- further-
more, different sources of  correlation may appear which the Scheffé polynomials don’t 
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take into account. Even if no linear constrains are present, a highly restricted mixture space 
may lead to unreliable stimations of the coefficients of the fitted model, a problem that can 
be dealt by using methods based on Projection to Latent Structures (PLS), which also offer 
the possibility to fit models in the form of the classical polynomials, though with an inter-
pretation equivalent to that of the Cox models, a reparametrization of the scheffé ones (Ket-
taneh-Wold, 1992, Eriksson et al. 1998). 

By using PLS-based methods, the perfect collinearity among raw materials rates is no long-
er a problem and models built become much simpler, since there is no need to treat mixture 
variables and process variables differently. This also leads to DOEs with a - sometimes 
significantly - lower number of required experiments when process variables are taken into 
account, compared to the case where OLS-based methods are used for data analysis. 

On the other hand, OLS-based methods cannot be used if the raw material properties are to 
be considered when building the corresponding model. Instead, a number of PLS-based 
algorithms have been proposed, such as the L-PLS (Martens et al. 2005, Muteki and Mac-
Gregor 2007)], WS-PLS (García-Muñoz and Polizzi 2012) or the JR-PLS or TPLS (García-
Muñoz 2014), that can be used in such circumstances depending on the complexity of the 
data. 

In spite of all the aforementioned PLS-based methods and algorithms having been pro-
posed, it is seldom mentioned in the literature how the data was collected or which DOE 
was used - if any - although the results presented seem to be generally better, or at least as 
good, as those achieved using OLS-based methods, whenever a comparison is made. How-
ever, some work has already been done in this field and methods for selecting a good can-
didate set for calibration purposes or model building have been proposed [Wold et al. 1986, 
Ferré and Rius 1996, Wole et al. 2004). 

While it has been made clear that only PLS-based methods permit the analysis of data from 
the most complex mixture design problems, building a DOE in the latent space also re-
quires previous knowledge about it. Because of this and the fact that results in the literature 
seem to generally show that better results can be achieved using PLS-based methods com-
pared to OLS-based ones, despite the presented DOE having been built in the space of the 
original variables, here a comparison between the optimality of a DOE built in the original 
space and that of a DOE built in the latent space will be made, when data analysis is to be 
performed using PLS-based methods as well as OLS-based ones. 
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