Conceptual Schemas Generation from
Organizational Models 1n an
Automatic Software Production
Process

By Alicia Martinez Rebollar

PhD Thesis

Presented to the Department of Information Systems and
Computation of the Valencia University of Technology, Spain, and
to the Department of Information and Communication Technology

of the University of Trento, Italy in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy in Computer
Science

September 2008

The research reported in this thesis has been financially supported by
the SUPERA project in Mexico, the Valencia University of
Technology, Spain, the enterprise CARE Technologies S.A., and the
University of Trento, Italy.

© Alicia Martinez Rebollar

Printed in Spain
Valencia

Thesis Advisors:
Dr. Oscar Pastor Lopez, Valencia University of Technology, Spain
Dr. Paolo Giorgini, University of Trento, Italy

Thesis Committee:

Dr. John Mylopoulos, University of Trento, Italy

Dr. Xavier Franch, University of Catalonia, Spain

Dr. Jaelson Castro, University of Pernambuco, Brazil

Dr. Juan Sanchez, Valencia University of Technology, Spain

Dr. Vicente Pelechano, Valencia University of Technology, Spain

Abstract

At the present time, software engineering has proposed many
techniques to improve the software development process, but the
final goal has still not been satisfied. In most cases, the final software
product does not satisfy the real needs of the final customers of the
business where the system will be operated.

One of the main issues of current research works is the lack of a
systematic approach to map each modeling concept of the problem
domain (organizational models), into the corresponding conceptual
elements of the solution space (object-oriented conceptual models).
The main objective of this thesis is to provide a methodological
approach that enables the generation of conceptual and requirements
models from organizational descriptions. We use three different, but
complementary disciplines (organizational modeling, software
requirements and conceptual modeling) in order to achieve this
objective.

The thesis describes a requirements elicitation process that enables
analysts to create a business model that represents the current
situation of the enterprise. We consider that this model, which
reflects how the enterprise currently implements its business
processes, is the correct source to determine the expected
functionality of the system-to-be. A process to identify the elements
that are relevant to be automated from the business model is also
proposed in this work. As a result of this process, an intermediate
model is generated in order to represents the software system
requirements.

Finally, we present a set of systematic guidelines to generate an
object-oriented conceptual schema from the intermediate model. We
also explore the generation of a late requirements specification from
the intermediate model as an alternative solution for the thesis
objectives. A specific object-oriented conceptual modeling case tool
(OO-Method) is used to detail the software requirements of the
system-to-be. The OO-Method case tool has also been used to deal
with the aspects that are associated to the generation of object-
oriented conceptual schemas.

The main contribution of the thesis is to make the model
transformation process systematic by proposing a model-driven
based approach that uses rules, algorithms and patterns to derive both
an object-oriented conceptual model and a requirements model from
the organizational context.

Vi

Resumen

Actualmente, la ingenieria de software ha propuesto multiples
técnicas para mejorar el desarrollo de software, sin embargo, la meta
final no ha sido satisfecha. En muchos casos, el producto software no
satisface las necesidades reales de los clientes finales del negocio
donde el sistema operara.

Uno de los problemas principales de los trabajos actuales es la
carencia de un enfoque sistematico para mapear cada concepto de
modelado del dominio del problema (modelos organizacionales), en
sus correspondientes elementos conceptuales en el espacio de la
solucién (modelos conceptuales orientados a objetos).

El principal objetivo de esta tesis es proveer un enfoque
metodoldgico que permita generar modelos conceptuales y modelos
de requisitos a partir de descripciones organizacionales. Se propone
el uso de tres disciplinas, distintas pero complementarias (modelado
organizacional, requisitos de software y modelado conceptual) para
lograr este objetivo.

La tesis describe un proceso de elicitacion de requisitos que permite
al usuario crear un modelo de negocios que representa la situacion
actual del negocio (requisitos tempranos). Nosotros consideramos
que este modelo, el cual refleja la forma en la que se implementan
actualmente los procesos de negocio, es la fuente correcta para
determinar la funcionalidad esperada del sistema a desarrollar. Se
propone también un proceso para identificar los elementos que son
relevantes para ser automatizados a partir del modelo de negocio.
Como resultado de este proceso se genera un modelo intermedio que
representa los requisitos del sistema de software.

Finalmente, presentamos un conjunto de guias sistematicas para
generar un esquema conceptual orientado a objetos a partir del
modelo intermedio. Nosotros también exploramos, como solucién
alternativa, la generacién de una especificacién de requisitos tardios
a partir del modelo intermedio.

En esta tesis, una herramienta CASE para modelado conceptual
orientado a objetos (OO-Method) ha sido utilizada para detallar los
requisitos del sistema a desarrollar. Esta herramienta ha sido también

vii

utilizada para tratar los aspectos relativos a la generacion de
esquemas conceptuales orientados a objetos.

La principal contribucion de la tesis es hacer el proceso de
transformacion sistematico proponiendo un enfoque basado en
modelos, el cual usa reglas, algoritmos y patrones para derivar el
modelo conceptual y de requisitos a partir del modelo
organizacional.

viii

Sommario

Nella attualita, I' ingegneria del software ha proposto molte tecniche
per migliorare il processo di sviluppo di software, ma l'obiettivo
finale non & ancora stato soddisfatto. Nella maggior parte dei casi, il
prodotto di software definitivo non soddisfa le reali esigenze dei
clienti finali delle imprese in cui il sistema sara gestito.

Uno dei principali problemi degli attuali lavori di ricerca & la
mancanza di un approccio sistematico per mappare ogni concetto di
modellazione al problema di dominio (modelli organizzativi), nei
elementi concettuale corrispondenti dellao spazio di soluzione
(modelli concettuali object-oriented).

L'obiettivo principale di questa tesi € di fornire un approccio
metodologico che consente la generazione di requisiti concettuali e
modelli organizzativi da descrizioni. Usiamo tre discipline diverse,
ma complementari (modellazione organizzativa, requisiti software e
modellazione concettuale), al fine di raggiungere questo obiettivo.
Questa tesi descrive un processo di elicitazione di requisiti che
consente al utente di creare un modello di negozio che rappresenta la
situazione attuale. Riteniamo che questo modello, che riflette su
come l'organizazzione attualmente implementa i suoi processi di
negozio, & la sorgente corretta per determinare la funzionalita
richiesta del sistema. Si propone un processo per identificare gli
elementi che sono pertinenti per essere automatizzati da il modello di
negozio. Come risultato di questo processo, un modello intermedio €
generato che rappresenta i requisiti del sistema di software.

Infine, vi presentiamo una serie di linee guida sistematiche per
generare un schema concettuale object-oriented dal modello
intermedio. Abbiamo anche esplorato la generazione di una
specifiche di esigenze tardive del modello intermedio come una
soluzione alternativa per gli obiettivi di questa tesi .

Uno strumento CASE per la modellazione concettuale orientata ad
oggetti viene usata per dettagliare i requisiti del sistema a sviluppare.
Questo strumento € stato utilizzato anche per affrontare gli aspetti
che sono associati alla generazione di schemi concettuali orientati ad
oggetti.

Il principale contributo della tesi & quello di rendere il modello di
processo di trasformazione sistematica, proponendo un approccio
basato sui modelli, che utilizza regole, modelli e algoritmi per
derivare sia un modello concettuale e di un modello di requisiti dal
contesto organizzativo.

Resum

Actualment, la enginyeria del programari ha proposat multiples
teécniques per millorar el desenvolupament de programari, no obstant
aixo, la meta final no ha estat satisfeta. En molts casos, el producte
programari no satisfa les necessitats reals del clients finals del negoci
on el sistema ha d’operar.

Un dels problemes fonamentals dels treballs actuals és la manca d’un
enfocament sistematic per fer correspondre cada concepte de
modelitzacié del domini del problema (models organitzacionals), en
els elements conceptuals en I’espai de la solucié (models conceptuals
orientats a objectes).

L’objectiu principal d’aquesta tesi es promoure un enfocament
metodologic que permeta generar models conceptuals i models de
requisits a partir de descripcions organitzacionals. Es proposa I’Us de
tres disciplines, distintes perd complementaries (modelat
organitzacional, requisits de programari i modelitzacié conceptual),
per assolir aquest objectiu.

Aquesta tesi descriu un procés d’elicitacié de requisits que permet a
Iusuari crear un model de negocis que representa la situacié actual
del negoci (requisits primerencs). Nosaltres creiem que aquest
model, que reflecteix la forma en la que se implementen avui els
processos de negoci, és la font adequada per determinar la
funcionalitat esperada del sistema a desenvolupar. A més, es proposa
un procés per identificar els elements que sén rellevants per a ser
automatitzats a partir del model de negoci. Com resultat d’aquest
procés es genera un model intermedi que representa els requisits del
sistema de programari.

Per Ultim, presentem un conjunt de guies sistematiques per a generar
un esquema conceptual orientat a objectes a partir del model
intermedi. Com a soluci6 alternativa també explorem la generacid
d’una especificacid de requisits tardans a partir del model intermedi.
Per a detallar els requisits del sistema a desenvolupar la tesi empra
una eina CASE per la modelitzacié conceptual orientada a objectes
(O0O-Method). Aquesta eina ha estat també utilitzada per a tractar els

Xi

aspectes relatius a la generacio d'esquemes conceptuals orientats a
objectes.

La principal contribucid de la tesi és fer el procés de transformacid
sistematic proposant un enfocament basat en models, el qual empra
regles, algoritmes i patrons per derivar el model conceptual i de
requisits a partir del model organitzacional.

Xii

Acknowledgments

In January 2001, Hugo and | began this adventure. We never
imagined all the hard and beautiful moments that we were about to
live. Really I am very lucky, because | have known many great and
wonderful people. Today they are my friends. Besides, | have had
the opportunity to work in well-known research groups. This has
given an addition value to this research work.

I would like to thank many people, because this thesis could not have
been completed without their valuable support. First of all, | would
like to thank my advisor Oscar Pastor, for his great interest in, and
support of, the work that led to this thesis. He has taught me,
primarily by his own example, how to conduct high-quality research
at an international level. This work would not have been possible
without his human, technical and financial support, but mainly
I would like thank him for his friendship along these years. |
would also like to thank my advisors John Mylopoulos and Paolo
Giorgini for providing a great feedback on my work during my
research stay in the University of Trento. A special thank is also
extended to Jaelson Castro for his contributions, advice and
friendship.

My gratitude goes also to all committee members: John Mylopoulos,
Jaelson Castro, Xavi Franch, Juan Diaz, Vicente Pelechano as well
as to all my colleagues of the OO-Method Research Group: Nelly,
Isabel, Manoli, Joan, Jorge, Pedro, Marta, Javier, Gonzalo and
Victoria.

I must thank the one person without whom none of this would have
happened: my husband and colleague Hugo Estrada, He was who
motivated me to begin this adventure. He is my everlasting source of
strength, encouragement, love and happiness. Thank you, because
you are part of my life. You have given me Denisse and Iker. | must
also to thank them, because they have given me: strength, patience,
love and fondness. Besides, they help me to think that life cannot be
only work. Thank you my loves. You are all that | need to be happy.

Xiii

Last but not least, | have to thank my mother Teresa for her support
during these years of study. Also | would like to thank my brothers
who let me monopolize our mother in the last years.

Thank you all.
Alicia Martinez Rebollar

Xiv

Conceptual Schema Generation from
Organizational Models 1n an Automatic
Software Production Process

Contents
1. INTRODUCTION ..ottt ettt 1
00 A |V o i Y7 10] R 2
1.2 PROBLEM STATEMENT ...eiiiiutiieiitieeesitteeestreessstesssteeeessnseessareesansneaeanns 5
1.2.1 Requirements MOdelcccoceveveierieieieceeee e 7
1.2.2 Conceptual modeling.........cccvueiireriiniiicecrece s 8
1.2.3 Proposed SOIULIONcocviieiiiii e 9
1.3 RESEARCH GOALS ...eciitteieiiteeeitieesetteeestaeesstbeeesiateessataeesetbeeesnraeeenns 11
1.4 RESEARCH ENVIRONMENT ...iciiiiieiitieeeiiieeestreeesitreessnsressssvesssnenennns 12
1.5 RESEARCH DESIGN ..ueciuvieiiiieieeitieesteesreestreesteesareesteesteesnneesrassnsessnns 12
1.6 THESIS OUTLINEtttiiitieieeitreeeitteesitreeesbeeeestbeeessnreessateeesesbeeessranennns 15
2. RELATED WORKS ..ottt 17
2.1 INTRODUCTION ..iioiiiieiiiiieeetieeesttee e e site e e st e e s enve e s esbaeeesteeessaaeaesreeeas 17
2.2 METHODS FOR REQUIREMENTS MODEL GENERATIONccccovveninenns 19
2.2.1 The Santander proposal (2002).........cc.cccervverinerineiinreinnenens 20
2.2.2 The Ortin proposal (2001)cccccvvvveiiiiieiieiesesiesesee e 23
2.2.3 Loucopoulos proposal (1995)cccevvreireineiinreineennenes 26
2.2.4 The Dijkman proposal (2002)..........ccceveiivereieeiesiieniesiennens 30
2.2.5 EKD proposal (1995)......cccccciveieiiinieiienniesesenie e 32
2.3 METHODS FOR CONCEPTUAL MODELS GENERATION.........cccvveernrenn. 35
2.3.1 The Alencar proposal (2003)ccccovevvrverireneseseree e 36
2.3.2 The Ortin proposal (2001)ccccvervrvrivrierirreneseeree e 39
2.4 CURRENT METHODS FOR GOAL-BASED REQUIREMENTS ANALYSIS.40
2.4.1 The GBRAM proposal (1996).........ccccouvivevrivnrrinrnresierienenns 41
2.4.2 KAOS proposal (1993)ccccoveirrireineineisree e 43
2.4.3 Tropos proposal (2005)cccccceverreieriereerieieree e 45

XV

2.5 PATTERN LANGUAGE PROPOSALS.....ccvtteiitieeiireeeentreeesireeesssreessnreeeas 46

2.6 SUMMARY Lotiiiiiiiiitiiie ettt e e s sttt e e s s sabb e e s s s s e sabtae e e e s s saabbaeeeseseanes 48
PART | THE EARLY REQUIREMENTS.......ccooiii e 51
3. THE EARLY REQUIREMENTS PHASE........ccccooo i 53

3.1 INTRODUCTION ...ovieiiiieiieitieeiteeesteestteesteeasbeessbeesteesnaesstseeseesnneesseeens 53

3.2 THE EARLY REQUIREMENTS PHASEveeiiitiieiiieeeireeeeireeesirreeesreeens 56

3.3 THE FOUNDATIONS OF THE EARLY REQUIREMENTS PHASE 57

3.3.1 Goal MOUEIING ..o 57
3.3.2 Organizational Modelingccccovvviniiniennieinesesene 59
3.3.3 Tropos FramEWOIKccecveveerieieieseeise s se e s se e 60
3.4 GOAL-BASED REQUIREMENTS ELICITATION PROCESS........ccccvveennee. 64
3.4.1 Goal refineMENt PrOCESSvcveveerrereiirieee e 67
3.4.2 Analysis of contributions in the quality factors...........c......... 72
3.4.3 Analysis of conflicts among organizational goals 74
3.4.4 Points of view of the involved actorscccceeeveeviiicveeenenne 76
3.4.5 Delegation of plans to the software system actor 80

3.5 SUMMARY Lottt sb e a e 81
4. JOINING EARLY AND LATE REQUIREMENTS........ccoovevvinnee. 83

4.1 INTRODUCTION .oioitiiiteeitieeiteeeteesteeesteessteesaeeestesssseesanaessaessseessnssssens 84

4.2 THE MODEL DRIVEN ARCHITECTURE ..eccieiiiiiiieeeeeeerreee e e svvvieee e 85

4.3 PATTERN LANGUAGES........cctteiitieitteeiteesteestee e steesteesane e e sreesnnesneas 87

4.3.1 Structure of the pattern languagecccceevvveivvcenereieiennn, 88
4.4 PATTERNS IN THE ORGANIZATIONAL MODEL ...cccccovvvreieeeeesiivieeeeenn 89
441 USEd CONCEPLS ...ovirieriereeieereeie e etrsiesiestesee e e e ene s 90
4.42 The FELRE pattern languageccccoovvrernerneinecneene 92
4.4.3 Applying pattern [anguage.........ccccocevveiieniiieiienieseee e 94
4.4.4 Catalog Of PAtternsccccoveveeiieieiesier s 98

A5 SUMMARY ..ttt bre et be e e s e e s eabbaae s 139
PART Il LATE REQUIREMENTS ..o 143
5. EXTENDING THE ORGANIZATIONAL MODELS.................... 145

5.1 INTRODUCTION ..ttttiiieiiiiiireieeeesiirsreeeesssstsreseeesssssssesssessssrssesessnns 146

5.2 THE LATE REQUIREMENTS PHASEvceivieiirreiteesnieesineeseeeseeesnneenes 146

5.3 WHAT IS MONITORING? ...vvviiiiiiiiittieie et serrtee e e e ssreeeea e 147

XVi

5.4 THE MONITORING PLANS INSERTION PROCESS.......cccverieeireerineannes 148

5.4.1 Monitoring plans and monitoring data..........cc.ccceevvevereinnns 149
5.5 EXTENDING THE ORGANIZATIONAL MODELS WITH THE
IDENTIFICATION OF CONCERNED OBJECTS ...cciuveeteeeeeesieeesseesneeesneeansnens 152
5.5.1 Concepts and Models..........ccccevevirereieieieieeee e 152
5.6 THE GENERATION PROCESS OF THE CONCERNED OBJECTS MODEL .157
B5.7 SUMMARY c.ooiiiiiiie ettt ettt e e etee et e e s rte e e etae e s ebae e e etae e e neas 165
6. LINKING LATE REQUIREMENTS WITH THE ONME
CONCEPTUAL MODELoooiiiiieieccee et 167
6.1 INTRODUCTIONveeiiiieiieeieesiieesieeesteessteessneesaeessseessneessessnseessnnenses 168
6.2 SOME CONSIDERATIONS ABOUT THE ONME CONCEPTUAL MODEL
.. 169
6.3 THE ONME CONCEPTUAL MODEL GENERATION........ccvvveerirrreennen. 170
6.3.1 The ONME conceptual modelc.ccceevevvieiiniicirceee, 171
6.4 THE GENERATION PROCESS OF THE CONCEPTUAL MODEL.............. 182
6.4.1 Generation of a space of alternatives............c.ccceevervrirernnnn. 186
6.4.2 Rules for generating the conceptual model..............c.c......... 198
6.5 DYNAMIC MODEL GENERATION ...ccoiuirieiiieeiiireeecteeeeereeeesvneeesnnes 219
6.6 FUNCTIONAL MODEL GENERATION ...cccviiiireiiieiieesireesreesreesnne e 219
6.7 SUMMARY ...oiiiiiiiie ettt e see s iteessteeseeasteesnteesneeesaeeanteessneessasanteessaeennes 220
7. LINKING LATE REQUIREMENTS WITH THE ONME REQUIREMENTS MODEL
... 221
7.1 INTRODUCTION ..uetiutieiiiieiieeeieesteeeseeesteesnteesnneesaeesnseessnaessessseessnnennes 222
7.2 FOUNDATIONS OF THE REQUIREMENTS MODEL THE ONME
REQUIREMENTS MODEL ...vviieiiuvieiiitieeiitresssiteesesnte e s sabeessbaesssabessssvassesnees 225
7.2.1 Requirements MOUEIScccvvevereneiereneeesee e 226
7.3 THE GENERATION PROCESS OF THE REQUIREMENTS MODEL 228
7.3.1 Generating functional groupscc.cceevevveverienerereeceeenn 230
7.3.2 Discovering the use case model...........ccccovveviiniiniineenn, 232
7.3.3 BUilding SCENAIIOScccvviiiiiiie e 243
Tid SUMMARY ..ooeiiiiii ettt etee e st e e s ste e e ebae e e sbee e e ebae e e s reas 250
8. CASE STUDIES ...t 253
8.1 INTRODUCTION ..uutviiiieiiiiiitreieeeesiittreeeessesinreseeesssssssesssessssrssssessnns 253
8.2 DESCRIPTION OF THE CASE STUDIES ...ccuvieitieerieesteesireesreesveesane s 254
8.2.1 Technical Meeting Managementc.ccccoeevreiineinrennnens 254
8.2.2 Golf Tournament Management..........cccccoevvereeriereeieeesresnnnns 264
8.2.3 CarRental......ccccoooviiiice e 274

8.3 SUMMARY .oviiiiiiiiicttiie ittt stt ettt st sre e e sba e s ebee e s ebae e e nes 284

9. CONCLUSIONS AND FURTHER RESEARCH........cccccoviniene. 285
0.1 CONCLUSIONSutetieitinieetesiee sttt siee sttt ettt enn e e e b s e 286
9.1.1 The refinement process of the organizational model........... 286
9.1.2 The generation process of the conceptual models 287
9.1.3 The generation process of the requirements model 288
9.1.4 Using organizational model in the software production
PIOCESS ..ottt 288
9.1.5 Summary of contributionscccccevvviviieiiinie e 290
9.2 RELATED PUBLICATIONS......cetiutiiereiieeainieeesesiesnessesnesneseesnesnens 291
9.2.1 International JOUrNalSccccceveeveiiinr i 291
9.2.2 BOOK Chaptersccccvviiieriieieieceeeee e 291
9.2.3 International Conferences and Workshops.............c.ccceueunee. 292
9.3 FUTURE RESEARCH DIRECTIONSuvetiaiiatintiaienieniesiessennesneseennesnens 294
BIBLIOGRAPHY ...ciitiiiiiiesiiteiee sttt sttt ssbe ettt sntee e s 295
LIST OF FIGURESccuvtietieieeieeiceie ettt sttt sne e sne e 317
LIST OF TABLES. ..cttteiteieteestttesteeeteesseeesteesseeessseasseesnsaessenansessnsnsssnnensenan 323
GLOSSARY ...eiutitiieteste sttt st se ettt b sttt b e n e b e bbb nnenne s 325
LIST OF ABBREVIATIONS AND ACRONYMS......ccvmriiimrrenrenienrenrennenrenneseenns 329

Xviii

Chapter 1

Introduction

The main objective of this thesis is to provide a methodological
approach that enables the generation of conceptual and requirements
models from organizational descriptions. We use three different, but
complementary disciplines (organizational modeling, software
requirements and conceptual modeling) in order to achieve this
objective.

The thesis describes a requirements elicitation process that enables
analysts to create a business model that represents the current
situation of the enterprise. We consider that this model, which
reflects how the enterprise currently implements its business
processes, is the correct source to determine the expected
functionality of the system-to-be. A process to identify the elements
that are relevant to be automated from the business model is also

CHAPTER 1 INTRODUCTION

proposed in this work. As a result of this process, an intermediate
model is generated that represents the software system requirements.
Finally, we present a set of systematic guidelines to generate an
object-oriented conceptual schema from the intermediate model. We
also explore the generation of a late requirements specification from
the intermediate model as an alternative solution for the thesis
objectives. A specific object-oriented conceptual modeling case tool
(O0O-Method [Past01]) is used to detail the software requirements of
the system-to-be. The OO-Method case tool has also been used to
deal with the aspects that are associated to the generation of object-
oriented conceptual schemas.

The main aim of the thesis is to make the model transformation
process systematic by proposing a model-driven based approach that
uses rules, algorithms and patterns to derive both an object-oriented
conceptual model and a requirements model from the organizational
context.

Section 1 of this Chapter discusses the purpose of this research work.
Section 2 presents the problem statement that we try to solve and the
proposed solutions. Section 3 presents the research goals. Section 4
presents the context in which the thesis was developed. Section 5
presents the research design. Finally, section 6 outlines the structure
of the thesis.

1.1 Motivation

Building information systems is currently a very difficult task
[Thay02]. Many of the research studies in software engineering have
been done to ensure the correct construction of software products. In
this sense, Software Engineering provides a wide range of techniques
that aim at improving the quality in the software development
process: i.e., software requirements analysis, software design, novel
programming methods, verification and validation tests, software
configuration management, software quality insurance, analysis and
design methods, planning, projects scheduling, programming
languages, etc [Garz02]. All the techniques, methodologies and tools

1.1 MOTIVATION

of this kind have been proposed in order to develop correct and
usable software systems [Pres03].

Software Engineering has proposed many techniques to improve the
software development process, but the final goal has still not been
satisfied. In most cases, the final software product does not satisfy
the real needs of the final customers of the business where the
system will be operated. A good example of this is the great
investment made in the CASE technology in the late 1980s and early
1990s. Many organizations that invested in CASE tools found that
they had no significant effect on the productivity or quality of their
products [Koto98].

The CASE tools changed the process for building software systems,
increasing productivity by reducing the time associated to the
software implementation. However, the current CASE tools do not
address the real problems that these organizations were facing, such
as the requirements engineering problems [Koto98]. Kotonya
attributes some of these problems to [Koto98]:

e Lack of stakeholder involvement: the process does not
identify or take into account the real needs of the stakeholders
that are involved in the system. This problem can be
addressed by including explicit activities concerning
stakeholder identification.

e Business needs are not considered: The requirements
engineering process is seen as a technical procedure rather
than as a business-based process. This can lead to software
requirements that do not satisfy the real needs of the business.

e Lack of requirements management: The process does not
include effective techniques for requirements management.
This means that changes to the requirements may be
introduced ad hoc and that a great deal of time and effort may
be required to understand and incorporate these requirements
changes.

o Lack of defined responsibilities: The different people
involved in the requirements engineering process may not
fully understand their responsibilities. This means that some

CHAPTER 1 INTRODUCTION

tasks may not be carried out at all because everyone assumes
that someone else is responsible for it.

e Stakeholder communication problems: The different
stakeholders in the system (end-users, managers, engineers,
etc.) fail to communicate effectively so that the resulting
requirements document is not understandable (and hence
verifiable) by all the stakeholders. This results leads to the
implementation of incorrect or incomplete requirements,
which may only be discovered after the system has been
implemented.

However, this does not mean that current methodological proposals
do not provide appropriate solutions for developing a software
system, because they have been designed keeping in mind the
specification of the technical properties of the software-to-be. We
consider that the aspect that has been most neglected in the current
CASE tools is that these techniques do not take into account the
sources of the software system functionalities, which is directly
correlated with business objectives and processes.

In this context, we agree with Bubenko, Jacobson and Rational
[Bube94], [Jaco95a], [Rati02] on the importance of understanding
the organization before beginning the construction of a software
system. Emphasis must be placed on the following as a basis for
building the software system: the identification of the environment in
which the software system will work; the roles and responsibilities of
the employees using the system; and the “things” that are handled by
the business.

These authors [Rati02] [Bube94] [Giog05] [Jaco95a] argue that
some of the key questions that need to be considered for the success
of a software system are the following: where the system-to-be will
be used, whom it will be used by, how it needs to be integrated with
existing systems, which tasks it will automate, and under which
circumstances it will be executed.

These kinds of questions can only be answered by conducting an
analysis of the organizational setting. This will allow us to produce
an information system that adds real value to the enterprise where the
system will operate.

1.1 MOTIVATION

Within the scope of works that explore the use of organizational
models in software engineering, we can find business engineering
proposals [Jaco95a], which is a set of techniques to design business
processes according to the specification of the goals of the enterprise.
The business engineering techniques include:

e Procedures for design of the business.

¢ Notations that describe the design.

e Heuristics or pragmatic solutions to find the correct design,
which is measured in terms of the specification of goals.

All mechanisms of this kind enable software analysts to better elicit
the requirements of the system-to-be by showing which aspects
should be automated. Therefore, the requirements that were elicited
will manage the development of information systems that are
correctly adapted to the organizational setting and that offer the
appropriate functionalities to the final users. Although consensus
exists about the relevance of using organizational knowledge as the
correct source for determining software requirements, at the present
time, only a few research efforts are focused on the problem of
systematically reducing the real impedance mismatch between the
software system and its operational environment. This non-
correspondence makes it impossible for the information system to
have the necessary functionality to permit the organizational actors
to perform their organizational tasks. Thus, we consider that the
problem of methodologically joining the business engineering area
with software engineering has not yet been solved.

1.2 Problem statement

In the software engineering context there are interesting proposals
such as [Past01], [Insf03], [Cock01], [Kula03], and [Oliv03] that
methodologically guide the translation of the problem space
(represented as high abstraction models that represent the static and
dynamic system structure) to the solution space (represented as
software representations).

CHAPTER 1 INTRODUCTION

On the other hand, in the business engineering context, only a few
research works have been proposed to solve the problem of obtaining
software specifications from organizational models [Bider02],
[Cast02], [Fuxm03], [Koub00], [Kolp03], [Alen03], [Sant02], and
[Orti01]. These proposals are focused on specifying the basic
primitives that should be taken into account when a business model
is specified. Some of the issues that are addressed by these proposals
are: how to determine the primitives of the business patterns, how to
represent them, and how to be able to insert this business-based
modeling process into a traditional software production process. In
this context, some authors [Yu97] [Louc98] [Cast02] distinguish
between the early requirements phase (business engineering) and the
late requirements phase (software engineering).

The main issue of current research works in this area is the lack of a
systematic approach to map each modeling concept of the problem
domain (organizational models) into the corresponding conceptual
elements of the solution space (object-oriented conceptual models).
The goal of our proposal is to derive the late requirements phase
from the early requirements phase in order to correctly map the
organizational actor needs with the functionalities of the information
system. Thus, software engineering will solve the problems
associated with improving the quality of the generated software,
while business engineering will solve the problems associated with
understanding the environment in which this system will operate,
understanding the roles and responsibilities of the employees who
will use the system, and the "things" that are handled by the business
[Jaco95a].

Our premise is that the solution to systematically joining
organizational modeling with software specifications must include
the following characteristics:

e The method must provide a clear understanding of the
organizational environment where the system will operate. It
must both identify what the users do before using the
software system as well as understand how, by whom, and
under which circumstances the system will be used in the
organization setting.

1.2 PROBLEM STATEMENT

e The method must provide the analyst with techniques to
perform the software development process in a systematic
and precise way, putting emphasis on the specification of the
software system. The method must also provide the analyst
with complete code generation mechanisms.

The main contribution of this thesis is to improve the software
development process by providing a deeper understanding of the
activities and goals of the business. Two well-founded approaches
have been combined to fulfill this objective:

e The OO-Method approach [Past01], which is an automatic
production process that automatically generates complete
object-oriented systems based on the information contained in
the conceptual models. The OO-Method is used to deal with
the specification of requirements and conceptual models.

e The Tropos Framework [Bres04], which is a software
development methodology that is based on intentional
concepts, such as those of actor, goal, (goal, plan, resource,
softgoal) dependency, etc. It uses these concepts as a
foundation to model early/late requirements, architectural
design, and detailed design.

Although the method presented in this thesis has been applied in the
context of a specific software production process (OO-Method), the
solutions could be extensible to other requirements modeling
environments or conceptual modeling environments.

1.2.1 Requirements model

The main goal of requirements modeling techniques is to define the
functionality of a software system [Kula00]. One of the most popular
techniques for requirements engineering is use case modeling, which
describes the functionality of an information system from the point
of view of the system users [Cock01], [Sanc03], [Cons99]. Other
proposals, [Insf02a], [Robe99], deal with requirements modeling
using other design techniques, such as sequence diagrams, state
transition diagrams, or requirements specification templates. The
main idea in requirements modeling is to obtain complete processes

CHAPTER 1 INTRODUCTION

of requirements in order to obtain the expected functionality of the
information system-to-be.

The main drawback of the current requirements techniques is that
they only respond “what” actions the software system must execute.
However, these techniques cannot give an answer to "why" the
software system must be built.

McDermind [McDe94] indicates that when the functional
specification of the software system is the focal point of the
requirements analysis, requirements engineers tend to establish the
scope of the software system before having a clear understanding of
the user’s real needs. This is why many of the systems developed
from a requirements model that focuses only on the functionality of
the software system do not comply with their correct role within the
organization. Therefore, in a software production process that does
not have the organizational processes modeling as the first stage, any
effort to generate a prototype of an information system will not be
able to assure the utility of the software system in the context of the
organizational tasks.

Therefore, one of the purposes of this proposal is to use
organizational models as the starting point to obtain a requirements
model of the information system. To do this, we propose systematic
guidelines to help analysts to detect the relevant organizational plans
to be automated, and to use this information to generate a use-cases-
based requirements model.

1.2.2 Conceptual modeling

The traditional way of engineering information systems is through
conceptual modeling, which produces a specification of the system
to be developed. This specification focuses on what the system
should do, that is, on its functionality. Such a specification acts as a
prescription for system construction [Roll99b].

In current conceptual modeling approaches, the generated models are
represented from the analyst’s viewpoint. This can be a drawback
because understanding and recording the effect of business changes
on requirements has not yet been solved. Requirements also change
even as the system is being developed. [Luba93].

1.2 PROBLEM STATEMENT

Conceptual modeling approaches are currently focused on specifying
software functionality aspects, determining what the software should
do, and establishing the justifications and restrictions of the software
system-to-be. Rolland denominates these activities as the definition
of the desired system [Roll99b].

The need to take into account a large number of semantic details in
the construction of an information system has led to great diversity in
conceptual modeling techniques. One of the most well-founded
conceptual modeling techniques is OO-Method [Past96], [Past97],
[Pele01]. This is an automatic production process method based on a
formal object language called OASIS. This software production
environment allows applications to be built in automatic way from
conceptual models.

However, we consider that in order to produce software systems that
satisfy the user’s needs, the conceptual modeling process must be
enriched by proposing techniques for understanding organizational
processes.

One of the main purposes of this work is to provide systematic
guidelines that allow us to obtain a conceptual model for the
software system from organizational descriptions. The generated
conceptual model must be the input of the OO-Method software
production process, which will generate the information system in an
automatic way

1.2.3 Proposed solution

As stated above, several research efforts have been made to
accurately represent an organizational model (this stage is known as
the early requirements phase) [Cast02] [Kolp03] [Bube94] [Cesa02].
In these works, conceptual primitives represent organizational goals,
organizational actors, and dependencies among these actors. There
are also several research works that focus on the development of
requirements models (late requirements) to represent the expected
functionality of the information system [Kolp03] [Cock01] [Kula00]
[Roll99b].

CHAPTER 1 INTRODUCTION

We consider that the problem of linking organizational models with
requirements models in a methodological way has not yet been
solved satisfactorily. One of the main reasons for this is the different
nature of their specifications. In the early requirements phase, the
modeling concepts are associated to the organizational context, while
in the late requirements phase, the modeling concepts are associated
to the software system to be developed. Therefore, there is a
significant conceptual distance between the abstraction levels of the
two specifications.

The lack of systematic methods to generate the expected
functionality of the software system from the relevant tasks of the
organizational model has led to severe limitations in the usefulness
of these works in real software development environments.

We propose a methodological approach to reduce the abstraction
level of a “pure” organizational model so that it is closer to the
requirements model. The reduction process generates a new
intermediate organizational model that is correctly adapted in order
to systematically generate the requirements model and the
conceptual model of the system-to-be. A set of rules for deriving the
software specification from the new organizational model is also
proposed.

The complete translation process is based on a set of
transformational steps that are implemented in a model-driven based
approach:

e A goal analysis method is proposed to elicit the current
situation of the enterprise. As a result of this step, a “pure”
organizational model that reflects the current enterprise
situation is generated.

e A goal-based method is proposed to determine which
alternatives best satisfy the enterprise goal using a software
system.

e A methodological guideline has been developed to reduce the
abstraction level between the organizational modeling phase
and the system design phase (requirements model and
conceptual model). The reduction process is implemented by
using a pattern language called FELRE (From Early

10

1.3

1.2 PROBLEM STATEMENT

Requirements to Late Requirements). As a result of this step,
an intermediate organizational model (that extends the pure
organizational model with monitoring plans and concerned
objects) that represents the relevant aspects to be automated is
generated. This is done to create a model that is closer to the
system-to-be.

A methodological guideline has been developed to establish
the correspondences between an intermediate model and a
requirements model. As a result of this step a use-case-based
specification is created.

Finally, a methodological guide has been developed to
establish to correspondences between an intermediate model
and a conceptual model. An object-oriented model is created
as a result of the application of this step.

Research goals

This thesis has three main research goals:

a)

To reduce the abstraction level of a “pure” organizational
model so that it is closer to the requirements model.

b) To propose a methodological guide that allows a

c)

requirements model to be obtained from an organizational
model.

To propose a methodological guide that allows a conceptual
model to be obtained from an organizational model.

The first research goal has been satisfied by dealing with the
following sub-goals:

A goal-based requirements elicitation process, which
provides a deep understanding of the organizational
environment in order to identify the relevant tasks that should
be automated according to their relevance to satisfy the
organizational goals.

A systematic pattern-based process to reduce the abstraction
level of a model, by obtaining an intermediate model that is
closer to the software system-to-be.

11

CHAPTER 1 INTRODUCTION

The second and third research goals have been satisfied by dealing
with the following sub-goals:
e Extending organization model with monitoring plans and
concerned objects in order to create a model that is closer to
the system-to-be.

e Developing a methodological guideline that establishes the
correspondence between the functionalities that best satisfy
the organizational goals and the requirements model.

e Developing a methodological guideline that establishes the
correspondence between the functionalities that best satisfy
the organizational goals and an object-oriented model.

One of the main advantages of our approach is that it deals not only
with what or the how a piece of software is developed, but also why.

1.4 Research environment

This thesis was developed in the context of two well-known research
groups: the Object-Oriented Methods for Software Development
Group (OO-Method Group) of the Valencia University of
Technology (UPV — Universidad Politécnica de Valencia) in close
collaboration with the company CARE Technologies S. A., and the
Tropos group (Requirements-Driven Development for Agent
Software) of the University of Trento, Italy (UNITN).

The work presented here is the result of the efforts of researchers at
the OO-Method Group. The results obtained are currently being
applied in case studies in both academic and real projects of the Care
Technology Company.

There are currently large investments being made to develop tools to
incorporate the technology in commercial software development
products through R&D contracts between UPV and CARE
Technologies.

1.5 Research design

This thesis presents six processes, which are summarized in Figure
1.1. The first five processes occur in two phases: the early and late

12

1.5 RESEARCH DESIGN

requirements phases. The last process is related to the validation of
the proposed method by developing case studies. The description of
each process is briefly explained below.

Process 1.
Identification of the
tasks to be automated

Set of automation
patterns

A

Process 2.
Insertion of software
system actor in the
organizational model

|

aseyd sjuswalinbay Ape3

Insertion of monitoring
plans and concerned
objects

Rules and
algorithms

Process 4.
Generation of
conceptual models

\
Process 3.
Extending

organizational model

Process 5.

=

& Generation of a Rules and

3 requirements model algorithms
v

Process 6.
Validation of proposed
/ method by case studies

Figure 1.1 Summary of process developed in this thesis
Process 1. Identification of the tasks to be automated.

The starting point of the proposed method is to understand the
organizational processes before building an information system.
Thus, we started in the early requirements phase, which deals
with the analysis of the operational environment where the
software system will operate [Yu97]. In this process, a goal-
based requirements elicitation process is proposed, which allows
us to identify the relevant tasks that must be automated in order
to achieve the organizational goal. Chapter 3 describes this
process.

13

CHAPTER 1 INTRODUCTION

Process 2. Insertion of the software system actor in the organiza-
tional model.

The strategy of the second process is to insert the software
system as an organizational actor into each organizational model.
The objective of this process is to consider all the possibilities
that exist to delegate tasks and goals from the stakeholders to the
software system.

As a result, the system-to-be and its components are represented
as a new actor who is responsible for the fulfillment of relevant
tasks. We use transformational rules, which are defined by a set
of patterns in a pattern language to carry out the equivalence
between the organizational and late requirements models.
Chapter 4 describes the process.

Process 3. Extending organizational model.

In the third process, the extensions carried out in the
organizational models (insertion of monitoring plans and
identification of the concerned object) are done to analyze the
impact of the system-to-be on the goals of the business. Chapter
5 describes the process.

Process 4. Generation of conceptual models.

In this process, we present the rules and algorithms to establish
the correspondence between the elements of the organizational
model and the conceptual models of the system-to-be. Chapter 6
describes this process.

Process 5. Generation of a requirements model.

In this process, we present the rules and algorithms to establish
the correspondence between the elements of the organizational
model and the use case model as well as their corresponding
scenarios. Chapter 7 describes this process.

Process 6. Validation of method using case studies.

The last process is related to the validation of the proposed
method to obtain the requirements model and the conceptual

14

1.5 RESEARCH DESIGN

model. Therefore, three case studies were carried out to evaluate
our proposal. Chapter 8 briefly details the case studies.

1.6 Thesis outline

The remainder of this thesis is organized in the following chapters:

Chapter 2. Related works

This Chapter provides a review of the state-of-the-art of some of the
relevant topics developed in this thesis. Requirements model
generators, conceptual model generators, goal-based requirements
analysis methods, and pattern languages proposals. Our intention is
to discuss the strengths and weaknesses of each proposal.

Chapter 3. The early requirements

This Chapter presents the goal-based requirements elicitation process
that is proposed in this thesis. We detail the process proposed with a
set of steps that allow us to find the best way to develop
organizational tasks in order to achieve organizational goals. We also
briefly describe the basic concepts of the Tropos framework.

Chapter 4. Joining early and late requirements

This Chapter describes the method that is proposed to reduce the
abstraction level between the organizational modeling phase and the
system design phase. This process is guided by a set of patterns that
allows the software system to be inserted into the organizational
model as an organizational actor.

Chapter 5 Extending organizational models

This Chapter presents the extension carried out in the organizational
model. Therefore, the insertion of monitoring plans and the
identification of new elements (called concerned objects) in the
organizational model are carried out. The objective of this process is
to determine which tasks best fulfill the goals of the business in order
to build an information system.

Chapter 6 Linking late requirements with the ONME conceptual
model

This Chapter describes a method for generating the OO-Method
conceptual schema model from the organizational model. It also

15

introduces the OO-Method approach, describing its four
complementary views: Object, Dynamic, Functional and
Presentation Models. Then, a brief introduction of the OASIS formal
specification language is also explained.

Chapter 7 Linking late requirements with the ONME
requirements model

This Chapter describes a method for generating the requirements
model from the organizational model. This process is conducted
using a set of algorithms and rules. This Chapter also describes the
concepts of the RETO* methodology used in the OO-Method, which
is the target of our proposal.

Chapter 8 Cases studies

This Chapter describes the case studies that were carried out as
validation of our proposed method.

Chapter 9 Conclusions and further research

This Chapter summarizes the contributions of this thesis, including
current and future work and the publications associated with them.

! Requirements Engineering TOol

16

Chapter 2

Related works

This Chapter provides a review of the state-of-the-art of some of the
relevant topics in this thesis: requirements model generators,
conceptual model generators, goal-based requirements analysis
methods, and pattern languages proposals. The objective of this
analysis is to adequately contextualize our research work by defining
the strengths and weaknesses of the methods analyzed as well as
highlighting our contribution with the existing proposals.

2.1 Introduction

Nowadays, several research groups work in developing requirements
engineering methods that make feasible the development of
information systems which precisely comply with the users needs.

CHAPTER 2. RELATED WORKS

Some of these works are focused on late requirements, which
concern the definition of requirements for the system-to-be.
Therefore, these proposals consider activities such as requirements
analysis [InsfO2b] or conceptual modeling [Past99] [Booc99].
Several attempts have been done to produce software specifications
from previous stages of organizational modeling. Some of these
techniques focus on using requirements as an intermediate model
between the organizational model and the software conceptual model
[Ort01] [Sant01]. In this approach, the conceptual model, that
represent the dynamic and static structure of the system, is viewed as
a natural result of the requirements modeling activity that determines
the expected functionality of the software system. The advantage of
this approach is that it is possible to carry out previous analysis with
the requirements specification to include, for instance, non-
functional requirements before thinking in generating a conceptual
model. Nevertheless, one of the main disadvantages of this approach
is the definition of a large number of modeling stages (organizational
modeling, requirements model generation, conceptual model
generation, implementation generation), which make the software
development process costly in time and effort.

Another works focus on generating conceptual models directly from
organizational models without going through a requirements model
[Alen00]. The main advantage of this approach is the few modeling
stages that are needed to derivate a software product. The main
disadvantage of this approach is the lack of the appropriate basis to
determine the organizational activities that are relevant to be
automated by the information system to be developed.

Some of the most relevant works in goal modeling are analyzed that
focused on obtaining software requirements from organizational
goals. Some relevant works in pattern language technology, which
plays a very important role in this thesis, has also been analyzed in
this Chapter.

18

2.2 METHODS FOR REQUIREMENTS MODEL

2.2 Methods for requirements model
generation

This section discusses five methods that generate requirements
models from organizational settings: Santander proposal [Sant02],
Ortin proposal [Orti01], Loucopoulos proposal [Louc95], Dijkman
proposal [Dijk02] and EKD* proposal [Bube98]. The main objective
of this analysis is to determine the role of these current methods in
the early requirements phase.

Table 2.1 shows an overview of these five methods that considers the
following aspects: the inputs of the analyzed methods, theirs role in
the development process, the proposed methodology, the
methodology used to create the requirements model, and the output
of the method. It is important to point out that this is not an
exhaustive analysis and it only pretends to highlight some
similarities and differences between the methods.

1 EKD Enterprise Knowledge Development

19

CHAPTER 2. RELATED WORKS

Table 2.1 Overview of methods generating a requirements model

Loucopoulos

Santander Ortin Proposal proposal Dijkman proposal| EKD proposal
roposal (2002 2001] 2002 1995
proposal (2002) (2002) (1005) (2002) (1995)
Business models UML Diagrams (Role |Business goals Business process Analysis and

Input of the | (early requirements | diagram, sequence (activity diagram) understanding of
method phase) diagram and process the enterprise
diagram)
X i* framework UML diagrams Teleological Views UML diagrams EKD Notation
Notation

Rolein the
development
process

It uses guidelines to
find use cases of the
software system to-
be; it also requires
the experience of the
requirement
engineers.

It uses role diagram
and sequence
diagram to find use
cases of the software
system to-be.

It uses models to
show scenarios with
the different situations
that satisfy the vision
and criteria for
changing the
business.

It uses a procedure
to transform
business process
models into UML
use case diagrams.

It uses multiple and
complementary
views for modeling
process in an
enterprise.

This method is

cases.

This method is

software system to-

This method is

tasks and to detail

This method is

business process in

Computer aided

focused on analyzing |focused on focused on capturing | focused on creating |documentation of
business goals in determining the reason that exists | meta-models for knowledge
Methodological order to obtain use [functionalities of the | behind the business | both use cases and | about enterprises

approach be. how a certain activity |order to compare
has been assigned to |them and detect
an organizational differences and
actor. similarities.
Method to | Guidelines and Some steps are Three complementary |A table of mapping | Analysis of the
define heuristics are provided views to carry on the | of primitives is information of the
requirements provided analysis are required. |provided and a set |proposed models
model of steps is proposed

Output of the
method

Use case models and
scenarios
represented in UML

Use case models and
scenarios
represented in UML

A requirement model
for the system-to-be

Use case model
represented in UML

A set of high level
requirements for
the information
system to- be

A Drief description of each proposal is presented below. The
description makes emphasis on the advantages and disadvantages of
each method.

2.2.1 The Santander proposal (2002)

The main objective of the Santander proposal [Sant02] is to generate
scenarios and use cases represented with the UML for the software
system from organizational models represented with the i*
framework.

The author argues that the i* framework provides an early
understanding of the organizational relationship in the business
domain, which is needed to develop a software system that complies
with the users needs. This is because the organizational modeling

20

2.2 METHODS FOR REQUIREMENTS MODEL

process requires an integrated view of the functional and non-
functional aspects, which are needed to support the alternative
selection of early requirements.

Santander proposes a set of heuristics that helps the requirements
engineer to determine the existence of potential use cases from the
organizational model specification.

The use case model was adopted by Santander as a first step to
describe the functional requirements of the software system. Usually,
the UML wuse cases are developed without considering the
organizational requirements. In Santander works, it was argued that
use cases developed from the organizational model permit the
requirements engineer to establish relationships between the
functional requirements of the system and the organizational goals
previously defined in the organizational model.

The steps to integrate an i* organizational model and a UML use
case model according to Santander proposal are shown in Figure 2.1,

Guidelines are applied in

each integration process

step under a goal-oriented
analysis.

[Goal-Oriented Analysis]

2. Discovering 3. Discovering and
use cases for describing scena-
the actors. rios of use cases.

]

1. Discovering
actors.

Organizational
models developed
through i*
framework.

Use Cases
Diagrams and
textual
description of
scenarios

Figure 2.1 Steps to integrate i*organizational model and the UML use case models
[Sant01]

1* Step: Discovering actors. The inputs of this modeling stage are
the strategic dependency model (SD) and the strategic rationale
model (SR), which reflect the business behavior. This step analyzes
the relevance of each organizational actor according to the

21

CHAPTER 2. RELATED WORKS

informational system-to-be. The author proposed some guidelines to
support the process to discover the actors.

Guideline G’1: all actors in i* must be analyzed for a possible
mapping into actors of the use case models;

Guideline G’2: if the actor in i* model is external to the intended
computational system, then it is a candidate to be transformed into a
use case actor;

Guideline G’3: if the actor has some kind of dependency with the
actor who represents the system to be developed, then it is a
candidate to be transformed into a use case actor;

Guideline G’4: 1S-A relationships in i* model are mapped as
generalizations links in the UML use case diagrams;

2nd Step: Discovering use cases. An analysis of each actor is
carried out in order to determine its role in the dependency
relationships. The role of each actor is also analyzed in order to
select those actors who play the role of dependee in the dependency
relationship®. The analysis of dependencies is carried out as follows:
Guideline G’5: for each actor in the model, we must analyze all the
dependencies of the analyzed actor with the actor that represents the
system to be developed. The objective of this guideline is to discover
the use cases from the actors.

Guideline G’6: for each actor in the model, we must analyze all the
dependencies of the actor that represents the system-to-be with the
organizational actors. The objective of this guideline is to discover
new use cases from relationships of this kind.

Guideline G’7: classify each use case according to its objective type
(contextual objective, user objective, sub-function objective).

3rd. Step: Discovering and describing the main and alternative
flows of the use cases: The primary and secondary scenarios are
described in this phase, as well as the relationship between use cases.
This information is taken from the strategic rationale model. As a
result of this step, the use case diagram and the textual scenario
description for each use case is generated. The guidelines to support
this step are the following:

1 This concepts are detailed in Chapter 3 of this thesis (subsection 3.3.2.1)

22

2.2 METHODS FOR REQUIREMENTS MODEL

Guideline G’8: analyze each actor and its relationships in the
strategic rationale model in order to extract information that
generates the description of the main and alternative flows.
Guideline G’9: each use case must be analyzed to check for the
possibility to refine it and generate new use cases.

Guideline G’10: create the use case diagram using the discovered
use cases and actor.

The main contribution of this method is the set of heuristics
proposed, which helps the requirements engineers to develop the
UML use cases based on the organizational models. This method
also represents the software system as an actor in the organizational
models in order to determine the activities of the organizational
model needed to be automated.

One of the main issues of the Santander proposal is that the
heuristics presented are not enough to obtain use cases in a
systematic manner. For example, the heuristic presented in second
step, which has the objective of discovering the potential use cases,
does not clearly suggest how to obtain them. Sometimes, the uses
case will be the resultant product of an analysis of task and resources
dependencies, sometimes, the use cases need to be obtained directly
from goal dependencies, or even from resources dependencies. A
similar problem occurs with the use cases scenarios determination,
since it is necessary to analyze the four organizational models
(dependency and strategic rationale with or without the software
system actor) to obtain the scenarios.

The proposed heuristics are just guidelines to support the integration
of i* with use cases modeling techniques. It is pointed out that for
the application of these heuristics; great experience is required from
the requirements analysts.

2.2.2 The Ortin proposal (2001)

The work proposed by Ortin [OrtiO1l] presents a strategy to
systematically obtain use cases models and conceptual models from
a organizational model specification.

Figure 2.2 shows a schema of this proposal, which is based on UML
activity diagrams.

23

CHAPTER 2. RELATED WORKS

1 Role diagram Sequence Diagram bm =22 Process diagram 42 !
i boL
ol e - e RPPR— B s 1 1, " . T
Business mode | | ' ot
- L. i ' [
i v rF :
1 . L] 1]
' N Requirements K ! Glossary
v 7} analysis J |-
[¥ -]
£ - i ‘I
| ; 4a
Y — e R
v P . o
| Ty =T] " L
—O¢TT oneT
¢ i
s R OHT 4
~ e =t
Use case Diagram Conceptual model

ofthesystem

Figure 2.2 Traceability relationships among an organizational model and a
requirements model

The authors argue that the organizational model can be the most
important basis to the requirements specifications of an information
system, which pretends providing support to the enterprise activities.
Therefore, use case modeling and conceptual modeling are carried
out at the same time in this proposal, making it easier the
identification and specification of the suitable use cases, according to
the suggested by Korson [Kors99].

The organizational modeling activity is implemented using the
traditional UML diagrams: business use cases diagram, roles
diagram, sequence diagram and process diagram, as well as a
glossary which contains the business rules. The initial use case
collection and the preliminary conceptual model are obtained from
these UML models.

24

2.2 METHODS FOR REQUIREMENTS MODEL

In the Ortin proposal, it is necessary to generate a use cases system
for each activity diagram in order to generate the use cases model for
the information system.

In the example shown in Figure 2.3, the following business activities
were considered as potential use cases: fill order, send order, notify
accepted order, notify rejected order, analyze viability, order
fabrication, and organize production. It is necessary to point out that
some of the use cases will not be obtained from the process diagram,
but they will be detected by describing the identified use cases and
by acquiring a great knowledge about the requirements that should
be supported by the information system.

A specific template must be used to describe the detected use cases.
Once the use cases have been detailed, these are connected with the
specification in the glossary in order to make the correspondence
between business use cases and system use cases.

The main contribution of the Ortin method is the systematic
transition from the business modeling to the requirements modeling
phase and the conceptual modeling phase.

25

CHAPTER 2. RELATED WORKS

:Customer :Commercial :BossTechnician :BossProduction

:catalogue

Fill order

-
=== p:Order g
[evaluated]

| |

I

I

1| Special

1 |_product

| TEMplate of I
Production

AN v
Notify accepted Order fabrication =y{p:Order of work| [=1
order
- [pending] '
| (—i
Organize prodt

p:Order
acepted]

p:Order

_-
- N
[rejected] e
1

End OK

Figure 2.3 Process diagram which enables to obtain the use cases.

One of the main issues of this proposal is that it is focused on the
information system generation, and most of the key aspects of the
business modeling have been neglected, such as the relationships of
tasks with organizational goals, the intentionality behind the tasks,
the description of types of dependencies which join the actor, the
strength of this dependency and the task decomposition.

We argue that most of the issues of this proposal have the source in
the weakness of UML to express the complex behaviors that exist in
enterprises [Cesa02] [Alen03].

2.2.3 Loucopoulos proposal (1995)

This proposal is based on the explicit modeling of the organizational
objectives, the social roles and the operations from the Teleological
point of view. One of the main premises of this proposal is that an
organizational model is relevant if it allows us to provide
explanations about the behavior of the enterprise. Teleological

26

2.2 METHODS FOR REQUIREMENTS MODEL

proposal establishes the analysis of goals and the analysis of
organizational dependencies as the first step for and in-depth
understanding of the enterprise. This approach, which has been
called teleological, is useful for capturing the reasons that exist
behind the business task and also for explaining how a certain
activity has been assigned to a specific organizational actor.

The teleological technique is composed of five basic elements: goals,
roles, actors, processes and resources. The goals are the core of the
modeling process because they provide clear explanations about the
current and future configuration of the enterprise. The concept of
actor considers people as organizational units and as basis constructs.
Processes are the mechanisms that permit changes of states in the
organizational system. Finally, resources are the informational or
physical means that are produced as result of the business processes.
Teleological approach includes three complementary views for
representing an organizational model: the teleological, social, and
process views. Each phase is described below:

Teleological view (Figure 2.4): The goals of the stakeholders are
represented in this view.

The goals imply intentions and also represent solutions to the
problems of the enterprise.

The constraints, which are operational goals, must be formulated in
terms of precise properties and actions

Social view: the organizational actors and their interactions are
detailed in this view (Figure 2.5). The actor is a key modeling factor
since the actor is the entity responsible for executing the
organizational activities. An actor can be and individual (person, a
software system, etc) or an organizational unit (department, division,
section, etc). The roles are a set of processes that are assigned to a
specific agent. This assignation is dependent on their goals and
capabilities. An actor can play several roles at the same time.

27

CHAPTER 2. RELATED WORKS

constraints
affects o~ CONSTRAINT

constramed_by

. . ON
is_affected by
[E——
N GOAL
composes 1s_decomposed_by
5 oN
0N

Figure 2.4 The teleological view of the enterprise modeling

INDIVIDUAL a=YpackToH _ IN ORGAI\"IS:-‘J[ON;\L
=

is_responsible_for
1N

is_assigned to
1N

is_dependent upon

DEPENDENCY|

FUNCTIONAL
DEPENDENCY

STRUCTURAL
DEPENDENCY

Figure 2.5 Meta-model of the social view

Process view: this provides a general view of the current process in
the enterprise (Figure 2.6). This view also considers the resources
that are relevant for the execution of the processes. The process view
permits the representation of triggers that correspond to changes in
the business. The events represent the dynamic dependencies among
the processes. The events can be generated by processes or by

temporal conditions.

28

2.2 METHODS FOR REQUIREMENTS MODEL

EVENT

generated_by triggers
0N IN
[| N

generare| triggered_by
N 1IN

carried_out_in

of
LN

LOCATION

0N of
IN

MATERIAL

RESOURCE

decomposed_into
0N

INFORMATIO!

Figure 2.6 Meta-model of the process view

composed_mto
1N

Some of the advantages of this proposal are:

The views of the teleological model can be very useful for
constructing an initial set of requirements for either the business
model as for the software system.

The proposal considers a well-defined graphical notation for each
business view. The views consider only a small number of modeling
elements.

The technique enables us to define functional and structural
dependencies. This characteristic is useful for determining when the
tasks of a certain actor influence the execution of tasks of other
organizational actors.

However some disadvantages of this proposal are:

Two kinds of analyses must be carried out. The first is the
determination of the high-level objectives of the enterprise and their
refinement until the operational activities are elicited (prescriptive
analysis). The second analysis concerns the details of the operations
of the current business processes (descriptive analysis). However, no
details are given in order to reconcile the two specifications when
there is no precise match between them.

There is only a brief explanation about goal decomposition. No
details are given about conflicting or redundant goals. Also, there is

29

CHAPTER 2. RELATED WORKS

no formal description of the elicited goals, which makes it difficult to
validate the goal model.

Only a brief explanation of the traceability among the different views
of the proposal is given.

There is not an explicit association between the goal model and the
process model. This makes it difficult to identify the processes that
give support to a specific enterprise goal.

The complete explanation of the business model implies the analysis
of the three models. Therefore, it is not possible to have a unique
global view of the current business process, which can be very useful
for business process reengineering.

2.2.4 The Dykman proposal (2002)

Dijkman et al [Dijk02] propose a technique to derive functional
requirements, specified with use case diagrams, from existing
business process models.

The authors argue that, due to the existing similarities between the
definitions of business process and use cases, a business processes
can also be described by using use case models [Nurc98] [Jaco99]
[Jaco94] [OMGO1]. To validate this assumption, Dijkman proposes
the creation of meta-models for both use cases models and business
process model in order to compare them and detect differences and
similarities.

The comparative analysis between both meta-models results in a
mapping which is the basis for the transformation procedure of
business process models into use case diagrams.

The meta-model of a use case diagram is shown in Figure 2.7. It is a
simplified version of the meta-model that can be found in the UML
specification [OMGO1].

30

2.2 METHODS FOR REQUIREMENTS MODEL

succeeds

precedes IO.." 0.. "I
Actor Generalisation Interaction
n oy - 1 *
1| actor generalization| = +|specialization tateraction 1.
* child|1 1]parent 7
Association . Use Case base include Include
usecas T -
* 1 1 *
1 addition
extension] 1 1] base
point | * extend | + :.c
Extensionpoint Exiend
1 *
point

Figure 2.7 Use case meta-model

The business process meta-model is shown in Figure 2.8. It has been
constructed by generalizing the meta-models of 18 business tools
analyzed in [Domm99].

The basic steps to define the mapping between business processes
and the use case models are the following:

First, an initial mapping between concepts and relations of both,
business and uses case specifications must be performed. The initial
mapping is based on the definitions of the concepts and relations. A
summary of the mapping correspondences for business process

modeling concepts and use case modeling concepts is shown in
Table 2.2.

Task

Role responsible Model Element A

1 = \\\

source| 1 1] destination
* &
Guard Transition Branch
0.1 1
guard

Figure 2.8 Business process meta-model

31

CHAPTER 2. RELATED WORKS

Then, a formal specification is proposed in order to verify the
correctness of the initial mapping among models. The formal
specification of the mappings specifies the extension of the concepts
and relations. Thus, the validations of the mapping consists of a Z
specification of the mapping itself, and a Z specification that we
derived from the meta-models on the modeling techniques.
Nevertheless, the Dijkman approach has as a limitation: it does not
provide absolute proof that the procedure is correct. The reason for
this is that the formal specification of the procedure that is used as
proof merely allows us to validate the procedure. It cannot provide a
formal proof of the correctness of the procedure [Dijk02].

Table 2.2 Mapping from business process to use case concepts

Business Process Concept

Use Case Concept

Role Actor

Step Use Case

Association between Role and Association between Actor and Use
Step Case

Task Interaction

Task in a Step

Interaction in a Use Case

Transition between Tasks in the
same Step

Ordering between Interactions in the
same Use Case

Guard on Transition

Constraint on Interaction

Alternative Path through a Branch

Alternative Path Description
of a Use Case, or Extending Use Case

2.2.5 EKD proposal (1995)

EKD [Kiri94] [Bube94]is an approach that provides a systematic and
controlled way of analyzing, understanding, developing and
documenting an enterprise and its components, by using Enterprise
Modeling.

32

2.2 METHODS FOR REQUIREMENTS MODEL

The Enterprise Model contains six interrelated sub-models (Figure
2.9). Each of them represents some aspect of the enterprise. The
types of sub-models and issues are:

Goal Model (GM) focuses on describing the goals of the enterprise.
This model permits the identification of relevant properties of the
goals such as criticism, priority, relationships, and relevance.
Business Rules Model (BRM) is used to represent the set of
restrictions that affect the satisfaction of a specific goal of the goal
model.

Concept Model (CM) is used to strictly define the "things" and
"phenomena” one is talking about in the other models. It represents
enterprise entities, attributes, and relationships. Entities are used to
define stricter expressions in the Goals Model as well as the content
of information sets in the Business Processes Model.

Business Process Model (BPM) is used to define enterprise
processes, the way they interact and the way they handle information
as well as material.

uses.]
refers_to Goals Model

—

motivates,
requires motivates, defines,

1'equire s affects, 15_responsible_for

i defined_by
|

Concepts Business Rules defines, Actors and

uses,
Model refers to | Model —is_respon— Resources Model
- sible_for

, . .
triggers defi
performs, ehnes
supports 1s_responsible_for
I

Business Process
Model

uses,
produces

T
motivates,

l requires

——refers_to—j Technical Components and
Requirements Model

Figure 2.9 The sub-models comprising the enterprise model

33

CHAPTER 2. RELATED WORKS

Actors and Resource Model (ARM) is used to describe how
different actors and resources are related to each other and how they
are related to components of the Goals Model, and to components of
the Business Processes Model.

The Technical Components and Requirements Model (TCRM)
becomes relevant when the purpose of EKD is to aid defining
requirements for the development of an information system.

The focus on EKD modeling is placed on the definition of the
technical system that is needed to support the goals, processes, and
actors of the enterprise. Initially, a starting set of high level
requirements for the information system as a whole are elicited.
Later, based on this information, the analyst must structure the
information system in a number of subsystems, or technical
components. TCRM is an initial attempt to define the overall
structure and properties of the information system to support the
business activities, as defined in the BPM.

When the objective is to develop an information system to support
the processes, there is a need to deal with technical information
system requirements, initially in a less formal way. Therefore, the
EKD approach includes a simple sub-model to describe, and to relate
to each other, initial, and unclear information system requirements.
This sub-model resembles goals and information system models as a
whole. Initially one needs to develop a set of high level requirements
or goals, for the information system as a whole. Based on these, it is
necessary to structure the information system in a number of
subsystems or technical components.

For each subsystem, a set of goals (which are more specific) and
requirements are defined. These goals and requirements have to be
derived from, and be consistent with, the earlier sub-models
discussed above. The Technical Components and Requirements
Model is an initial attempt to define the overall structure and
properties of the information system to support the business
activities, as defined in the Business Processes Model.

Some of the advantages of this proposal are:

The EKD approach, which is based on multiple and complementary
views, approaches the modeling process in an incremental way.

34

2.2 METHODS FOR REQUIREMENTS MODEL

There are well-defined graphical notations for each one of the views
that makes up the business model.

However, some disadvantages of this proposal can be summarized
as:

The semantics of the organizational model must be represented using
a large number of models, which makes the practical application of
this proposal difficult.

There is not a well-defined method that allows us to derive the
general goals of the enterprise from the operational goals of the
stakeholders. Only a description of each sub-model is presented in
the proposal.

It is not possible to establish the required efforts to produce an
automatic transformational process between the business model and
the requirements model since neither the method nor the heuristic are
described in the proposal to map these models.

2.3 Methods for conceptual models
generation

Table 2.3 shows an overview of two methods [Ort01] [Alen00] that
generates object-oriented conceptual models from organizational
models. The table considers the following aspects: the inputs of the
proposed methods, their role in the development process, the
methodology proposed, the methodology to generate the
requirements model, and the outputs of the method. This is not an
exhaustive analysis and it only pretends to highlight some
similarities and differences between the methods.

35

CHAPTER 2. RELATED WORKS

Table 2.3 Overview of methods to generate a Conceptual Model

Alencar proposal (2003) Ortin Proposal (2001)

Input of the method |organizational models (the [The UML Diagrams (process
early requirements phase) diagram)

Notation The i* framework UML diagrams

Role in the Guidelines are used forthe [Role and sequence

development proposed method to find a diagrams are used for the

process business class diagram proposed method to find the
use case model for the
software system.

Methodological This method focused on obtain [This method focused on the

approach a business conceptual model [functionality of the software
system

Method to define |some heuristics are provided [Some steps are provided
requirements model

Output of the Conceptual model represented |Conceptual model
method in UML represented in UML

Following, a brief description of these proposals is presented where
we have put emphasis on the advantages and disadvantages of each
method.

2.3.1 The Alencar proposal (2003)

In Alencar proposal [Alen03], a transformational process to derive
late requirements specifications specified in pUML (precise Unified
Modeling Language) from late requirements model represented in i*
framework is proposed. The object constraint language (OCL) is
used to cover the lack of pUML to represent invariant specification
restrictions, preconditions etc., which are necessary to correctly
represent the behavior of the information system in the conceptual
model specification.

36

2.3 METHODS FOR CONCEPTUAL MODELS GENERATION

According to Alencar, the UML is suitable to capture requirements
in the late requirements phase (software product specification)
although it is generally focused on the complexity, consistency and
automatic verification of the functional requirements [Booc99].
However the UML is badly-equipped to capture the requirements in
an early phase (model organizational specification). Thus, it does not
provide answers to the following questions: How does the software
system help to accomplish the organizational goal? Why is the
system necessary? Which alternatives were considered and how the
stockholders interests are oriented to? In Alencar works, the i*
framework was chosen because it permits to answer those questions,
also it permits to represent alternative solutions and it also offers
modeling concepts such as goals and soft goals [Mylo99].

The guidelines proposed by the author for the generation of class
diagrams were originally proposed in [Alenc99] [Cast01]. Later on,
these guidelines were extended to support the structuring elements of
i* [Alenc03].

Bellow, a short description of the guidelines is presented:

Guideline G1: Related with the mapping of i* actors.

Guideline G1.1: i* actors (agents, roles or positions) can be mapped
to UML classes;

Guideline G1.2: i* relationship IS-PART-OF between actors can be
mapped as a class aggregation in UML;

Guideline G1.3: i* relationship IS-A between actors can be mapped
to class generalization /specialization in UML;

Guideline G1.4: i* relationship OCCUPIES between an agent and a
position can be mapped as a class association in UML named
OCCUPIES;

Guideline G1.5: The i* relationship COVERS between a position
and a role can be mapped as a respective class association in UML
named COVERS;

Guideline G1.6: The i* relationship PLAYS between an agent and a
role can be mapped as a respective class association in UML named
PLAYS;

Guideline G2: Related with the mapping of i* tasks.

37

CHAPTER 2. RELATED WORKS

Guideline G2.1: A task defined in SD (Strategic Dependency) model
can be mapped as an operation in the interface that is done by the
class that represents the dependee. The name of the newly created
interface is constituted by the names of the classes that represent the
dependee and the depender.

Guideline line G2.2: A task defined in the SR (Strategic Rationale)
model can be mapped as an operation with private visibility in the
class that represents the actor which the task belongs to;

Guideline G3: The i* resources can be mapped to UML classes.

A resource can be mapped as a class in UML if this dependence has
the characteristics of an object, or as an attribute with private (SR
model) or public (SD model) visibility.

Guideline G4/G5: Related with the mapping of i* goals/softgoals.
Goals can be mapped as boolean (goals) or numeric (softgoals)
attributes with private (SR model) or public (SD model) visibility.
An association is created between the depender class and the
dependee class.

Guideline G6: Related with the mapping of i* relationship task
decomposition, this are represented by pre and post conditions
(expressed in OCL) of the corresponding UML operation.

Guideline G7: Related with the mapping of i* means-end
relationship. This is used to generate disjunctions (expressed in
OCL) of all possible means achieving the end.

The result of the early requirements phase is a class diagram (in
which the classes have attributes and methods). It is important to
point out that not all the concepts captured in early phase have a
correspondence with modeling concepts in the conceptual model of
the software system. In this sense, some elements of the
organizational model do not have a counterpart in the software
system model. This is because some of the organizational activities
that must be performed manually do not need to be represented in the
software system model. On the other hand, many elements
represented in a software model concerns technical details that are
out of the scope of an organizational model.

In this proposal, guidelines that contribute to the formalization
process of requirements expressed through the technique i* with

38

2.3 METHODS FOR CONCEPTUAL MODELS GENERATION

MAL language (Modal Actions Logic) are presented. These
guidelines allow relationships to be established between the
fragments of the formal specification in MAL and other
organizational goals described in the i* models.

The main contribution of this method is that it provides guidelines to
obtain a classes diagram from the elements of the organizational
model specified in i*. This framework allows expressing the reasons
(“why™) of the processes (motivations, intentions and reasoning) [Yu
98] that exist behind the activities in a organizational model.
Furthermore, in this study guidelines are provided for the
formalization of requirements in MAL language.

However, in this proposal, only the correspondence between the
elements of the organizational model and the conceptual model are
analyzed (class diagrams). As a result, when using the guidelines
demonstrated in this study, what is constructed is the conceptual
model of the organizational model, and not the conceptual model of
the information system. If this conceptual model is implemented the
information system is not generated, but what is generated is a
software system that allows animating the organizational model.

In order to derive the conceptual model (of the information system)
from the organizational model, it is necessary to implement a
previous stage in which the activities of each actor, that need to be
automated, must be determined.

A great deal of experience is needed from the analyst’s side to carry
out the correspondence in the models.

2.3.2 The Ortin proposal (2001)

This proposal presents a method to obtain conceptual models from
business models represented using the UML activity diagrams.

The initial conceptual model generated is obtained by exploring the
specification of the business the use case model, which represents the
domain data.

In Figure 2.3 a process diagram is shown, where the information
objects are represented as rectangles. These information objects may
be considered as concepts (in design stage these objects will produce
classes, as long as the software system requires to give support to

39

CHAPTER 2. RELATED WORKS

such concepts). Figure 2.10 shows the initial model that can be
obtained from the process diagram shown in Figure 2.3. Finally, this
initial model can be refined in order to obtain attributes, relationships
with other classes and restrictions of each object.

Special product
Product 1 has 1 | Template of fabrication
Product in Catalogue 1r 1
0t Is base of 0.
|+
' Order 1 generate 0.'| Orderofwork

Catalogue Customer

Figure 2.10 Example of the initial conceptual model

One of the main contributions of this model (as mentioned in section
2.1.2) is the generation of requirements and conceptual models. This
generation is carried out in parallel, which makes easier the
identification and specification of the most appropriate use cases.
However, one of the main weaknesses is the lack of guidelines to
map business and conceptual models; therefore this process is
responsibility of the analysts.

2.4 Current Methods for Goal-based

requirements analysis

Requirements Engineering (RE) has been described as “the branch of
systems engineering concerned with the real-world goals for,
functions of, and constraints on software-intensive systems. It is also
concerned with how these factors are taken into account during the
implementation and maintenance of the system, from software
specifications and architectures up to final test cases” [RE02]. Thus,
requirements engineering already assumes the view that “real-world

40

2.4 CURRENT METHODS FOR GOAL-BASED REQUIREMENTS ANALYSIS

goals, functions and constraints” are the source of the requirements
for software systems. Goal-Directed Requirements Engineering
(GDRE) is a branch of RE, which is concerned with the definition of
methods for defining the complete requirements for a software
system starting from goals stated by stakeholders.

GDRE methods generally define a Goal to be a [Mylo01] “condition
or state of affairs in the world that the stakeholders would like to
achieve.” Several GDRE methods have been developed in the last
years. Examples of such methods are KAOS (Knowledge
Acquisition in an automated Specification) Lams95] [Lams00],
Goal-Based Requirements Analysis Method GBRAM [Anto97]
[Anto98], ESPRIT CREWS [Roll98a] [Roll99c], and NFR [Mylo99]
[Chun00].

More recently, the Tropos framework has been proposed as a basis
for UML extensions for agent-oriented software development
[Mylo01] [Gior02].

2.4.1 The GBRAM proposal (1996)

In GBRAM (Goal-Based Requirements Analysis Method), several
principles are assumed for identifying and refining goals into
operational requirements. First, the process of acquiring
requirements involves an integrative approach, focusing on both
abstract goals and concrete behaviors that stakeholders expect the
system to exhibit.

GBRAM assumes that goals have not been previously documented
or explicitly elicited from stakeholders and that analysts must work
from various sources of available information, each with its own
scope of knowledge, to determine the goals of the desired system. It
also supports the elaboration of goals to represent the desired system.
A detailed presentation of how to apply the method from the initial
identification of goals to the translation of those goals into
operational requirements is available in [Anto97]. Following, we
provide a brief overview of the method, differentiating between the
goal analysis and goal refinement activities. Goal analysis concerns
with the exploration of available information sources for goal
identification followed by the organization and classification of

41

CHAPTER 2. RELATED WORKS

goals. Goal refinement concerns with the evolution of goals from the
stage they are first identified, to the stage where they are translated
into operational requirements for the system specification. The goal
analysis activities may be summarized as follows:

e Exploration activities entail the examination of the inputs.

o Identification activities entail extracting goals and their
responsible agents from the available documentation.

e Organization activities involve the classification of goals and
the organization of those goals according to goal dependency
relations.

The goal refinement activities may be summarized as follows:

o Refinementactivities entail the actual pruning of the goal set.

o ‘Elaborate’ refers to the process of analyzing the goal set by
considering possible goal obstacles and constructing scenarios
to uncover hidden goals and requirements.

e ‘Operationalize’ refers to translating goals into operational
requirements for the final requirements specification.

Figure 2.11 shows the activities which an analyst is involved with
when applying the GBRAM.

inputs T e 081 Analysis

) ‘\\}.:..:_........
) e Explore)———
Interview Facts f Policies / AN S ~
: — e

T

: / [i \\\
[Tanserips /| _f‘f /\Ifle;l Ify/ ‘\

[o)
Mission Statement r\,
| \ Ji
: P
i | .
——(Elaboratt) = / i
Output % P =< N ;
T {Qpﬂaliunalizg 2 _
Goal Refinement

Figure 2.11 GBRAM modeling activities

42

2.4 CURRENT METHODS FOR GOAL-BASED REQUIREMENTS ANALYSIS

One of the main contributions of this work is the definition of a clear
method to elicit the abstract goals in order to define a set of
operational goals which will lead to the requirements for the
information system. This approach makes possible the definition of
the reason of the existence of each one of the business activities.
Also GBRAM offers appropriate mechanisms to detect redundant
goals, and also for consolidating equivalent goals.

The goal restrictions are used as “finishing” mechanisms. This is
useful for the analyst to determine when the goal refinement process
must finish. This proposal considers the definition of pre and post
conditions needed for goal fulfillment.

On the other hand, some disadvantages in this proposal are: this
proposal has not considered the interaction between goals and
quantitative non-functional requirements, such as performance and
reliability. In this case, improvement and maintenance goals do not
become operational directly as achievement goals. There is no a
formalization of the elicited goals. Therefore, the description of the
goals is made in natural language. This is a disadvantage because
natural language cannot be used to perform formal verifications or
reasoning about the elicited goals.

This approach does not propose a graphical notation for the proposed
goal category. Therefore, the only unique material available to
analysts is the natural language goal definition. The modeling
process of GBRAM ends when the operational goals have been
elicited. Therefore, this technique does not offer mechanisms to
define a business model that explicitly associates the business
process model with the elicited goal model.

2.4.2 KAOS proposal (1993)

KAOS is a formal approach for analyzing goals and producing
requirements based on pre-stated goals. There is abundant KAOS
literature, e.g., [Dard93], [Lams95], [Lams98], [Dari96], [Lams00],
[Lams01]. KAOS approach is mainly oriented towards ensure that
high-level goals identified by stakeholders, fulfill system
requirements. The method is composed of the following components:

43

CHAPTER 2. RELATED WORKS

KAOS is a specification language based on concepts such as: Object
action, agent, goal, constraint, etc. This language uses real-time
temporal logic to represent constraints on past and future states.
KAOQOS proposes an elaboration method for transforming stakeholder
goals into requirements for the software system. This method
includes classical questions, such as how and why, to refine and
abstract goals in the goal-reduction graph: the identification of pre,
post and trigger conditions of goals, the identification of agents to
which goals are to be ascribed, identification and resolution of
conflicts, etc.
Following, the main steps for the method for requirements elicitation
are presented:
Step 1. Identifying goals from initial documents.
Step 2. Formalizing goals and identifying objects.
Step 3. Eliciting new goals through WHY questions.
Step 4. Eliciting new goals through HOW questions.
Step 5. Deriving agent interfaces.
Step 6. Identifying operations.
Step 7. Operationalizing goals.
Step 8. Anticipating obstacles.
Step 9. Handling conflicts
A meta-level knowledge base is used for guiding decisions during
the elaboration process. This meta-level knowledge base contains:

e A classification of goals

e Rules to ensure the consistency and completeness of

requirements.
e Tactics and heuristics for driving the elaboration and selecting
among alternative goals

Some advantages of the KAOS approach are:
KAQOS classifies goals into: achieve, cease, maintain, avoid and
optimize goals. Achieve and cease goals are said to generate
behaviors. Maintain and avoid goals are said to restrict behaviors.
Optimize goals are said to compare behaviors [Dard93]. This
classification enables the analyst to capture the complex
organizational setting.

44

2.4 CURRENT METHODS FOR GOAL-BASED REQUIREMENTS ANALYSIS

A specific method to face each modeling stage is presented in
KAOS. This constitutes one of the main kindnesses of this technique;
since precise guidelines are provided to build the modeling diagrams,
and all the elements of the KAOS meta-model have formalization in
temporary logic.

On the other hand, the disadvantages of KAQS, from our point of
view, can be summarized as: the KAOS literature does not explain
the need to classify goals in this way. KAOS uses domain knowledge
that is considered as objective knowledge, to reduce goals into sub-
goals [Dard93], [Dari96]. Also, KAOS does not encourage the
challenging of goals given, expressed by stakeholders, with the
exception of conflict resolution [Lams98]. KAOS provides tools for
transforming stakeholders’ goals into requirements, but without
making sure that these are the right goals to define the requirements
on.

2.4.3 Tropos proposal (2005)

Tropos presents a formal framework for reasoning with goal models.
In particular, the Giorgini research works [Gior05] introduce a
qualitative and an axiomatic numerical for goal modeling primitives.
Also, label propagation algorithms are shown to be sound and
complete according to their respective axioms.

The work of Giorgini has been done in the context of the Tropos
methodology, which adopted the i* modeling framework [Yu95].
The i* framework views organizational models as networks of social
actors that have freedom of action, and depend on each other to
achieve their objectives and goals, carry out their tasks, and obtain
needed resources.

Tropos approach is a modeling framework for goals which includes
AND/OR relationships among goals, but also allow more qualitative
goal relationships, as well as contradictory situations [Bohe96]
[Lams98]. The analysis of contradictory situations is carried out by
introducing goal relationships labeled “+” and “-”, that models
respectively, a situation where a goal contributes positively or
negatively towards the satisfaction of another goal.

45

CHAPTER 2. RELATED WORKS

The main advantage of this approach is the use of quantification to
evaluate the degree of goal accomplishment. This characteristic
enables the analysts to evaluate different alternatives to satisfy the
enterprise goals with the highest probability of success.

Also, this approach offers a well-founded set of axioms for defining
goal relationships. This proposal also provides axioms to lead the
qualitative and quantitative reasoning with goal models.
Additionally, the proposed approach introduces a well-defined goal
relationship to indicate positive and negative contributions of the
satisfaction of a goal into the satisfactions of other goals in the
model.

On the other hand, the main issue of Giorgini works is the lack of
mechanisms to associate the goal structure generated by the
application of his technique with the strategic models of the Tropos
framework. This is a consequence of the modeling strategy of this
approach, where the focus is placed on the analysis of the goals in
the abstract, without considering the specific actors that are
responsible for the elicited goals. Therefore, for novel analyst in
Tropos it could be complicated to take design decisions to assign a
certain goal to a specific actor in the enterprise.

2.5 Pattern language proposals

One of sources for the pattern approach has been given by
Christopher Alexander in the book “The timeliness Way of Building”
[Alex79] about the urban and building construction. This book
offered the particular vision of the author about the recurrent
problems that used to exist in the architecture of towns and cities,
and, in general, in any kind of building. Alexander described these
problems and their solutions using the term “pattern”.

Each pattern describes a recurrent problem that occurs in a specific
environment. The pattern describes the context where the problem
could be found and also offers a solution for the presented problem.
The pattern describes the environment of the solution to the problem,
in such a way that this solution can be used more than a million of
times without doing it the same way twice [Alex77].

46

2.5 PATTERN LANGUAGE PROPOSALS

After examining the Alexander works, several research groups
observed the same situation in software development, where there
is clear evidence of the patterns in all design levels, from high level
architectures to detailed design problems. Although the pattern
approaches were defined, mainly, in low abstractions levels
(implementation and design) at the present time, their evolution has
extended to almost all areas related to software development. Getting
into more specific aspects, the patterns are generally classified based
on its abstraction level [Garz02].

Bushmann et al (1998) define three levels of abstraction in defining
patterns:

e An Architecture Pattern expresses a fundamental structural
organization or schema for software systems. It provides a set
of predefined subsystems, specifies their responsibilities, and
includes rules and guidelines for organizing the relationships
between them. [Busc98].

o A Design Pattern provides a scheme for refining the
subsystems or components of a software system, or the
relationships between them. It describes a commonly recurring
structure of communicating components that solves a general
design problem within a particular context [Gamm95]).

e An Idiom is a low-level pattern specific to a programming
language. An idiom describes how to implement particular
aspects of components or the relationships between them using
the features of the given language [Copl91].

Although this classification is the best known in computer science
field, it represents only a subset of the possible types of patterns. For
example, in [Rieh96] one division of conceptual and analysis
patterns, is done. In [Fowl97] design and implementation patterns are
also analyzed. Other kinds of patterns are those used in the agent-
oriented approaches, which have been used to design multiple
aspects of a system.

Some examples of agent-based methodologies that include the use of
patterns are Tropos [Gior05], Kendall’s methodology and PASSI.
Kolp et al. present a set of patterns in [Kolp01] as part of the Tropos

47

CHAPTER 2. RELATED WORKS

methodology, which uses patterns (called styles) to describe the
general architecture of a system under construction.

Kendall [Kend99] also includes a catalogue of patterns as a part of a
technique to analyze and design agent-based systems. The patterns in
that catalogue are more general than those presented in our work,
since they include, not only interactions, but also the roles
themselves (it should be noted that the concept of role there, comes
from role theory and it is not identical to the concept used here).
Cossentino et al. present in [Coss02] the design of a particular type
of agent pattern immersed in the PASSI methodology. They define a
pattern consisting of a model and an implementation code. The
model includes two parts: structure and behavior. Structural patterns
are classified into: action patterns, which represent the functionality
of the system; behavior patterns, which can be viewed as a collection
of actions; component patterns, which encompass the structure of an
agent and its tasks; and service patterns, which describe the
collaboration between two or more agents. Implementation code is
available for two agent platforms, named, JADE and FIPA-OS.

2.6 Summary

In this Chapter, several proposals in research fields close to the
research work developed in this thesis have been presented.

In software requirements area, five proposals have been analyzed,
which consider early requirements phase as a source to obtain late
requirements [Sant02] [Orti01] [Louc95] [Dijk02] [Bube98]. The
main characteristic of these techniques is the analysis and
understanding of the business processes before considering the
construction of an information system that automates certain
business processes. Unfortunately, the majority of these works
focuses only on the definition of notations to represent early and late
requirements, but only limited research efforts have been made to
provide systematic approaches to generate requirements models form
business models.

Two proposals were analyzed in the field of conceptual modeling
[Alen03] [Orti01], which have the objective of obtaining conceptual

48

2.6 SUMMARIZE

models from the understanding of the organization context. At the
present time, there are only few research works focused on providing
a methodological solution to the problem of appropriately translate
the business model elements into the conceptual schema elements, of
the information system. We argue that this is a fundamental activity
in the software development process. It is necessary, for the
translation between models to be carried out in a methodological
process, to assure its application in real software development
environments.

The methodological approach presented in this thesis puts emphasis
on the use of business models as a starting point of the process to
obtain a conceptual schema from the information system and a
requirements model, for the software system-to-be. This proposal
allows representing the different alternatives to satisfy the business
goals, as well as the analysis of the impact that the automation of
plans will have on the quality factors expected by the enterprise’.
This is the reason why a study of the current methods for goal-based
requirements analysis was performed, where some of the more
relevant proposals in this area are briefly described.

On the other hand, pattern languages have an important role in the
research carried out in this thesis. This is because it allows us to
guide the delegation of plans to be automated towards a new
organizational model, which includes, in an explicit way, the
information system as an actor of the organizational model.
Therefore, two fundamental processes make up the process to obtain
the requirements model and the conceptual model: goal analysis and
implementation of automation patterns. The goal analysis has the
objective of identifying the plans that need to be automated. This
process is based on the determination of the tasks that allow better
satisfy the organizational goals.

Finally, heuristics and algorithms are provided to carry out the
translation of the organizational model into the conceptual and
requirements models.

! The quality factors are the aspects of quality that the enterprise wants to enhance
with a software system.

49

CHAPTER 3 EARLY REQUIREMENTS

50

Part I
The Early Requirements

51

52

Chapter 3

The early requirements phase

This Chapter describes the goal-based requirements elicitation
process proposed in this thesis. The objective of this process is to
find the best way to develop business tasks in order to achieve
organizational goals. The early requirements phase represents our
starting point towards the construction of a software system that
automates certain organizational processes.

The Chapter also introduces the basic concepts of the Tropos
framework that are used in this proposal.

3.1 Introduction

The early requirements analysis [FuxmO01] [Yu97] is one of the most
important and difficult phases of the software development process.

CHAPTER 3 EARLY REQUIREMENTS

In this phase, the requirements engineer attempts to understand the
organizational context, the goals and social dependencies of its
stakeholders in order to have the appropriate information to develop
the information system-to-be. This phase demands critical
interactions with the users; a misunderstanding at this point may lead
to expensive errors during later development stages. Not
surprisingly, several approaches have been devoted to developing
languages and analysis techniques for early requirements analysis
(e.g., [Dard93] [Yu97] [Anto96] [Gior05] [Lams01]).

Several research works focus on analyzing the early requirements
phase as a source for obtaining software requirements [Cast02]
[Maid04] [Bres04] [Jaco95a] [Bube95] [Bide02] [Magn00]. The
main feature of these techniques is the analysis and understanding of
the organizational processes before building an information system.
In these approaches, it is important to determine: a) the role of the
software system in the organizational context, b) the users of the
software-to-be, and c) the impact of the system in the performance of
the organizational processes (Figure 3.1).

This knowledge will help to build a software system that works
harmoniously with the organizational processes. We considered that
it is not possible to develop a software system that provides real
value to the enterprise without the understanding of the context
where the system will operate. Goals play a very important role in
this phase; goals have been recognized as a basic tool in
requirements engineering [Lams01]. For this reason, they have been
used in the early requirements phase, and to obtain the functional
[Anto97] and the non-functional requirements [Chun00] for a
software system.

How to do it?
Who does it2

Its environment %

Figure 3.1 The organizational model shows the environment of the business

54

3.1 INTRODUCTION

We ague that, a reason for using goals in the early requirements
phase is that they allow the visualization of states that an enterprise
expects to achieve. Goals also provide the purpose and reasoning that
will justify each one of the requirements of the information system.
The objective of the proposed method is to provide a methodological
approach for deriving the software functionality from organizational
models. Figure 3.2 shows a general schema of the early requirements
phase, which will be explained in this Chapter and Chapter 4. The
inputs of our proposal are the goals that the business needs to
achieve by implementing a software system. These goals are defined
in the actor diagram of the Tropos framework. As result of the
method, the software system is included as a organizational actor in
the organizational model. In this Chapter, a goal analysis is carried
out to determine the set of alternative tasks that better satisfy the
business objectives.

One contribution of this thesis is to make the model transformation
process systematic by proposing rules to identify the relevant tasks®
to be automated from the high-level goals of the stakeholders
(represented as actors). The proposed approach also allows us to
identify the best way to delegate the relevant tasks to the software
system actor. The generation process of the late requirements is
explained in Chapter 4.

Goal-based Relevant The generation New organi-
Actor _ requirements —» tasks to be — Process of the —p 2ational model
Diagram elicitation o late with the software
process requirements system actor

Legend

/ Input Process Deliverables

Figure 3.2 The early requirements phase processes

® The word “relevant” has been used in this thesis to indicate those elements whose
automatic execution satisfies business goals in the most appropriate way.

55

CHAPTER 3 EARLY REQUIREMENTS

3.2 'The early requirements phase

In [Yu97], a distinction is made between early and late requirements
phases. The early requirements emphasize an understanding of the
whys of the business, while late requirements emphasize what the
system should do and how do it [Yu94]. Thus, the early requirements
phase consists of analyzing and identifying the stakeholders and their
intentions. Stakeholders are modeled as social actors who depend on
each other for goals to be achieved, plans to be performed, and
resources to be furnished. Intentions are modeled as goals which are
decomposed into finer goals through a goal-oriented analysis. These
finer goals can eventually support evaluations of alternatives
[Bres04].

In recent years, there is an increasing number of works devoted to
obtain requirements specifications from the understanding of a
business setting. The reason of this increasing interest is based on the
following reasons [Yu97]:

e System development involves many assumptions about the
embedding environment and task domain. As discovered in
empirical studies (e.g., [Curt88]), a poor understanding of the
domain is a primary cause of project failure. To have a deep
understanding about a domain, there must be a clear
understanding of interest priorities, and abilities of various
actors and players, in addition to a good grasp of the domain
concepts and facts.

e Users need to help coming up with initial requirements, in the
first place. As technical systems increase in diversity and
complexity, the number of technical alternatives and
organizational configurations constitute a vast range of
options. A systematic framework is needed to help developers
understand what users want and to help users understand what
technical systems can do. Many systems that are technically
sound have failed to address real needs (e.g., [Grun99]).

e Software systems are increasingly expected to contribute to the
redesigning of organizational processes. Instead of automating
well-established organizational processes, systems are now

56

3.2 THE EARLY REQUIREMENTS PHASE

viewed as “enablers” for innovative organizational solutions
(e.g., [Hamm93]). More than ever before, requirements
engineers need to relate systems to business and organizational
objectives.

e Having well-organized bodies of organizational and strategic
knowledge would allow such knowledge to be shared across
domains at this high level, deepening the understanding about
relationships among domains. This would also facilitate the
sharing and reuse of software (and other types of knowledge)
across these domains.

e As more systems in organizations interconnect and
interoperate, it is increasingly important to understand how
systems cooperate (with each other and with human agents), to
contribute to organizational goals. The early requirements
models that deal with organizational goals and stakeholder
interests cut across multiple systems and can provide a view of
the cooperation among systems within an organizational
context.

Now that the importance of the early requirements has been
explained, below, we present the foundations of the early
requirements phase in detail.

3.3 The foundations of the early requirements
phase

This section presents the main concepts that are used in the early
requirements phase: Goal modeling and organizational modeling.
Both approaches have been combined to create a goal-based
requirements elicitation process. The differences of our proposal
from other proposals are presented in this section.

3.3.1 Goal modeling

The need to model why a system should be developed has been
recognized since the early days of requirements engineering
[Ross77]. However, most requirements modeling notations and

S7

CHAPTER 3 EARLY REQUIREMENTS

techniques focus only on the late phase of the requirements
engineering process.

Methods supporting analysis of this kind include semi-formal
methods (e.g. structured methods [Ross77], object-oriented methods
[Rumb91], [Rumb98b] [Past01]) and formal methods (e.g. model
checking [Alpu05] [Clar96]), there are also other methods that focus
on scenarios [Leit97] [Some05] and aspects [Arau03] [Samp05],
[Grun99], etc.

Goal modeling is intended to address the early-phase of requirements
engineering, in which stakeholders and goals are explored and
alternative system proposals that satisfy the goals are investigated
[Lete04].

Nowadays, several research efforts use goal mechanisms during the
requirements elicitation process. One of the most relevant works in
this field is the KAOS approach [Lete04] [Lams01] [Dard03]. KAOS
provides formal rules for deriving requirements from goal
descriptions. It is based on theories of formal specification languages
to analyze functional and non-functional requirements. However, the
use of this approach is restricted to analysts that are used to deal with
formal methods as a current concept in their modeling activities.
KAOS also provides support for finding alternatives to satisfy the
organizational goals. Another goal-oriented method is GBRAM
(Goal-Based Requirements Analysis Method) [Pott94] [Anto97],
which is focused on the generation of operational requirements from
high-level goals. However, this method does not establish a clear
distinction between the information used in the early and late
requirements phase [Yu97].

As a consequence of this problem, GBRAM does not have a clear
representation of the complete process for software development.
Another important research work on goal modeling is the NFR
Framework proposed in [Chun00]. This approach focuses on
analyzing the impact of non-functional requirements in the software
development process.

The main difference among the current goal-based approaches and
the proposed approach is the use of a systematic method that guides
the analyst in the construction of an information system. This

58

3.3 THE FOUNDATIONS OF THE EARLY REQUIREMENTS PHASE

proposed method puts emphasis on the early and late requirements
phases.

Some goal concepts found in the literature and some advantages of
using goal modeling are the following:

e Goals are objectives that the system must achieve. The word
“system”, here, refers to the software-to-be together with its
environments [Fick92] [Zave97].

e Goals are targets that provide a framework for the desired
system [Anto96].

e A goal is a desired property of the environment [Robi04].

In many goal-oriented works, the importance of the goals in software
development is emphasized [Anto97] [Dard03]. Some of the
advantages are the following

e Goals make the relationships between the operations of the
business and the high-level goals outlined by the
administrators explicit.

e Goals provide a precise judgment to determine the relevancy
of requirements. A requirement is pertinent regarding a group
of goals, if its specification is used to satisfy at least to one of
the goals.

e Goals can be used to determine the organizational process
necessary to satisfy each goal.

e Goal refinement provides a natural mechanism to structure
complex requirements documents and to increase their
legibility.

e Goals can be used as a complete and effective way to
determine the specification of requirements. The specification
is complete regarding a group of goals if all the goals in the
group can be satisfied with determined requirements.

e Goals can be used to identify and solve conflicts among
different points of view about the way of satisfying a goal.

3.3.2 Orgamzational modehng

Organizational modeling is a set of techniques used to represent and
structure the knowledge of an enterprise [Bube94]. Organizational
analysis allows us to precisely determine the following aspects: The

59

CHAPTER 3 EARLY REQUIREMENTS

operations that satisfy each one of the goals, the network of
dependencies among actors, the sequence in which the tasks of each
organizational process should be executed, the dependency type, the
tasks to be automated, etc. This information is fundamental for the
generation of a requirements model that gives real support to
organizational tasks.

There is a lot of research being done in this field [Yu95] [Bube95]
[Cesa02], [Louc95] [Cast02]. We have chosen the Tropos
methodology to represent the organizational environment because it
supports the early requirements and allows us to analyze the
processes that involve multiple participants (both humans and
software systems) and the intentions that these processes are
supposed to fulfill. The methodology is defined in terms of the
concepts of agent, goal, and related abstract notions. These notions
are used to support all software development phases, from early
requirements analysis to implementation. The following sub-section
describes this framework in detail.

3.3.3 Tropos Framework

This thesis is conducted within the context of the Tropos
methodology, which adopts the concepts of the i* modeling
framework [Yu95], whose aim is to construct and validate a software
development methodology for agent-based software systems. One of
the main advantages of this methodology is that it allows us to
capture not only what or how, but also why a piece of software is
developed. Tropos, in return, provides a more refined analysis of the
system dependencies and a well defined mechanism to deal with
functional and non-functional requirements.

The main difference in the early requirements analysis carried out in
the Tropos framework and our proposal is that the Tropos
methodology focuses on the representation of the future state of the
business, starting with the high-level goals of business, and
determining the group of alternatives to fulfill these goals. Our
proposed methodology focuses on eliciting the current state of an
existing business to determine the organizational plans, whose

60

3.3 THE FOUNDATIONS OF THE EARLY REQUIREMENTS PHASE

automatic performance would best satisfy the goals of the business.
These plans can be considered as requirements of the system-to-be.

We have used the Tropos notation to represent and analyze the early
requirements. This framework uses the following graphical
representations to represent the organizational environment [Sann02]

e Actor Diagrams This is a graphical representation where
actors and their goals, and the dependencies among actors, are
shown. This model emphasizes the static aspects of the
enterprise.

e Goal Diagrams This is a graphical representation where the
goals, plans, and dependencies of each actor are analyzed in
depth.

In the following paragraphs, the key concepts and the diagrams used
in our proposal of the Tropos framework are presented. In [Sangt02]
and [Bres04] the Tropos Framework is presented in detail.

Concepts and Notation

Tropos adopts Eric Yu's i* model [Yu95] which offers actors
(agents, roles, or positions), goals, and actor dependencies as
primitive concepts. The five basic concepts in the Tropos Framework
are the following [Sant02]:

Actor. An actor is an entity that has strategic goals and intentionality
within the system or the organizational setting. An actor represents a
physical or a software agent, as well as a role or position. A goal
graph can be associated to an actor by circling the graph with a
dashed line.

Hardgoal/Softgoal. This represents actor strategic interests.
Hardgoals are distinguished from softgoals. There, the second
having no clear-cut definition and/or criteria for deciding whether
they are satisfied or not. The hardgoals are illustrated as a rounded-
cornered rectangle, while softgoal are illustrated as a cloud.

Plan. It represents a way of doing something at an abstract level. The
execution of plan can be a mean to satisfy a goal or a softgoal
(illustrated as a hexagon).

Resource. It represents a physical or an informational entity
(illustrated as a rectangle).

61

CHAPTER 3 EARLY REQUIREMENTS

Figure 3.3 illustrates the graphical notation for these modeling
concepts.

O I3

Actor Hardgoal Softgoal Plan Resource

Figure 3.3 Graphic notations of the basic concepts

Dependency. A relationship between two actors, which indicates
that one actor, depends for some reason, on the other actor, in order
to attain some goal, execute some plan, or deliver a resource. The
former is called the depender, while the latter is called the dependee.
The object around which the dependency centers is called dependum.
In general, by depending on another actor for a dependum, an actor is
able to achieve goals that it would otherwise be unable to achieve on
its own, or not easily, or not as well. At the same time, the depender
becomes vulnerable. If the dependee fails to deliver the dependum,
the depender would be adversely affected in its ability to achieve its
goals.

Goal dependency. It is a relationship in which an actor depends on
another actor to fulfill a goal, without prescribing the way in which it
should be carried out.

Resource dependency. It is a relationship in which an actor depends
on another actor to deliver a resource that can be either material or
informational.

Plan dependency. It is a relationship in which exist a dependency to
carry out of a task, establishing the way in which it should be
performed.

Softgoal dependency. This is similar to the goal dependency, with
the difference that the goal can not bee precisely defined.
Contribution. It is a relationship between goals or plans
representing how goals or plans can contribute (positively or
negatively), in the fulfillment of the goal.

The graphical representation of the Tropos dependencies is
illustrated in Figure 3.4.

62

3.3 THE FOUNDATIONS OF THE EARLY REQUIREMENTS PHASE

Depender ~ Dependee

O—>—(:)—>O Hardgoal Dependency
O"'G"‘O Softgoal Dependency
O—P—D‘F-O Plan Dependency

O+D+O Resource Dependency

Figure 3.4 Graphic notations of the dependency relationships

Decomposition. It is a relationship between goals or plans
representing AND/OR decomposition of root goal/plan into sub-
goals/subplans.

Means-end. It is a link to join plans with goals. Different alternatives
are allowed as means of the relationship. Figure 3.5 shows the
intentional relations.

Iy

Decomposition Decomposition Means-ends Contributions

Figure 3.5 Graphic notations of the intentional relations

Actor Diagram

The main objective of this diagram is to have a static view of the
environment and the system to be developed. This diagram is made
up of the organizational actors, who are associated to other actors by
dependency relationships. The actor diagram can also extend the
basic concepts of the actor through the refinement of the notions of
Role, Position and Agent [Yu00Q], where:

A role is an abstract characterization of the behavior of a social actor
within some specialized context or domain of endeavor.
Dependencies are associated to a role when these dependencies
apply, regardless of who plays the role.

63

CHAPTER 3 EARLY REQUIREMENTS

An agent is an actor with specific physical manifestations, such as a
human. An agent has dependencies that apply regardless of what role
he/she/it happens to be playing. We use the term “agent™ instead of
“person’ for generality, so it can be used to refer to human as well
as artificial (hardware, software, or organizational) agents.

A position is intermediate in abstraction between a role and an
agent. It is a set of roles typically played by one agent. Positions can
cover roles, agents can occupy positions, and agents can also play
roles directly.

Association is a set of roles, positions and agents interconnected by
“plays™, “Occupies’ and ““covers” relationships.

The “INS” construct represents the instance-and-class relation. The
“ISA” construct expresses conceptual generalization/specialization.
These constructs are used to simplify the presentation of strategic
models with roles, positions, and agents. Roles, positions, and agents
can be decomposed into sub-parts.

Goal Diagrams

The goal diagram provides a microscopic view of the application
domain. Its purpose is to determine some strategies to fulfill the
actor’s goals, using three basic reasoning techniques Means-end
analysis, contribution analysis, and AND/OR decomposition.
Specifically, means-end analysis helps in identifying plans, resources
and softgoals, that provide means for achieving a goal. Contribution
analysis identifies goals that can contribute positively or negatively
to the fulfillment of the goal to be analyzed [Bres04].

3.4 Goal-based requirements elicitation
process

This section describes our goal-based requirements elicitation
process. It first gives a brief overview of the method, then describes
the various steps of the method and illustrates its application on a
case study, the Car Rental.

This case study is a real project of the Care Technology Company,
which concerns the organizational modeling for a car rental

64

3.4 GOAL-BASED REQUIREMENTS ELICITATION PROCESS

enterprise in Spain. Chapter 8 contains the complete description for
this case study.

One of the key issues in solving the problem of generating a software
system that fulfills user needs is to provide the analyst with
mechanisms to represent the goals that represent the states that an
enterprise wants to fulfill. In this context, goal modeling plays a
relevant role in the software development process, because it permits
the determination of different alternatives that exist to better satisfy
the goals that fulfill the organizational goals, using a software
system. This process provides a deep understanding of the
organizational tasks and the reasons why tasks are executed.

The importance of the goals becomes evident in requirements
engineering; they provide the motivations and reasoning to justify
each one of the requirements of the information system. However, in
spite of all the advantages that the goals and the multiple works
carried out in this area provide, there are many factors that need to be
improved to assure their practical application. This Chapter presents
our goal-oriented proposal for the elicitation of software
requirements to provide an answer to some problems of the current
goals modeling approaches.

Overview

The goal-based requirements elicitation process consists of deriving
the requirements for a future software system from an organizational
context (Figure 3.6). Therefore, the process starts with the definition
of an organizational model that reflects the current enterprise
situation.

This model must represent the high-level goals and the relevant
actors in the business. A goal analysis phase is carried out to identify
the relevant tasks that fulfill the goals of the enterprise.

65

CHAPTER 3 EARLY REQUIREMENTS

Goal-based requirements elicitation process

Softgoal refinem:m; @

Hardgoal refinement 2 Analysist of contributions
1. Goal refinement process in the quality factors
Actor @ Plan oF1[QF2 Relevant
Diagram A] Manual |+ | + Plans to be
9 Automatic |+
automated
“ 3. Analysis of conflicts
4. Points +0f view of the Sorolianizatens)
. oals
involved actors &

5. Delegation of plans
to the SSA

Figure 3.6 Goal analysis schema

The proposed analysis is composed of five steps that help to choose
the appropriate tasks to-be automated. In the last step (Delegation of
plans to the software system actor), a pattern language is proposed in
order to build an organizational model which includes the software
system to-be. At this point, in the late requirements phase, the system
is described within its operational environments, its functions, and
relevant characteristics. This model is a final result of our proposed
method.
In summary, the steps of the goal-based requirements elicitation
process to identify the plans that must be automated are the
following
o Goal refinement process. The first step consists in carrying
out a goal refinement for each goal of the actors. Thus, this
step is divided into two sub-processes: hardgoal and softgoal
refinement. The quality factors are also identified by the
softgoals of the enterprise.

e Analysis of contribution in the quality factors. The second
step consists of analyzing the plans and goals that best satisfy

66

3.4 GOAL-BASED REQUIREMENTS ELICITATION PROCESS

the quality factors. Therefore, each atomic plan® found in the
organizational model must be divided into two subplans
(execution by a software system or manual execution). The
impact of these subplans with the quality factors is analyzed
in order to determine the plan that better contributes to the
satisfaction of the organizational goals.

e Analysis of contradictions among organizational goals. The
third step consists of identifying the contradictions among the
organizational goals, once the contribution analysis has been
carried out.

e Point of view of the involved actors. The fourth step consists
in resolving the contradictions among the goals. Therefore, an
analysis of the point of view of the actors involved in the
achievement of the goals is carried out. The relevant plans to
be automated must be identified.

e Delegation of plans to the Software System Actor (SSA). The
last step consists of delegating the relevant plans to the
Software System Actor. This step is explained in depth in the
next Chapter.

Finally, the goal-based requirements elicitation process is further
discussed in the next sub-sections.

3.4.1 Goal refinement process

The use of goal analysis mechanisms in software requirements has
been discussed in the literature by several authors [Dard03] [Anto97]
[Pott94] [Chun00] [Lete04] [Robi04].

In this modeling context, the Tropos methodology provides one of
the most well-established founded techniques for goal analysis
[Gior05]. Tropos provides not only informal notations for
representing goals, but it also provides a well-established framework
to permit formal reasoning about the goal models.

1 Atomic plans are those plans that do not need to be divided into other subplans to
be executed.

67

CHAPTER 3 EARLY REQUIREMENTS

The first phase of the elicitation process is the goal refinement
process. The objective of this goal refinement is to decompose each
high-level goal of the enterprise into more specific sub-components,
until the desired level of specific plans for satisfying the goal is
reached.

The steps to carry out the goal refinement in the proposed method
are detailed below, and the Car Rental case study is analyzed, in
order to illustrate the goal refinement process.

Step 1. Build an actor diagram that shows only the general goals and
dependencies among the actors. A general goal reflects the state of
affairs that an actor wants to fulfill.

Step 2. Each general goal of the actor diagram must be refined (in
the boundary of the analyzed actor) using AND/OR decomposition,
means-end, or contribution links in order to determine the low-level
goals that satisfy the objectives of the enterprise.

The goal refinement process ends when the current plans
(represented as hexagons) performed by the organizational actors are
linked with the sub-goals identified in the goal-refinement process.
The links that are used to make the refinement goals are detailed
below:

The AND decomposition links are used to represent the set of sub-
goals (Gy1, Gi1 ...) that satisfy goal G;.

The OR decomposition links are used to represent alternatives that
satisfy goal G;.

The means-end links are used to represent the different means that
exist to fulfill an end (usually a goal). This link allows us to relate a
goal to a set of plans (P11, P12...) that represent the alternatives that
satisfy the goal; however the means can also be sub-goals (G,
Gia...).

The contribution links are used to specify the positive or negative
contributions of a goal, or plan, to a softgoal.

Figure 3.7 shows the links used to perform the goal-refinement
process.

68

3.4 GOAL-BASED REQUIREMENTS ELICITATION PROCESS

Gl Legend

/\ /G?\ AND Decomposition link
611 Gl2
/GE\ T /\ Means-end link

P1
G111 G112 G113

T“" Y oeil Pl Pis /
+
PL P2 P1L Pl TContributionlink

/\ OR Decomposition link

Figure 3.7 Refinement links

Step 3. Each softgoal of the actor diagram must be refined. This
refinement is carried out in the same way as the hardgoal
refinement. However, the refinement of this goal type does not
conclude with the determination of plans that fulfill the goal, but
rather the softgoal refinement process concludes with the
determination of means that satisfy the softgoal.

The softgoals are used to represent the quality factors that the
enterprise wants to fulfill. Quality factors will help the organization
to improve the performance of organizational processes and
management systems. In the literature there are many quality
attribute taxonomies [Boeh96] [Boeh78] [ISO01].

A set of quality factors is detailed below. It is important to point out
that the quality factors analyzed in this modeling phase are directly
concerned with measures for the organizational processes, rather
than measures for the information system to-be.

o Competitiveness This quality factor refers to the characteristics
(profitability, costs, and quality) that permit an enterprise to
compete effectively with other firms.

o Performance This quality factor refers to the response and
processing times of the organizational processes.

e Security This quality factor refers to the ability to prevent
unauthorized access to the information used by the enterprise.

Once the refinement of the general goals has been carried out and
the quality factors required by the company have been identified, the
next step is the contribution analysis between the elicited plans and
the selected quality factors.

69

CHAPTER 3 EARLY REQUIREMENTS

Example

The evaluation of our methodological approach has been done with
several case studies. The Car Rental case study is used in this
Chapter in order to illustrate our proposal.

The first step of the Goal-based requirements elicitation process is
related to the construction of the organizational models, this is
carried out in the goal-refinement process. Figure 3.8 shows a partial
view of the actor diagram. In this model, the general goals
(represented as ovals) of the actors (Customer, Company employee,
Associated branches, Mechanic, Insurance) are shown. Actors who
play a role in the enterprise are also depicted, e.g. the Customer

actor, who wants to rent or buy a car.
Deliver
car quickl
H Car

maintenance

Borrow Notification of
acar condition of car

Branch

Rent cars

! Insurance
management

Employee Y/ Purchase and sales
management Managemem

Legend

O Actor D Hardgoal {:} Softgoal O Roke
> Hardgoal dependency 3> softgoal dependency

Figure 3.8 Partial view of the actor diagram for the Car Rental case study

70

3.4 GOAL-BASED REQUIREMENTS ELICITATION PROCESS

This actor plays several roles in the organizational model: a)
Company, who has an agreement for a lower price; b) Company
Manager, who works for the company, or ¢) Person, who is different
from the last two roles. The arrows indicate the dependency
relationships between actors. For example, the Customer depends on
the Company employee to rent a car.

The construction of the goal diagram is carried out by refining each
general goal. Figure 3.9 presents a partial view of the goal diagram
for the employee actor. In this example, the general goal of the
Employee actor cars reservation management is refined into
alternative sub-goals: 1) Carry out reservations directly in the
branch, and 2) Carry out reservations using alternative ways (such
as internet or phone reservations).

The goal Carry out reservations directly in the branch is refined into
three sub-goals using and decomposition Analyze Customer, Analyze
the car availability, and Formalize reservation. The goal-refinement
process ends when the plans (represented as hexagons) for fulfilling
the goals are identified. Once the refinement of the general goals has
been carried out and the quality factors desired by the company have
been identified and decomposed, the next step in the proposed
method is focused on the analysis of contributions between the
elicited plans and the selected quality factors.

71

CHAPTER 3 EARLY REQUIREMENTS

Carry out reservations . - .-~
using alternative ways
TN S
\\
.
\
\
- \
Make reservations "\ v,
by phone \
\
e \
1
- '
v Have To analyze availa- = ;
\ ar available bility in this branch ormalize
\ Data 0 analyze avalla- the reservation
\ o
| securi bility in other branche: ‘.‘y K
W , ,
N . R - Drawup \ ,”
. peffor- Obtain Register R contract /%”
mance customer info, reservation, egister rent 2/
- payment P

'
'
'
.

Legend
L) ~O, Actor
O\ AND Decomposition link /. OR Decompositionlink ~ —> Means-end link *,___}Boundary actor

Figure 3.9 Partial view of the actor diagram for The Car Rental case study
3.4.2 Analysis of contributions in the quality factors

The second step of the goal-based requirements elicitation process is
the analysis of contributions in the quality factors. Contributions
describe the (positive or negative) influence of a goal or task on the
satisfaction of a quality factor (softgoal).

The softgoal contribution analysis is one of the key factors in the
goal analysis process because it allows us to identify the plans and
goals that better satisfy the quality factors.

The contributions describe the influence of a goal or plan on the
satisfaction of a softgoal. The values of the contributions are positive
contribution (+), negative contribution (-), full satisfaction (++), fully
denied (--) [Gior05].

The analysis of contribution in the quality factors is carried out by a
set of steps, which are detailed as follows:

Step 1. Propagation of the Atomic plans. The first step of this
process consists of propagating each atomic plan in the goal diagram
into two alternative subplans manual execution or automatic
execution. The automatic execution of a plan represents the

72

3.4 GOAL-BASED REQUIREMENTS ELICITATION PROCESS

execution through a software system that automatically performs the
organizational plans.

Step 2. Associating the plans with the quality factors. The second
step consists of associating the plans with the selected quality
factors. Therefore, we must determine the positive or negative
contribution of manual and automatic execution of the plan with the
quality attributes that the business wants to fulfill.

Step 3. Contribution analysis. Finally, the third step consists of
identifying the plans that best fulfill the quality factors. In this phase
the contradictions and conflicts between the plans and goals must be
identified.

Example:

In the Car Rental case study, Figure 3.10 presents a fragment of the
model with the quality factors contributions for the Employee actor.
The plans Search Customer info and Analyze credit card have been
propagated in two subplans in order to represent the manual and
automatic execution of these plans.

For each propagated plan, the contribution links are created to
associate the plans with the quality factors. This is done in order to
identify the influence of the plans with the quality attributes. For
example, the manual execution of the plan ““Analyze credit card” has
a negative contribution on the Performance attribute. We consider
that the selection of the correct plan to be automated is not always a
trivial task. This is because the contribution analysis gives rise to
contradictions among the alternatives to satisfy the quality factors.
The conflicts analysis is explained in the following section.

73

CHAPTER 3 EARLY REQUIREMENTS

_.-=""(Carry out reservations
e Directly in the branch

P Analyze
customer info

N
~
~
~
N
~
N
N

\ ‘
\
\
AY
N -
\
A}
Attracti
improve the /+
eryice

Figure 3.10 Quality factor contributions
3.4.3 Analysis of conflicts among organizational goals

The third step of the elicitation process is the analysis of conflicts
among organizational goals. This analysis is carried out after
associating the plans and the quality factors by the contribution link.
As mentioned above, the selection of the plans to be automated is not
a trivial task. Sometimes, the enterprise employees do not have a
clear idea of the best way to satisfy the organizational goals. This is
because, in most of the cases, the employees do not have a global
view of the enterprise and the goals that the enterprise wants to
fulfill.

The analysis of contributions is useful for representing a global view
of the organization, which allows us to evaluate, the objectives of the
business and how they are achieved.

More specifically, this model is useful for analyzing the different
alternatives for fulfilling the organizational goals through the
automation of the organizational tasks using a software system.

The steps to perform the contradictions analysis are presented below:

74

3.4 GOAL-BASED REQUIREMENTS ELICITATION PROCESS

Step 1 Create a matrix with the Atomic plans and the quality factors.
The plans placed in the matrix are relevant plans, which the analysts
want to analyze.

Table 3.1 shows the matrix of contributions used for analyzing the
conflicts among organizational goals. Columns represent the quality
factors that the business wants to achieve. Rows represent the plans
to-be-analyzed. Each plan is analyzed in two options, the first is the
execution in a manual way, and the second option is the automatic
execution of the plan.

Step 2 Place the value of the contributions in the matrix. The values
(++, --, +, -) of the contributions are those identified in the
contributions links.

Step 3 Compare the contributions to of the quality factor for each
propagated plan.

Table 3.1 Matrix of contributions

Quality | Quality | Quality
Plans factor 1 | factor2 | factorn

Plan 1 executed manually

Plan 1 executed
automatically

Plan n executed manually

Plan n executed
automatically

Example:

In order to resolve the contradictory cases, the kind of contributions
of the propagated plans (manual or automatic options) with the
selected quality factors.

Following with the running example, Table 3.1 shows the matrix that
includes the plans Search Customer info (plan 1) and Analyze credit
card (plan 2). These plans have been analyzed considering the two
alternatives, automatic and manual execution. When the

75

CHAPTER 3 EARLY REQUIREMENTS

contributions plans were analyzed, some contradictions between the
quality factors and plans were detected (Figure 3.10).

The plan Search Customer info (automatic) positively contributes to
the quality factor Performance; however, this plan has a negative
contribution to the quality factor Security. In this last case, the best
option to select is the manual execution of the plan. In order to solve
this conflict, the analyst must determine the priority quality factors
for choosing the plans that need to be automated. Another possible
solution consists of taking into account the point of view of the
actors involved in the plans. This solution is analyzed in the
following step.

Table 3.2 Example of the matrix of contributions

Plans Competit- Performance | Security
veness

Search Customer info (Manual) | - - +

Search Customer info ++ ++

(Automatic)

Analyze credit card (Manual) - - ++

Analyze credit card (Automatic) | + ++

3.4.4 Points of view of the involved actors

The fourth phase of the elicitation process is the analysis of the point
of view of the actor involved. The satisfaction of the goals of specific
actors can be affected not only by the execution of their own plans,
but also by the execution of the plans of other actors.

The Tropos Framework uses the concept of dependency to represent
social and intentional relationships among the actors. A dependency
is a link between two actors, where an actor, for some reason,
depends on another actor to attain goals, execute plans, or deliver a
resource. The former actor is called the depender, while the latter is
called the dependee. The object around which the dependency
relationship centers is called the dependum [Yu95].

76

3.4 GOAL-BASED REQUIREMENTS ELICITATION PROCESS

The dependency relationships allow us to represent the collaboration
among organizational actors. In this proposal, the dependencies are
analyzed to provide useful information to the analysts so that they
can make decisions about the plans that must be automated.

In order to take these decisions, the contributions of the actor’s plans
to the quality factors must be taken into account, as well as the
contributions of the actors associated through dependency
relationships.

As a result of the previous steps (goal refinement process, analysis of
contributions in the quality factors, analysis of conflicts among
organizational goals and points of view of the involved actors), the
plans that better satisfy the quality attributes of the enterprise have
been identified. These relevant plans represent the requirements to be
considered in the construction of the software system.

Next, an example of the points of view of the involved actors step is
presented, where a partial view of the organizational model with the
selected relevant plans to-be-automated is shown.

Example

Figure 3.11 presents an example of the analysis of the points of view
of the involved actors for the Car Rental case study. The objective of
the process shown in this example was to determine the best way to
carry out the payment of a rented car. In this example, the employee
actor is related to the Customer actor by the payment resource
dependency. Therefore, we analyze the contributions of the actor
Customer with a specific quality factor (security). In this case, it is
possible to determine that in both cases (employee actor and
Customer actor) the execution of the payment plan in an automatic
way contributes negatively to the security factor. Therefore, in this
specific case, the best option to be selected is the manual execution
of the plan Register rent payment. Following with the example of the
case study, Table 3.3 shows the matrix of contributions of the
Employee actor detailed in the actor diagram of Figure 3.9.

7

CHAPTER 3 EARLY REQUIREMENTS

"/ Fomalize .
/ he reservatio

Register
reservation

|
|
i
1
|
.
h
I
,
Employee
\
\
\
\
\
.
.
N

Figure 3.11 Analyzing points of view of the involved actors

Payment

This table contains all the plans of the model, which are analyzed in
two alternative solutions: automatic and manual execution. Once the
relevant plans have been represented in the matrix, then we must
analyze each plan to determine its positive or negative contribution
to the quality factors desired by the enterprise.

The matrix that associates relevant plans and contributions with
quality factors is obtained as a final result of the previous steps of
this proposal (analysis of contributions in the quality factors, analysis
of conflicts among organizational goals and analysis of the point of
view of the involved actors).

Using the generated matrix, the plans to be automated can be
determined by comparing the positive contributions of both
solutions, manual and automatic task execution. Table 3.3, shows
the relation among the alternatives to satisfy the organizational plans
and the proposed quality attributes. The table also shows the plans
selected to be automated according to their positive contribution to
the quality factors.

As a result of the previous steps (goal refinement and contribution
analysis) the plans that best satisfy the quality attributes of the
enterprise have been identified. These relevant plans represent the
requirements to be considered in the construction of the software

78

3.4 GOAL-BASED REQUIREMENTS ELICITATION PROCESS

system. Figure 3.12 shows a fragment of the organizational model
where the relevant plans to be automated have been remarked.

Table 3.3-Contributions matrix for The Car Rental case study

Competitive | Perfor .
Plans ness mance Security
Obtain Customer info (Manual)
Obtain Customer info + + +
(Automatic)
Search Customer info (Manual) - +
Search Customer info ++ ++ -
(Automatic)
Analyze credit card (Manual) + - ++
Analyze credit card (Automatic) | + + -
Obtain reservation info - +
(Manual)
Obtain reservation info ++ ++ +
(Automatic)
Search car availability (Manual) - +
Search car availability ++ ++ +
(Automatic)
Register reservation (Manual) - +
Register reservation ++ ++ +
(Automatic)
Register rent payment (Manual) - +
Register rent payment + + -
(Automatic)
Draw up contract (Manual) + + +
Draw up contract (Automatic) + + -
Request car garage - +
(personality)
Request car garage (by phone) | + ++ +

79

*To be
automated

*To be
automated

*To be
automated

*To be
automated

*To be
automated

*To be
automated

CHAPTER 3 EARLY REQUIREMENTS

Cars Reservation
Manaemem

using a\ternanve ways / T
Carry out reservations N
Employee directly i m lhe branch
CMake reserva-) CMake reserva-)
i t .

ions by internet tions by phone

Analyze Analyze the car
availability n \\

the reservation

/
‘l’ v
! To analyze availa- Handover \
\
! Analyze bility in this branch car :
B cuslomer H
| |
|
I

To analyze Formalize
availability in the reservatlon
Car delivery
Obtam ava\\ablhry Register
TR
gustomer mlo
Register ren

/

’

contract ’/

— ar delive!

Obtain resel s

Search the. vation info car garage, -
uswmev info, Search car
Analyze the availability

credit card

Customer Car
info N
Provide Provide

S
J/ Renta car
, o
/
/
, Prowdemamte
"X, personal reservation) nance to cars Have
info info / ‘ car ready
; ! | ¥, /
. \ /
. \ .
e Legend \ K
>>>>> @F'Ianm be automated s, (eachcar's)/ Have a dehver
clean car/

Sal ondmon

Figure 3.12 Partial view of the organizational model with the selected relevant plans
3.4.5 Delegation of plans to the software system actor

The last step in the goal-based requirements elicitation process is the
delegation of plans to the software system actor. One of the key
capabilities of the Tropos framework is the inclusion of the software
system within the organizational context. To do this, the software
system actor is placed as an organizational actor in the goal diagram
of the business. At this point, the plans that better satisfy the quality
attributes of the enterprise have been identified. These relevant plans
represent the requirements to be considered in the construction of the

80

3.4 GOAL-BASED REQUIREMENTS ELICITATION PROCESS

software system. Therefore, the objective of the phase is to delegate
all the relevant plans to the software system actor.

Afterwards, the plans and resources needed to accomplish the goals
are then redirected towards the system actor. Therefore, the
satisfaction of the goals will not be altered; only the actor responsible
for its fulfillment is modified. The internal plans in the software
system actor must be defined in order to satisfy its goals.

As a result of this process, a new organizational model that
represents the relationships among the software system actor and the
organizational actor is generated. The definition of this new model is
carried out in a systematic way through a pattern language, which is
explained in the next Chapter.

3.5 Summary

This Chapter defines a goal-based requirements elicitation process
that allows us to identify the relevant plans to be automated. To do
this, the high-level goals (that fulfill the objectives of the business)
are refined until the level of specific plans for satisfying the goals is
reached. In this process, the following elements are analyzed: a) the
contributions in the quality factors, b) the conflicts among
organizational goals, and c) the point of views of the involved actors.
The next Chapter describes the analysis carried out in the early
requirements phase, where a pattern language is proposed to delegate
the relevant plans, towards a new organizational actor that represent
the software system to-be (this has been explained briefly in section
3.4.5).

81

82

Chapter 4

Joming early and late
requirements

This Chapter describes a method to reduce the abstraction level
between the early requirements and late requirements by creating a
new intermediate organizational model that contains the relevant
information to be automated by the software-to-be. This process is
guided by a pattern language called FELRE (From Early
Requirements to Late Requirements).

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

4.1 Introduction

This Chapter presents the last step of the goal-based requirements
elicitation process proposed in this thesis. In this step, the relevant
organizational plans to be automated, which were identified in
previous goal analysis, are delegated towards a new actor that
represents the software system. The delegation is carried out by a set
of patterns that analyze the several possibilities that exist for
delegating relevant information to the system actor.

A pattern reflects something that has been used in a number of
situations and, thus, has some generality. The description of a pattern
contains a context, which explains the intent of the pattern and
suggests how it must be used. Patterns also express solutions in ways
that allow some variation, depending on the details of a
circumstance. Finally, pattern descriptions can express architectural
considerations, independently of specific languages and design
methodologies.

We have used a set of design patterns in order to transform an
organizational model (which represents the stakeholders and their
associated goal) into the functional and non-functional requirements
for the system-to-be. The process includes heuristics for identifying
relevant tasks to be automated from stake holder’s goals, and also to
identify the best way to delegate the relevant tasks to the system-to-
be. In order to make the process systematic, a set of patterns is
defined which specifies the possibilities that exist to delegate
organizational plans towards the software system actor. Then, the
system-to-be and its components are represented as a system actor,
who will be the responsible actor for fulfilling the assigned relevant
tasks. All the transformational steps proposed in this thesis were
implemented using a model-driven approach. This enables us to
reduce the abstraction level of a “pure” organizational model so that
it is closer to the software requirements model. The proposed method
complies with the MDA approach, implementing the concept of PIM
(platform independent model)-to-PIM transformations.

84

4.1 INTRODUCTION

It is important to point out that we have only used a pattern-based
approach in the phase of the delegation of plans to the software
system actor. This is because we consider that the steps of the
transformational process can be systematically defined; this enables
us to define a set of recurrent solutions for each of the steps of the
transformational process.

Rules and algorithms to guide the transformational process have
been used to perform other transformations between models where
not systematic steps were detected.

The structure of this Chapter is as follows, in the second section, a
brief description of the model driven architecture is presented; next
section shows an introduction of the proposed patterns; and third
section presents the concepts used in the proposed pattern language,
also, the set of patterns and the pattern language are outlined in this
section. Finally, the summary of the Chapter is presented in last
section.

4.2 'The model driven architecture

In recent years, Model Driven Architecture (MDA™)! [OMGO01] has
been proposed to support the development of large software systems
providing an architecture where systems can evolve, and
technologies can be integrated and harmonized.

MDA is an approach to system development, which increases the
power of models in that job. It is model-driven because it provides a
mean for using models to direct the course of understanding, design,
construction, deployment, operation, maintenance and modification.
The MDA separates certain key models of a system, and brings a
consistent structure to these models. Platform Independent Models
(PIMs) which can be transformed into one or more Platform Specific
Models (PSMs). This allows the system to be implemented in
different platforms, while still maintaining the same PIM.

! MDATM is a trademark of the Object Management Group.

85

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

The term Platform-Independent Model is used to refer to a model
that has only the structure and functionality of a system and no
information about implementation details. Platform-Specific Model
is used to refer to models that have information about
implementation details [OMGO01]

The MDA Guide Version 1.0.1 describes several transformation
methods. Here, we limit to describe the model transformation applied
at this stage of the thesis. Figure 4.1 illustrates this type of
transformation, where, an organizational model specified in the
Tropos Framework is created, that represents the initial PIM
(Organizational Model “Pure”) of the proposed method. This model
will use a platform independent modeling language. Then, a pattern
language is used in order to transform the original organizational
model into other organizational model which includes the software
system actor. This model will also have a platform independent
modeling language and it will be the new PIM (New Organizational
Models with the Software System Actor) obtained.

Organizational

PIP;M Models
atform “ "
independent model Pure

The generation process Transformation
of the late requirements
(Pattern language)

-
New Organizational
PIM Models with the
Platform Software System
Independent model Actor
Figure 4.1 MDA schema

86

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

4.3 Pattern languages

Patterns are a well-known and broadly used technique to specify
software design and implementation. Analysis patterns usage is
rapidly growing in the software engineering community. This
approach has recently been applied in the area of information system
engineering, particularly by those advocating object-oriented
development approaches and reuse. They are also used in: software
programming, software design, data modeling, and systems analysis.
Most of the existing work on patterns has been influenced by the
book of Christopher Alexander “The Timeless Way of Building”
[Alex79]. This book describes the importance of patterns in such a
way that the basic principles of patterns are applicable to other fields
as well. According to Alexander, patterns are ““a problem which
occurs over and over again in our environment and then describes
the core of the solution to that problem, in such a way that you can
use this solution a million times over, without ever doing it the same
way twice”. Patterns-based approaches have been established in
software programming, software design, data modeling, and in
systems analysis. Therefore similar definitions of the term “pattern”
found in the literature are:

“A pattern is a description of a common solution to a recurrent
problem, which can be applied to a specific context” [Gamm95].

“... An idea that has been useful in one practical context and will
probably be useful in others” [Fowl97]

“... The static and dynamic structures of solutions that occur
repeatedly when producing applications in a particular context”
[Copl95].

In the area of business development, patterns are relatively new and
untested. In the context of organizational development, Coplien
[Copl95] argues that ““patterns should help us not only to understand
existing organizations but also to build new ones”. However,
patterns rarely stand alone. Each pattern works within a context, and
transforms the system in that context to produce a new system in a
new context.

87

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

Therefore a collection of patterns falls short of being a pattern
language.

On the other hand, a pattern language can be detailed as: a cascade
or hierarchy of parts, linked together by patterns that solve generic
recurring problems associated with the parts. Each pattern has a title
and, collectively, the titles form a language for design[Copl95].

“... A pattern language defines a collection of patterns and the rules
to combine them into an architectural style.

Pattern languages describe software frameworks or families of
related systems” [Copl95].

At the present time, several types of patterns have been defined, such
as. architectural patterns [Busc98] that show the high level
architectures of a software system; design patterns [Mart98]
[Mesz98] that are focused on the programming aspects, or patterns
that are focused on project management [Beed97]; and patterns in
agent methodology [Gior03] [Gonz04] [Gros01]. In these research
works, which reflects the traditional pattern literature, a pattern is
described as a tested solution to a problem.

The proposed patterns in this research work are focused on
discovering the different organizational structures in the business,
when an organizational plan needs to be automated. Thus, the
patterns that we propose are essentially focused on discovering the
different alternatives in which a process can be executed when a
software system is included in the enterprise model. Therefore, a
specific pattern will be used depending on the type of the
organizational element to be automated. We have used methodology
patterns to divide a complex problem into a specific number of
solutions, where each problem is solved by a proposal pattern. In this
way, the set of patterns that identifies the relevant elements to be
automated is handled by a pattern language.

4.3.1 Structure of the pattern language

Several formats to represent patterns in computer science have been
proposed, each one differing from the other by the kind of categories
they emphasize. Among others, there is the Alexandrian form
[Alex77], the GOF (Gang of Four) form [Gamm94]), and the

88

4.3 PATTERN LANGUAGES

Coplien form [Copl95]. See [Schm95] for more examples. All
formats contain the basic categories: Name, problem statement,
context, description of forces, solution, and related patterns.

The basic elements for describing a pattern and its meaning in this
research work are the following:

Name of Pattern: The name that identifies the pattern.

Context: A situation that address a problem. It describes situations
in which the problem occurs.

Problem: The recurring problem that arises in that context. This part
of a pattern description describes the problem that arises repeatedly
in the given context.

Forces: Describe the relevant forces and constraints and how they
interact or conflict with one another, and which goals should be
achieved by implementing the solution [Url06].

Structure: A detailed specification of the structural aspects of the
pattern.

Solution: Shows how to solve the recurring problem, or better, how
to balance the forces associated with it.

Consequences: The benefits that the pattern provides, and any
potential liabilities.

Examples of the use of the pattern.

Related Pattern: Indicate the other patterns that this pattern is
composed of, is a part of, or is associated to.

4.4 Patterns in the organizational model

The pattern-oriented techniques are currently used in the solution of
complex problems or in the description of a problem involving
several steps.

At the present time, the pattern-based approach has been used in
almost all the phases of software development. We propose a set of
organizational patterns which allows us to reduce the abstraction
level of an organizational model, bringing it closer to the
requirements model of a software system. This is done by inserting
the software system actor (SSA) into the original organizational

89

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

model and delegating the responsibilities of the organization actors
to this new actor.

In this way, the proposed patterns allow us to analyze the
organization elements, such as plans, resources and goals, in order to
delegate these organizational behaviors to the new actor that
represents the software system to be developed.

Therefore, we detected several scenarios that could exist when
delegating responsibilities to the SSA. The scenarios have been
grouped into five patterns that compose the proposed pattern
language. It is important to point out that we adopt the definition of
[Copl95] where a pattern language defines a collection of patterns
and the rules to combine them into an architectural style.

Our proposed pattern language has been called FELRE (From Early
Requirements to Late Requirements). The patterns that
systematically guide the analyst to insert the SSA into the
organizational model are the following:

e The atomic plan delegation pattern

e The composite element delegation pattern

e The depender-dependee element delegation pattern
e The depender element delegation pattern

e The dependee element delegation pattern

In this section, the pattern language and the set of the patterns that
conforms the pattern language is explained, and a short taxonomy of
the concepts used in the definition of the pattern language is shown.

4.4.1 Used Concepts

Before introducing the proposed patterns, we introduce some of the

terms that will be used in the description of them. The elements have

been classified according to their location in the organizational

model and their characteristics; this short taxonomy can be

summarized as:

a) Classification according to their location in the organizational
Model:

90

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

e Internal elements: Are those elements that are defined
inside the boundary of an organizational actor. Figure 4.2
shows an example of an internal plan. Each actor can
contain several elements, which, in turn, can be
subdivided into other elements. This subdivision leads a
tree structure. Therefore, the internal elements can be
classified according to their location in the structure
hierarchy: a) the parent node could be a root node or
intermediate node, and b) the child node could be an
intermediate or a leaf node of the tree.

o External elements: Those elements that are represented in
a dependency relationship as dependum. Figure 4.2 shows
an example of an external plan.

———— External
element

l
Internal \ 65

Figure 4.2 Structure of internal and external plan

b) Classification according to their location in the hierarchy
structure of an actor, the elements can be;

e Atomic elements: Those elements that do not need to be
decomposed into other sub-elements (Figure 4.3).

e Composite elements: Those elements whose execution is
carried out by decomposing it into other sub-elements.

Composite element
C) and garent node

Atomic element
and child node

Figure 4.3 Example of an atomic plan and a composite goal

The elements explained above can also be associated to a
dependency relationship; in this case, we have added the prefix with

91

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

dependency to characterize them. Otherwise, the element will have
the prefix without dependency. Examples of plans with or without a
dependency relationship are explained below.

Element with dependency: Elements of this kind can not be directly
performed by the element owner. Thus, other actors are needed in
order to achieve this kind of modeling element. This situation is
represented by associating dependencies to the plan. An example of a
plan associated to a plan dependency is shown in Figure 4.4.
Element without dependencies: Elements of this kind can be
directly performed by its owner. Thus, this element does not have
any dependency relationship associated to it. This indicates that the
achievement of the element does not require the intervention of
another actor.

~Se__-

Plan with a dependency associated
Figure 4.4 Example of a plan with an associated dependency

All this elements will be used in the explanation of the patterns
defined in FELRE pattern language.

4.4.2 The FELRE pattern language

The pattern language proposed in this thesis makes the process of
insertion of the SSA in the organizational model systematic. The
objective of the pattern language is to reduce the abstraction level of
a ““pure” organizational model to one closer to the requirements
model. We follow the strategy of dividing the problem into more
specific scenarios.

The key of the process consists in the delegation of responsibilities to
the SSA. To do this, the dependencies, goals, resources and plans of
the organizational actors must be redirected to the SSA. As a result
of insertion process of the SSA, new dependencies need to be created
in order to permit the SSA to obtain resources from the
organizational actors. New dependencies also need to be created to

92

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

indicate the sending of resources from the SSA to the organizational
actors. The proposed pattern language must consider all the possible
delegations to the SSA.
The inclusion of the software system as an actor in the organizational
model allows us to have a high-level description of the plans that
must be supported by the information system. This high-level
description helps to focus the modeling activity on the relevant
aspects to be automated, thereby, reducing the complexity of the
analysis. Therefore, this model is correctly adapted to start the
process of finding the requirements for the information system.
The systematic delegation of modeling elements to the SSA could
cause changes in the organizational model. For this reason, to carry
out the delegation process in a systematic way, it is necessary to
consider all the possible scenarios in which the relevant elements can
be found into the organization, and also to determine how the
organizational actors interact with the elements to be delegated.
The word “relevant” has been used in this thesis to indicate those
elements whose automatic execution satisfies the organizational
goals in the most appropriate way. Therefore, once the elements to
be delegated to the SSA have been selected, the process will
continue analyzing the following issues: 1) the type of the element to
be delegated, 2) the way in which the element is currently executed
in the organizational context, 3) the way in which the plan or goals
will be executed (in an automatic way) by the information system,
and, 4) the roles that will be played by the original element owner
once the element has been delegated to the SSA. All of these issues
will be solved using the set of patterns that make up the pattern
language.
Figure 4.5 shows the proposed patterns and the relationships among
them, and presents a brief description of each pattern.

e The atomic plan delegation pattern: To be used when an

atomic plan needs to be automated.

e The composite element delegation pattern: To be used when a
composite plan needs to be automated. This pattern could be
associated with the composite element delegation pattern.
This pattern could also be associated with the following

93

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

patterns: The depender-dependee element delegation pattern,
the depender element delegation pattern and dependee
element delegation pattern.

e The depender-dependee element delegation pattern: To be
used when both elements of the depender and dependee
actors of a dependency relationship must be automated.

e The depender element delegation pattern: To be used when
the element of the depender actor of a dependency
relationship must be automated.

e The dependee element delegation pattern: To be used when
the element of the dependee actor of a dependency
relationship must be automated.

The proposed method to apply the pattern language is presented in
detail in the following section.

FELRE Pattern Language

1. The Atomic plan
delegation pattern

2. The Composite element
delegation pattern

3. The Depender-Dependee
element delegation
pattern

4. The Depender element
delegation pattern

5. The Dependee element
delegation pattern

Figure 4.5 Set of patterns of the FELRE pattern language

4.4.3 Applying pattern language

The proposed patterns must be used once the relevant elements to
automate have been identified. To do this, there is a specific method

94

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

to apply the proposed patterns. The application method is composed
of five steps; they must be performed to correctly carry out the
insertion of the SSA in the organizational model.
The steps for inserting the SSA and the elements to be automated to
this actor are the following:
Step 1. Insert the SSA in the organizational model. This step
concerns the insertion of a new actor which represents the software
system-to-be.
Step 2. Analyze the internal elements of each actor. An analysis
of the internal elements must be carried out for each organizational
actor (different to the SSA). Each actor can be composed of several
goals and plans, which, in turn, can be subdivided into goals or
plans. As mentioned above, this leads to a tree structure. Thus, an
algorithm to traverse the goal structure must be used to detect the
elements that must be automated.
Step 2.1 Perform an in-order traversing through the
internal element structures of the each organizational
actor. An in-order traversing has been proposed to analyze
all the elements of the goal and plan structure tree of each
organizational actor of the business. The purpose of
traversing is to select the organizational elements to be
automated using a software system. To perform the in-order
traversing, the left tree must be analyzed first, then the parent
element and, finally, the right tree. An example of the in-
order traversing is shown in Figure 4.6. The tree traversing
starts by analyzing the left node, then the next node to be
analyzed is the parent node and later the next branch of the
tree must be analyzed. Thus, in Figure 4.6, the order of the
analysis in the elements should be: D, B, E, A, C. When an
element to be automated is identified, the traversing in the
tree must be stopped. Then, the appropriate pattern to
perform the delegation must be selected. Once the element
has been delegated to the SSA, the traversing process returns
to the position of the relevant element in order to follow the
delegation process of the elements to the SSA.

95

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

ke

D E

Inorder Traversing: DBEAC

Figure 4.6 Example of inorder traversing

Step 3. Identification of the appropriate pattern. Once a relevant
element has been identified (in the previous step), it is necessary to
identify the pattern type that corresponds to the analyzed element.
The next sub-steps detail this process. For example, in Figure 4.7, the
following elements to be automated have been depicted with a
background of parallel lines, applying the steps mentioned above, if
the actor “A” is analyzed, then the first relevant element found is an
atomic plan (because this is not decomposed into other subplans).
Thus, the pattern to be used to perform the delegation of this element
to the SSA is the atomic plan delegation pattern. Figure 4.7 shows
the appropriate pattern to be used for each element in the model. The
patterns are identified in figure by the pattern number (pattern 1: The
atomic plan delegation pattern, pattern 2: The composite element
delegation pattern, pattern 3: The Depender-Dependee element
delegation pattern, pattern 4: The Depender element delegation
pattern, pattern 5: The Dependee element delegation pattern).

Step 3.1 Analysis of elements not associated to dependency
relationships. When the analyzed element plan is placed in an
end node of the tree, then the pattern used for this element is
the atomic plan delegation pattern (pattern 1). However, when
the element is a plan or a goal which is decomposed into other
subplans needed to execute it, the pattern to be used is the
composite plan delegation pattern. Figure 4.7 shows the actor
“B” as an example of this kind of the pattern (Pattern 2).

96

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

et Pattern 4 Tl il

Pattern1

Elements to be delegated
Figure 4.7 Identification of patterns in an organizational model

Step 3.2 Analysis of elements associated to dependency
relationships. When the dependum object in this relationship
is a plan or a resource, the other element that is joined to the
dependency must be analyzed. If the element needs to be
delegated to the SSA, the pattern used for these elements is the
depender-dependee element delegation pattern (to see Figure
4.7, pattern 3).

However, if only one element of the dependency relationship
must be delegated, the role played by the organizational actor
that contains the element must be analyzed.

If the role of the actor in the dependency is depender, the
pattern used for this element is the depender element
delegation pattern (to see Figure 4.7, pattern 4). Otherwise, the
dependee element delegation pattern must be used to see
Figure 4.7, pattern 4.

97

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

Step 4. Delegate the relevant elements to the SSA. The steps
described in the appropriate pattern must be followed in order to
carry out the delegation of the element (s) to the SSA.

Step 5. Following with the inorder traversing. Once the pattern for
a relevant element has been identified, the analysis in the internal
elements of an actor must continue until all the elements of the actor
had been analyzed. In this case, the analysis will continue with the
next actor represented in the organizational model.

4.4.4 Catalog of Patterns

In this section, each pattern of the pattern language proposed is
explained in depth. All these patterns concern the delegation of plans
from the organizational actors to the SSA,; this delegation process
depends on three issues:

= The type of the plan to be delegated

= How the plan is currently executed in the organizational

context

= How the plan will be executed in an automatic way
The structure used to detail each pattern is the following:
Name: The name of each proposal pattern must represent its
objective and it’s the intended meaning (as much as possible). For
example, in the atomic plan delegation pattern, the name makes
reference to the type of element that is to be delegated to the SSA.
Additionally, the name of each pattern has the word delegation,
which indicates that the objective of the pattern is the delegation of
the element to the SSA.
Context: In this section, the situations in which the problem occurs
are explained. This section details the initial situation in the business
before the pattern is applied to it.
Problem: In this section, the reasons why the pattern is being
developed are presented. We have divided a complex problem
(modeling an organization with the system-to-be, where the
execution of the plans will be modified by a new actor (SSA) in
several sub problems. We lead each specific problem with a specific
pattern and explain the forces that influence the solution of the
problem.

98

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

Structure: In this section, the structural aspects of each pattern are
shown. This section also illustrates the typical scenarios of the
behavior of this pattern in the organizational model. We graphically
illustrate each scenario.

Solution: In this section, the pattern solution is detailed in a set of
steps, which provide a correct implementation of the solution to each
problem.

Example: In order to illustrate each pattern, the Car Rental case
study has been used. This is a real project of the Care Technology
Company, which concerns organizational modeling for a car rental
enterprise in Alicante, Spain. We explain each pattern showing the
initial context in which the problem emerges; we show how the
selected pattern is applied, and, finally, we present the
transformation steps for creating a new context.

Related Pattern: in this section, we indicate the situation where a
pattern is associated to another pattern. A pattern solves a particular
problem, but its applications may address new problems. Some of
these can be solved by other patterns [Busc98].

The proposed patterns are detailed in the next sub-sections. First, a
brief summary to describe the pattern is shown, and second, all the
elements of the pattern are detailed.

4.4.4.1 The atomic plan delegation pattern

This pattern must be used when an atomic plan needs to be delegated
to the SSA in order to automate its execution. The atomic plans are
those plans that do not need to be divided into other subplans to be
executed.

The pattern details the problems that may be found in the delegation
of an atomic plan and also shows the alternative solutions for that
delegation. Figure 4.8 presents an example of this structure.

99

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

Legend ‘,
@ Atomic plan '.\ @

Figure 4.8 Example of the atomic plan

4.4.4.1.1 Context
This pattern concerns the delegation of an atomic plan to the SSA,
which must fulfill the following conditions:

= Itis not decomposed into other subplans and

= Itis not associated to any dependency relationship.
Figure 4.9 illustrates an example of an atomic plan in the Car Rental
case study. Specifically, the figure represents the plan: provide info
of prices of the employee actor. This plan has been selected to be
automated. For this reason; the plan needs to be delegated to the

SSA.

Atomic Plan to
be automated

Figure 4.9 An example of an atomic plan in the Car Rental case study

4.4.4.1.2 Problem

The problem consists of determining the role played by the original
plan owner once the atomic plan has been delegated to the SSA. It is
also necessary to determine the influence of this delegation on the

other organizational actors involved in the business.

100

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

4.4.4.1.3 Forces

There are three forces associated to the solution of this pattern:

= The atomic plan to be automated needs the intervention of the
original owner actor.

= The atomic plan to be automated needs the intervention of the
original owner actor, as well as the intervention of other
organizational actors.

= The atomic plan to be automated doesn’t need the
intervention of any organizational actor.

4.4.4.1.4 Structure

The elements used in this pattern are the following:
= Atomic plan: This is the element that needs to be delegated
to the SSA.
= An organizational actor: This actor, who is the original
atomic plan owner, can play the role of the depender or
dependee actor once the plan has been delegated.
= A parent node: This is the element linked to the atomic plan.
This element can be another plan or a goal.
= A link: This element joins the atomic plan with its parent
node.
Note that, in this kind of pattern, the atomic plan does not have any
dependency relationship.

Scenarios:

There are three possible scenarios in which an atomic plan to be
automated can be found in the organizational context:

Scenario |. This describes the situation where the atomic plan is
associated to its parent plan by an AND decomposition link. Figure
4.10 (a) depicts this situation.

Scenario Il. This describes the situation where the atomic plan is
associated to its parent plan by an OR decomposition link. Figure
4.10 (b) depicts this situation.

Scenario I1l. This describes the situation where the atomic plan is
associated to its parent node (a goal) by a means-end link. Figure
4.10 (c) depicts this situation.

101

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

a) Scenario | b) Scenario Il c) Scenario lll

Legend
@ Atomic plan to be delegated to SSA /@\ AND Decomposition link

/: :K OR Decomposition link /’ \Means-end link

Figure 4.10 Scenarios of an atomic plan into an organizational model

4.4.4.1.5 Solution

The process to delegate an atomic plan to the SSA consists of four
steps:

Step 1. Delegate the analyzed atomic plan to the SSA.

Step 2. Determine the roles that the organizational actor (who was
responsible for this plan) will play after the plan is delegated to the
SSA. These roles and their solutions are described in the following
sub-steps:

Step 2.1 If the original plan owner will play the role of
Provider of information to perform the plan (once the plan has
been delegated), then a resource dependency between the actor
and the SSA must be created, in order to indicate the
introduction of information to the software system from the
organizational actor. The depender of this dependency will be
the SSA and the dependee will be the original plan owner. The
application of the solution implies the analysis of the plan
name; it must be changed so that it is more appropriated, for
the intended semantics.

Step 2.2 If the original plan owner will play the role of
Requester of information (once the plan has been delegated),
then a resource dependency between the actor and SSA must
be created. The depender of this dependency will be the
original plan owner and the dependee will be the SSA.

102

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

This new dependency indicates the delivery of information to
the organizational actor.

Step 2.3 If the original plan owner does not have any
interaction with the SSA to perform the plan, no dependencies
must be created. The selection of this alternative implies the
analysis of the plan name in order to make it appropriate for
the new organizational configuration.
Step 3. Determine the role that the other organizational actors play in
the delegated plan. If they want to obtain or to provide information
for the plan, then, new dependencies among these actors and the SSA
must be created.
Step 4. If more than one dependency relationship is generated during
the delegation of an atomic plan to SSA, then, they must be labeled
with the same number in order to indicate their association.
Step 5. Analyze the context of the atomic plan. In this step, the
atomic plan must be analyzed in the context of its hierarchical
structure, in order to determine if its parent goal must also be
automated. In this specific case, the composite plan delegation
pattern must be used.

4.4.4.1.6 Examples

The application of the steps of the atomic plan delegation pattern is
illustrated with the example shown in Figure 4.9.

The first step in the solution of this pattern consists of delegating the
plan provide info of prices of the employee actor to the Car Rental
actor.

The second step in the solution of this pattern consists of determining
the role played by the employee actor. The different roles that the
employee actor can play are shown below.

The first alternative solution for the second step must be applied
when the organizational actor plays the role of Provider of
information for the plan delegated to the SSA. This decision implies
changing the plan name to make it more appropriate for the new
configuration. The Car Rental case study, the employee actor acts as
Provider of information. Thus, the plan provide info of prices should
be changed Calculate prices (Figure 4.11), because the employee

103

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

actor will provide the information about the prices of a reservation.
In this case, a new resource dependency is created between the

employee actor and the SSA, where the depender actor will be the
Car Rental actor.

Car Rental
Management

1 AY
o \
Reservation ' Calculate '
Employee . T . [
info \ prices !
\

Figure 4.11 An example when the employee actor acts as provider of information)

The second alternative solution for the second step must be applied
when the actor (who was responsible for the delegated plan) plays
the role of Requester of information. For example, if the employee
actor (Figure 4.9) acts as Requester of information, then the
employee actor will handle the software system to obtain the prices
of the reservation. Therefore, a resource dependency (prices and
models info) between the employee and the Car Rental actor must be
created. This new dependency will indicate the delivery of
information of the Car Rental actor to the employee actor. Figure
4.12 depicts this example.

Car Rental
Management
System

1 \
1 L. \
Prices and ! To provide info !
Employee . R |
models Info \ of prices !
\

- -

Figure 4.12 An example when the employee actor acts as requester of information)

104

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

The third alternative solution for the second step must be applied
when the actor (who was responsible for the delegated plan) does not
have any interaction with the SSA.

For example, the plan To provide information of prices (Figure 4.9)
that has been delegated to the Car Rental actor does not require any
interaction with other organizational actors in order to be executed.
Therefore, the original name of the plan (To provide info of prices)
must be modified to represent the fact that this plan will be executed
by the Car Rental actor itself. The new name of this plan is:
Calculate prices as shown in Figure 4.13.

Car Rental
_ -~ Management
System

- -

Figure 4.13 An example when the employee actor does not have any interaction
with the delegated plan

The third step in the solution of this pattern consists of creating new
dependencies among the organizational actors, and the Car Rental
actor must be created if other organizational actors want to obtain or
provide information about the delegated plan. The Figure 4.14
depicts an example, where the associated branches actor provides
info to the Car Rental actor through a resource dependency (Prices
and models info). Thus, only this new dependency is created in this
step.

The fourth step in the solution of this pattern consists of labeling the
dependency relationship generated during the delegation of an
atomic plan to the SSA in order to indicate the association between
them. For example, in Figure 4.14, the two dependencies created in
the delegation process can be labeled with the number 1.

The fifth step in the solution of this pattern consists of analyzing the
context of the original atomic plan (To provide info of prices) in

105

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

Figure 4.9 in the analyzed example, the plan is linked to a goal by a
means-end link; therefore, the composite plan delegation pattern
must be used to analyze this situation. An example of delegating a
composite plan is shown in the following pattern.

Car Rental
Management
System

1 /
Employee Prices and
models info

1

Associated Prices and
Branches models info

Figure 4.14 An example when other actors have interaction with the delegated plan

4.4.4.2 The composite element delegation pattern

This pattern must be used when a composite element needs to be
delegated to the SSA in order to automate its execution. The node
can be a goal or a plan. Figure 4.15 depicts an example of this
structure, where a composite plan is linked to its children nodes by
an OR decomposition link. The pattern details the problems of this
action, and shows the alternative solutions for these problems.

, N
.
p
’

Legend i

1

1

\

@ Composite plan

Figure 4.15 Example of a composite plan

106

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

4.4.4.2.1 Context

This pattern concerns the delegation of a composite element to the
SSA. It can be a plan or a goal, which must fulfill the following
conditions:
= If the composite element is a plan, then it must be
decomposed into other subplans.
= If the composite element is a goal, then it must be composed
only by subplans through a means-end link.
= At least one subplan of the composite element must have
been delegated to the SSA.
Note that, a composite element can have a dependency relationship
associated to it. The diagram in Figure 4.16 illustrates an example of
a composite goal in the Car Rental case study; specifically in analyze
availability in another branch. This goal must be analyzed to be
delegated to the SSA.

Employee
1

. G availability
| i{another branch/

N Legend

K C) The composite goal

] ¢~ ™, Child node which was

4 |Y==7 delegated to the SSA

Obtain
availability
info

N e -

~ -
~o -

Figure 4.16 An example of a composite goal in the Car Rental case study

4.4.4.2.2 Problem

The problem consists of determining when a composite element must
be delegated to the SSA. The way the delegation influences in its
subplans and the organizational actors must also be analyzed.

4.4.4.2.3 Forces

There are three forces associated to the solution of this pattern:
= The composite element has at least one subplan, which must
have been delegated to the SSA.
= The composite element to be delegated needs the intervention
of the same organizational actor.

107

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

= The composite element has a dependency with another
organizational actor.

4.4.4.2.4 Structure

The pattern is composed of the following elements:

= A composite element: this element can be a goal or plan
which requires to be delegated to the SSA.

= Child nodes: these elements must be plans.

= Links: this element joins the composite plan with its child
nodes.

= An organizational actor: is the actor who contains to
original composite element to be delegated. This actor could
have an interaction with the composite element once the
element has been delegated by a dependency relationship.

= A dependency relationship: this element is optional in this
pattern. The type of the dependency of our interest could be:
resource dependency, plan dependency or goal dependency.

Scenarios:

There are three possible scenarios in which a composite element can
be found in the organizational context:

Scenario I. This describes the situation where a composite plan is
associated to its child nodes by an AND decomposition link. Figure
4.17 (a) depicts this situation.

Scenario Il. This describes the situation where a composite plan is
associated to its child nodes by an OR decomposition link. Figure
4.17 (b) depicts this situation.

Scenario I11. This describes the situation where a composite goal is
associated to its child nodes by a means-end link. Figure 4.17 (c)
depicts this situation.

108

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

a) Scenario | b) Scenario Il c) Scenario Ill

Legend
@ Composite plan to be delegated to SSA /@\ AND Decomposition link

Composite goal o be delegatedto SSA /~\ OR Decomposition ink
3 Child node previously delegated to SSA / \ Means-end link

Figure 4.17 Scenarios of a composite element into an organizational model

4.4.4.2.5 Solution

The process of delegating a composite plan to the SSA is influenced
by the previous delegation of at least one child node to the SSA. The
composite goal will only be considered for delegation to the SSA, if
it is linked with its child nodes (plans) by a means-end. This process
is composed of five steps:

Step 1. Analyze the composite element to determine if it can be
delegated to the SSA.

Step 1.1 When the composite element is a plan, its nodes must
be analyzed if at least one child node of the composite plan
was delegated to the SSA. If this condition is satisfied, then
the composite plan must be delegated to the SSA.

Step 1.2 When the composite element is a goal, several
conditions must be taken into account to delegate the goal to
the SSA. 1) The children nodes of the composite goal must be
plans, and they must be linked by means-end links, and 2) At
least one child node of this goal must have been delegated
previously to the SSA. If these two conditions are satisfied,
then the goal can be delegated to the SSA.

Step 2. Delegate the composite element to the SSA if it satisfies the

conditions explained in step 1.2.

109

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

Step 3. Associate the subplans of the composite plan/goal located in
the SSA. The link used to associate these elements must be the same
link that the composite plan/goal had before being delegated to the
SSA.

Step 4. Analyze the influence of this delegation on the organizational
actors. This influence only occurs when the composite element is a
plan.

Step 4.1 If an organizational actor provides information to the
composite plan to execute the plan, a resource dependency
between the actor and the SSA must be created. The depender
of this dependency is the SSA. The new dependency indicates
the reception of information from the organizational actor to
the SSA.

Step 4.2 If an actor requires information from the composite
plan, a resource dependency between the actor and the SSA
must be created. The depender of this dependency is the
organizational actor and the dependee is the SSA. The new
dependency indicates the delivery of information to the
organizational actor from the SSA.

Step 4.3 If the delegation of the composite element does not
affect any actor because there is no direct interaction with the
element, then no dependency relationship between the
organizational actors and the delegated element is created.
Step 5. Determine whether the composite plan/goal to be delegated
to the SSA has a dependency associated to it. In this case, it is
necessary to determine if an associated pattern must be applied. The
patterns that can be applied are: the depender-dependee element
delegation pattern or the depender element delegation pattern.

4.4.4.3 The depender-dependee element delegation
pattern

This pattern must be used when all the elements of a dependency
relationship (depender-dependum-dependee) need to be delegated to
the SSA. In other words, the element of the depender actor as well as

110

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

the element of the dependee actor must be executed in an automatic
way.

The pattern details the problems that may be found in the delegation
of the elements of the depender-dependee actors and shows
alternative solutions. Figure 4.18 depicts an example of this

structure.

Dependee Depender

Legend
@ plan to be automated

Figure 4.18 Example of the depender actor plan and the dependee actor plan to be
automated

4.4.4.3.1 Context

This pattern concerns the automation of the elements of the depender
actor and the dependee actor, where the elements to be delegated are
associated by a dependency relationship. To apply this pattern, the
following conditions must be fulfilled:
= The elements of the organizational actors associated by the
dependency relationships need to be delegated to the SSA;
these elements can be a goal or a plan,
= The dependum object must be a resource or a plan
Figure 4.19 illustrates an example of this pattern, where the plans of
the depender and dependee actors must be delegated to the SSA.
The delegation of these elements focuses on the dependum, which is
a resource (Customer info). Therefore, both, the acquisition as well
as the delivery of this resource, need to be automated.

111

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

il e Lo Employee
h ’
E ’
\l] N {
7 Provide "\ i Customer | 1 /Obtain custo-]
3 info y info W\ merinfo A
4 \ ’

\
~ 4 N ’
~ 4 N -
~ - ~o _-

Dependee Depender

Figure 4.19 An example of the depender-dependee element delegated pattern in
the Car Rental case study

4.4.4.3.2 Problem

The delegation of the elements of the depender and dependee actors
causes several changes in the entire organizational context; mainly,
in the actors involved in the dependency relationship. These changes
are related to the type of elements that compose the dependency.
These changes also depend on the role played by the actors involved
in the dependency relationship analyzed.

4.4.4.83.3 Forces

There are five forces associated to the solution of this pattern:

= The elements of the depender/dependee actors to be
automated are linked to a resource dependency (dependum).

= The elements of the depender/dependee actors to be
automated are linked to a plan dependency (dependum).

= The element of depender actor is a goal, and both the element
of dependee actor and the dependum are plans.

= The plans delegated to the SSA require the intervention of the
original owner actors.

= The plans delegated to the SSA require the intervention of
other organizational actors, not just the original owner actors.

4.4.4.3.4 Structure

The elements used in this pattern are the following:
= Organizational actors: these are the depender actor and the
dependee actor in the analyzed dependency relationship.
= Depender actor element: this is the element that needs to be
delegated to the SSA. The element must be a plan or a goal.

112

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

= Dependee actor element: this is the element that needs to be
delegated to the SSA. The element must be a plan or a goal.

= Dependum: this element represents the context around of the
dependency; it can be a resource or a plan.

= Dependency relationship: this element joins the
depender/dependee actors and the dependum object.

Scenarios:

There are three possible scenarios in which this pattern can be found
in the organizational context:

Scenario I. This describes the situation where both the element of
the depender actor and the element of the dependee actor are plans,
in which case they must be delegated to the SSA, and where the
dependum object is a resource. Therefore, the scenario represents the
need of the business to obtain and to send a resource in an automatic
way. Figure 4.20 (a) depicts this situation.

Scenario 1. This describes the situation where both, the element of
the depender actor and the element of the dependee actor are plans
which must be delegated to the SSA, and where the dependum object
is a plan. Therefore, the scenario represents the need of the business
to automate the depender plan which has been delegated to another
actor. Figure 4.20 (b) depicts this situation.

Scenario I1l. This describes the situation where both, the depender
element is a goal and the dependee element is a plan. These elements
must be delegated to the SSA. The dependum object is a plan.
Therefore, this scenario represents the delegation of a goal to the
SSA, which delegates the execution of a plan to another actor. Figure
4.20(c) depicts this situation.

113

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

M -7 RN
N ,
h ’
1)
\ ! \
\ 4 \
\ ’
N ,
-

Depender Dependee
a) Scenario | Legend
e e Resource dependency:
N\ ’,' dependee —-{__|—«— depender
M Plan dependency;
_) ' > dependee —<—O—<— depender

Elements to be delegated to the SSA

Depender Dependee & Plan
. b) Scenario Il B & Goal
A
\ /’ \\ b
Depender Dependee
¢) Scenario lll

Figure 4.20 Scenarios of the depender- dependee element delegation pattern
4.4.4.3.5 Solution

The delegation of the elements of depender and dependee actors to
the SSA focuses on the following issues: a) the roles played by the
organizational actors, b) the type of the elements involved in the
dependency relationship, and c) the type of the dependum. Therefore,
the alternative solutions are classified depending on the elements to
be delegated.

a) First alternative: Plan-Resource-Plan,

b) Second alternative: Plan-Plan-Plan,

¢) Third alternative: Goal-Plan- Plan
The first element indicates the depender actor; the second element
indicates the dependum, and the third element belongs to the
dependee actor.

a) First Alternative (Plan-Resource-Plan):
The first alternative is used when both, the depender and the
dependee plan must be delegated to the SSA, and the dependum
object is a resource. This indicates the need to automate the

114

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

sending and receiving of the resource. The first alternative of
solution is done in four steps:

Step 1. Delegate both the depender actor plan as well as the
dependee actor plan to the SSA, and place a composite plan,
which joins these plans through an AND in the SSA. Figure
4.21 illustrates the delegation of the plans of both, the
depender and dependee actors, to the SSA. The plans are
placed as child nodes of a composite plan, which must be
created in order to determine the association between the two
plans. The plans and the goal will be joined by an AND link.

b 1
’
’

’
’

’

\

\
N 4

- ~
e N
~. LT TN
N ’ > p/ D
\ ’
\ h -
[} 1 1]
\ [\ '
\ ’
A ’ \\ //
Seo_o-” ~o _-
-~ . ,
~ -7

Dependee epender N

Before the delegation After the delegation

Figure 4.21 Before and after delegating the plans of the depender/dependee
actors to the SSA

Step 2. The original resource dependency between the
organizational actors must be redefined. The depender actor of
the new dependency will be the SSA, and, the plan associated
to the dependency will be the plan that needs the resource to
be performed. The selection of the dependee actor in the
relationship will depend on which actor acts as Provider of
information to perform the plan.

Step 2.1 If the actor who acts as depender in the
dependency relationship analyzed (that we called O-Der)
will play the role of Provider of information to execute
the plan, then the original dependency between the O-Der
actor and original dependee actor (O-Dee) remains the
same and a new dependency between the SSA and O-Der
actor is created (Figure 4.22). These dependencies
indicate that the SSA depends on the organizational actor
to obtain the information required to execute the plan.

115

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

0-Dee 0-Der :
Actor, Actor, Y 3

Figure 4.22 Organizational model after applying step 2.1 (the O-Der actor
acts as provider of information)

Step 2.2 In contrast to step 2.1, if the original dependee
actor (O-Dee) actor will play the role of Provider of
information to execute the plan, then the original resource
dependency is redefined between the SSA and the O-Dee
actor. The SSA will act as depender. Figure 4.23 shows
the resource dependency where the depender actor is the
SSA and the dependee actor is the same of the original
dependency.

Figure 4.23 Organizational model after applying step 2.2 (the O-Dee actor
acts as provider of information)

Step 2.3 If both organizational actors need to interact
with the SSA, the original resource dependency will be
redefined between the actor that acts as Provider and the
SSA. A new dependency must also be created between
the other organizational actors and the SSA. Figure 4.24
shows the alternatives where both organizational actors
need to interact with the SSA. Therefore, the original
resource dependency is redefined between the actors that
act as Provider; in this case, the SSA will act as depender.
When the organizational actor acts as Requester, a new
resource dependency will be placed between the

116

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

organizational actor and the SSA. The dependee actor
will be the SSA.

.
1
1

!

’

W ’
N ’
.

Figure 4.24 Organizational model after applying step 2.3 (both actors
interact with the SSA)

Step 2.4 If no actor has any interaction with the SSA to
execute the delegated plans, no dependencies must be
created. The selection of this alternative implies the
analysis of the plan name in order to make it appropriate
for the new organizational configuration.

Step 3. Analyze the influence of the delegation of the
elements of the depender and dependee actors on the
organizational actors. When other organizational actors must
obtain or provide information from/to the delegated plans, new
dependencies among these actors and the SSA must be
created. If there is an interaction between the organizational
actors (O-Der and O-Dee), a new dependency between the
actors must be created.

Step 4. If more than one dependency relationship is generated
during the delegation of elements of the depender/dependee
actors to the SSA, they must be labeled with the same number,
in order to indicate their association.

b) Second Alternative (Plan-Plan-Plan):
The second alternative is used when both the depender and the
dependee plan must be delegated to the SSA, and the dependum
object is a plan. This indicates the delegation of a plan of the

117

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

depender actor to another actor who will act as dependee. The
automation of these plans will be carried out as follows:

Step 1. Delegate the depender actor plan to the SSA, and
place the dependee actor plan as a subplan. These plans will
be linked by an AND decomposition link. Figure 4.25
illustrates the delegation of the plans of both the depender and
the dependee actors to the SSA. The plan of the depender
actor is placed as parent node of the dependee actor plan.
These plans are joined by an AND decomposition link.

‘m'c}igﬁ

Dependee Depender plan of she’dependee actor

Before the delegation After the delegation

Figure 4.25 Organizational model before and after applying the step 1 of the
second alternative

Step 2. Determine the roles played by the organizational
actors with the delegated plans.

Step 2.1. If an actor plays the role of Provider of
information in some of the delegated plans to the SSA, a
resource dependency between this actor and the SSA
must be created.

The SSA will act as depender in this dependency
relationship. This new dependency indicates the delivery
of information by the SSA.

Step 2.2. If some actor plays the role of Requester of
information in some of the delegated plans to the SSA, a
resource dependency between the actor and SSA must be
created. The SSA will act as dependee in this dependency
relationship. This new dependency indicates the delivery
of information to the organizational actor.

118

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

Step 2.3. If the actor does not have interaction with the
SSA to perform the plans delegated, no dependencies
must be created. The selection of this alternative implies
the analysis of the plan name in order to make it
appropriate for the new organizational configuration.

Figure 4.26 illustrates an example of this alternative, where
actor 1 acts as Provider of information with the delegated plan
to the SSA. A resource dependency is used to model this
option, and the SSA acts as depender in this relationship.
Actor 2 acts as Requester of information so another resource
dependency is placed in the model. The SSA acts as dependee
in the dependency relationship.

Provider

Requester A

Figure 4.26 Organizational model after applying step 2 of the second
alternative

Steps 3 and 4 of the first alternative must be taken into
account in order to carry out all the processes for delegating
the elements of the pattern to the SSA.

¢) Third Alternative (Goal-Plan-Plan):
The third alternative is used when the elements of a dependency
relationship are: a goal in the depender actor, a plan in the
dependee actor, and a plan as dependum. It indicates the need to
execute a plan for another actor to achieve a goal. Therefore, the
delegation of these elements is carried out as follows:

119

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

Step 1. Delegate the depender actor goal to the SSA and place
the dependee actor plan as its child node. These elements will
be linked by a means-end link. Figure 4.27 illustrates the
delegation of the depender actor goal and the delegation of the
plan of the dependee actors. The goal is placed as parent node,
and the plan is placed as the child node of this goal. These
elements are joined by a means-end link.

Before the delegation After the delegation

Figure 4.27 Organizational model before and after to apply the step 1 of the
third alternative

Step 2. Determine the roles played by the organizational
actors with the delegated plans.

Step 2.1. If an actor plays the role of Provider of
information in some of the delegated plans to the SSA, a
resource dependency between this actor and the SSA
must be created.

The SSA will act as depender in this dependency
relationship. This new dependency indicates the delivery
of information by the SSA.

Step 2.2. If some actor plays the role of Requester of
information in some of the delegated plans to the SSA, a
resource dependency between the actor and SSA must be
created. The SSA will act as dependee in this dependency
relationship. This new dependency indicates the delivery
of information to the organizational actor.

Step 2.3. If the actor does not have interaction with the SSA to
perform the plans delegated, no dependencies must be created.
The selection of this alternative implies the analysis of the

120

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

plan name in order to make it appropriate for the new
organizational configuration.

Step 3. Analyze the influence of the delegation of the
elements of the depender and dependee actors on the
organizational actors. When other organizational actors must
obtain or provide information from/to the delegated plans, new
dependencies among these actors and the SSA must be
created. If there is an interaction between the organizational
actors (O-Der and O-Dee), a new dependency between the
actors must be created.

Step 4. If more than one dependency relationship is generated
during the delegation of elements of the depender/dependee
actors to the SSA, they must be labeled with the same number,
in order to indicate their association.

Figure 4.28 shows the final model of the example illustrated in
Figure 4.27. The delegation of the depender actor element and
the dependee actor element are a goal and a plan. These
elements are joined by a means-end link.

)
0-Dee 0-Der 4__6
Actor Actor R, 4

Figure 4.28 Organizational model after applying steps from the third alternative of
the depender-dependee element delegation pattern

The O-Der actor acts as Provider of information to the SSA. A
resource dependency is used for modeling this option, and the
SSA will act as depender actor in this relationship. There is an
interaction between the organizational actors which is depicted
through a resource dependency between the O-Dee actor and
the O-Deer actor.

121

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

4.4.4.3.6 Examples

The delegation of the elements of depender and dependee actors to
the SSA s classified depending on the elements to be delegated. In
this sub-section we give an example for each alternative of
delegation, they are:

= First alternative: Plan-Resource-Plan,

= Second alternative: Plan-Plan-Plan,

= Third alternative: Goal-Plan- Plan

Example of the first Alternative (Plan-Resource-Plan):

The application of the steps of this alternative is illustrated with the
example shown in Figure 4.20, where both actors depender and
dependee want to delegate their plan to the SSA. They are: Obtain
Customer info and Provide info. Thus, the first steps in the solution
of this pattern consist of delegating both plans to the SSA, and place
a plan joined through an AND link in the SSA. Next step consists in
redefining the dependum element (resource: Customer info). The
depender actor in the dependency will be the plan which needs the
resource; meanwhile, the dependee actor in the relationship will be
the actor who acts as Provider of information to perform the plan.
Specifically, In this case the employee actor acts as Provider of
information to execute the plan, then the resource dependency
remains the same and a new dependency between the SSA and
Employee actor is created. In step 4, all the dependencies modified in
these alternatives are labeled with the number 1. Figure 4.29 shows
the result of applying this alternative of solution.

L7 Analyze
/ ustome)
/ \
'

1 \
|

|
Customer | 4 btain custo Provide "\,
info -\ merinfo info /4
\

N 7
o -

N

Figure 4.29 Organizational model after applying steps of the pattern

122

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

Second Alternative (Plan-Plan-Plan):

The application of the steps of the second alternative is illustrated
with the example shown in Figure 4.30, where both actors depender
and dependee want to delegate their plan to the SSA (Register car
reservation and Send info); also the dependum object is a plan (Send

info).
] - Employee,
Send Send ; Reglster car
Reservatlon

|nfo info

Dependee Depender

Legend
@ plan to be automated

Resource dependency:

0-Der actor—<—|:|—<— 0-Dee actor

Figure 4.30 Example of second alternative

First step in the solution of this pattern consists of delegating both
plans to the SSA, and place the dependee actor plan as a subplan of
the Register car reservation plan.

The delegation of the dependee actor plan (Send info) implies change
in the name of the subplan, in order to have a more appropriate name
for the intended semantics. Thus, the plan in this case is Obtain
information of the reservation. These plans will be linked by an AND
decomposition link.

The second step is determining the role played by each actor, in this
case, the two actors Customer and Employee can carry out the
register of a car reservation, and namely they act as Provider of
information with the SSA. Therefore, a resource dependency
between these actors and the SSA is created. The resource
dependencies are labeled with the number 2 in order to indicate their
association.

123

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

Figure 4.31 depicts this alternative, where the plans of the Customer
and Employee actors have been delegated to the SSA. The example
shows also the new resource dependencies generated in this
alternatives, it is because both actors act as Provider of information
of the plan (Obtain information of the reservation).

Register
Car
reservation

2

Reservation
info

Obtain informa-
tion of the reser-
vation

Employee

Reservation
info

Figure 4.31 Example of second alternatives in the Car Rental case study

4.4.4.4 The depender element delegation pattern

This pattern must be used only when the element of the depender
actor needs to be delegated to the SSA in order to automate its
execution; this element can be a plan or a goal, and where the
dependum object can be a resource or a plan. The pattern details the
problems that may be found in the delegation of the depender
element actor and also shows the alternative solutions for that
delegation. Figure 4.32 depicts an example of this structure.

Depende| .
Actor \ Dependee
Actor

\ ’
\ ’
N ’

~ -

Figure 4.32 Example of a depender actor plan to be automated

124

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

4.4.4.4.1 Context

This pattern concerns the automation of the element of the depender
actor, where the analyzed element has associated a dependency
relationship. Two conditions must be fulfilled in order to delegate the

analyzed element:
= An element of the depender actor needs to be delegated to the

SSA; this element can be a goal or a plan,

= The dependum object must be a resource or a plan
Figure 4.33 illustrates an example of this pattern, where the plan
(Obtain date and model car) of the depender actor must be delegated
to the SSA. The delegation of this plan focuses on the dependum,
which is a resource (car info). Therefore, the acquisition of this

resource needs to be automated.

Legend ,
@ plan to be automated '
1

Resource dependency:

1

1

1

O-Der actor—{-D—(— O-Dee actor | |
I

.

)

\

Obtain
date and
model car

Carinfo

Figure 4.33 An example of the depender element delegation pattern in the Car
Rental case study

4.4.4.4.2 Problem

The delegation of the depender actor element to the SSA can cause
several changes in the entire organizational context; mainly, in the
actors involved in the dependency relationship. These changes are
related to the role played by the dependee actor, once the depender
actor element is delegated. The influence of this delegation on the
other organizational actors involved in the business must also be

analyzed.

125

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

4.4.4.4.3 Forces

There are four forces associated to the solution of this pattern:

= The depender actor element is linked to a resource
dependency (dependum).

= The depender actor element is linked to a plan dependency
(dependum).

= The plans delegated to the SSA require the intervention of the
original owner actors.

= The plans delegated to the SSA require the intervention of
other organizational actors, not only of the original owner
actors.

4.4.4.4.4 Structure

The elements used in this pattern are the following:

= Organizational actors: these are the depender actor as well
as the dependee actor in the analyzed dependency
relationship.

= Depender actor element: this is the element that needs to be
delegated to the SSA. The element must be a plan or a goal.

= Dependum: this element represents the context around of the
dependency; it must be a resource or a plan.

= Dependency relationship: this element joins the
depender/dependee actors and the dependum object.

Scenarios:

There are three possible scenarios in which this pattern can be found
in the organizational context:

Scenario I. This describes the situation where the depender element
is a plan (it must be delegated to the SSA), and the dependum object
is a resource. Therefore, the scenario represents the need of the
business to obtain a resource in an automatic way. Figure 4.34 (a)
depicts this situation.

Scenario Il. This describes the situation where the depender element
is a plan (it must be delegated to the SSA), and the dependum object
is a plan. This scenario represents the automation of the depender
plan, which delegates a plan to another actor. Figure 4.34 (b) depicts
this situation.

126

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

Scenario Ill. This describes the situation where the depender
element is a goal (it must be delegated to the SSA), and the
dependum object is a plan. This scenario represents the delegation of
a goal to the SSA which delegates the execution of a plan to another
actor. Figure 4.34 (c) depicts this situation.

Dependeny ™~ ">+
Actor \
) Dependee! Legend
p / Actor
% 4 Resource dependency —P—D—P—
e Plan dependency > >
a) Scenario |

Depende Elements to be delegated to the SSA
Actor \ . Bepended @ Plan Goal

\ Actor

b) Scenario Il
Dependef - ==~
Actor
Dependee
~l--\‘~ .

NN

¢) Scenario Ill

Figure 4.34 Scenarios of the depender element delegation pattern

4.4.4.4.5 Solution

The solution proposed for delegating only the depender actor
element is guided by the dependum object. Therefore, when the
object dependum is a resource, it will indicate the need to automate
the reception of the resource. Otherwise, if the dependum is a plan, it
will indicate the need for the execution of a plan by an organizational
actor to fulfill the delegated plan or goal. This process is summarized
in six steps:

Step 1. Delegate the depender actor element to the SSA.

Step 2. Analyze the dependum object in the dependency relationship
under study; if the dependum is a resource, then the actor that will
provide the resource to the SSA must be determined.

Step 2.1 If the O-Dee will play the role of Provider of
information to execute the plan, (i.e., if the O-Dee provides the
resource directly to the SSA) then the original resource

127

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

\

\
N
~

ODer\ . T
Actor, : 0-Dee : O-Dee
1 Actor % y Actor

dependency is redefined between the SSA and O-Dee actor.
The SSA will act as the depender actor. Figure 4.35 shows a
scenario of the pattern described in this section (on the left).
Thus, the element to be delegated is a plan, and the object
dependum is a resource.

Before the delegation After to apply step 2.1

’
’
-

Figure 4.35 Organizational model before applying step 2.1 (the O-Dee actor
acts as provider of information)

On the other hand, the model on the right shows the obtained
solution before applying the step 2.1, where the resource
dependency has been redefined between the SSA and the O-
Dee actor to indicate that. Dependee actor will provide the
resource to SSA directly.

Step 2.2 In contrast to step 2.1, if the O-Der is the actor that
will play the role of Provider of information to execute the
plan, then the original resource dependency remains the same,
and another resource dependency must be created between the
SSA and the O-Der. The depender actor of this new
dependency will be the SSA. Figure 4.36 shows the alternative
solutions for this substep. The O-Der actor acts as Provider of
information, therefore the original resource dependency
remains the same between the O-Der actor and the O-Dee
actor, and a new resource dependency between the SSA and
O-Der actor is created.

128

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

After to apply step 2.2

A
\
1
Before the delegation L y
O-Der\ -, I
Actor Y 0-Dee New
\\ /: Actor,

dependency

Original dependency

Figure 4.36 Organizational model after applying step 2.2 (the O-Der actor
acts as provider of information)

Step 2.3 If no actor has any interaction with the SSA to
execute the delegated plan, no dependencies must be created.
The selection of this alternative implies the analysis of the
plan name in order to make it appropriate for the new
organizational configuration.
Step 3. If the dependum object is a plan, the organizational actor
responsible to execute the plan dependency must be determined.

Step 3.1 If the O-Der is responsible for executing the plan
dependency, the plan dependency must be redefined between
the SSA and the O-Der actor. However, if the O-Dee actor is
the one performing the plan of the plan dependency, then it
must be redefined between the SSA and the O-Dee actor.
Figure 4.37 shows the two scenarios where the object
dependum is a plan. The first scenario shows a depender actor
plan which must be delegated to the SSA,; after applying step
3.1, the plan dependency must be redefined among some
actors involved in the dependence (the O-Der or the O-Dee
actor) and the SSA. The depender actor is the SSA. On the
other hand, the second scenario of the figure shows a goal
associated to a plan (Figure 4.35); after applying step 3.1, both
organizational actors (the dependee/depender) can be
responsible to execute the plan, in order to fulfill the delegated
goal.

129

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

Before the delegation After to apply step 3.1

‘
Actor ;

a)Aplantobe

O Der
delegated to @
the SSA \\

delegated to
the SSA

Figure 4.37 Two examples where the object dependum is a plan of the depender
element delegation pattern

Step 4. Analyze the influence of the delegation of the depender actor
plan on the organizational actors.

Step 4.1 When other organizational actors must provide
information to the delegated plan, a new resource dependency
between the actor and SSA must be created. The depender of
this dependency will be the SSA.

Step 4.2 When other organizational actors need to obtain
information about the delegated plan, then a new resource
dependency between the actor and SSA must be created. The
dependee actor will be the SSA.
Step 5. If more than one dependency relationship is generated during
the delegation of the depender actor element to the SSA, they must
be labeled with the same number in order to indicate their
association.

4.4.4.4.6 Examples

The application of the steps of the depender element delegation
pattern is illustrated with the example shown in Figure 4.33.

The first step in the solution of this pattern consists of delegating the
plan Obtain date and model car to the employee actor to the Car
Rental actor.

130

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

The second step is applied because the dependum object is a
resource: Info car. Therefore, the different roles played by the actors
must be analyzed. The roles and their solutions are grouped in three
alternatives. They are specified as sub-steps. An example is shown
for each alternative in the following paragraphs.

The first alternative solution for this pattern must be applied when
the Customer (O-Dee actor) plays the role of Provider of
information. Thus, the original resource dependency is redefined
between the SSA and Customer actor. Figure 4.38 depicts this

example.

date and
model car

Car info

Figure 4.38 The O-Dee actor plays the role of provider of information

The second alternative solution for this pattern must be applied when
the O-Der actor (Employee actor) plays the role of Provider of
information to execute the plan. Thus, the original resource
dependency remains the same, and another resource dependency is
created between the SSA and the Employee actor. Figure 4.39
depicts this example.

4 \
4 \
] Obtain]
Car info Employee Car info (. date and !
', \s.model car y
\ ’
V ’

S

Figure 4.39 The O-Der actor plays the role of provider of information

131

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

The third alternative solution of this pattern cannot be applied in the
delegated plan because it needs to obtain information about an
organizational actor in order to be satisfied.

The fourth step is related to the creation of new dependency
relationships among the organizational actors and the SSA in order
to provide or require information about the plan delegated to the
SSA. Finally, in the fifth step, the dependencies have been labeled
with the number 1 to indicate their association

1 1
@ Car info Employee Car info

Car info

Obtain
date and
model car,

Rental
System

Figure 4.40 Organizational model after applying all steps of the pattern
4.4.4.5 The dependee element delegation pattern

This pattern must be used when only the element of the dependee
actor needs to be delegated to the SSA to automate its execution; this
element must be a plan, while that dependum object can be a
resource or a plan.

The pattern details the problems that could be found in the delegation
of the dependee element, and it shows the alternative solutions for
that delegation. Figure 4.41 depicts an example of this structure.

Dependee
_ A\ Actor Legend
/ \ @ plan to be automated
1] \
Depende . | \\ !
Actor ' \ Y

Figure 4.41 Example of the depender actor plan to be automated

132

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

4.4.4.5.1 Context

This pattern concerns the automation of the element of the dependee
actor, which is associated by a dependency relationship. This pattern
must fulfill the following conditions:

= One plan of the dependee actor joined by the dependency

relationships needs to be delegated to the SSA

= The dependum object must be a resource or a plan
Figure 4.42 illustrates an example of this pattern in the Car Rental
case study. Specifically, the figure represents the plan: Manage the
reservations. This plan has been selected to be automated. For this
reason; the plan needs to be delegated to the SSA.

,-~| Employee
,

7 \

I’ AY
1 \
1 A}
Manager Manage the ' /" Manage the 1
Company, reservations V\{ reservations ’;

\
’

\
\ ’
’

S Prd

Figure 4.42 Example of the dependee element delegation pattern in the Car Rental
case study

4.4.4.5.2 Problem

The delegation of the dependee actor element to the SSA can cause
several changes in the entire organizational context; mainly, in the
actors involved in the dependency relationship. These changes are
related to the role played by the depender actor, once the dependee
actor element is delegated. The influence of this delegation on the
other organizational actors involved in the business must also be
analyzed.

4.4.4.5.3 Forces

There are three forces associated to the solution of this pattern:
= The dependee actor element is linked to a resource
dependency (dependum).
= The depender actor element is linked to a plan dependency
(dependum).

133

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

= The plan delegated to the SSA requires the intervention of
other organizational actors, not just the original owner actor.

4.4.4.5.4 Structure

The elements used in this pattern are the following:

= Organizational actors: these are the depender actor as well
as the dependee actor in the analyzed dependency
relationship.

= Dependee actor element: this is the element that needs to be
delegated to the SSA. The element must be a plan.

= Dependum: this element represents the context around the
dependency; it can be a resource or a plan.

= Dependency relationship: this element joins the
depender/dependee actor and the object dependum.

Scenarios:

There are two possible scenarios in which this pattern can be found
in the organizational context:

Scenario |. This describes the situation where only the dependee
actor element must be delegated to the SSA; this element must be a
plan, and the dependum object is a resource. Therefore, the scenario
represents the need of the business to generate a resource in an
automatic way through the dependee actor plan. Figure 4.43 ()
depicts this situation.

Scenario Il. This describes the situation where only the dependee
actor element must be delegated to the SSA; this element must be a
plan, and the dependum object is a plan. This scenario represents the
automation of the dependee plan, which was delegated by the
depender actor. Figure 4.43 (b) depicts this situation.

134

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

Dependee Dependee
_-\Actor _-\ Actor
l/ // \
1 \
Depender ! |
Actor 9)

a) Scenario | b) Scenario Il
Legend

Resource dependency —P—D—P— @ Plan
Plan dependency > > Resource

Figure 4.43 Scenarios of the dependee element delegation pattern

4.4.4.5.5 Solution

The solution proposed for delegating only the dependee actor
element is guided by the dependum object. Therefore, when the
object dependum is a resource, it will indicate the need to automate
the generation of the resource. Otherwise, if the dependum is a plan,
it will indicate the delegation of the depender actor plan to the
dependee actor; this process is summarized in five steps:

Step 1. Delegate the dependee actor plan to the SSA.

Step 2. The dependum of the dependency relationship under study
must be analyzed; if the dependum is a resource then the roles played
by the organizational actors must be determined. It will be necessary
to determine the actor that will provide the resource to the SSA.

Step 2.1 If the O-Der actor will play the role of Requester of
information to execute the plan, (i.e., if the O-Der provides the
resource directly to the SSA) then the original resource
dependency is redefined between the O-Der actor and the
SSA. The SSA will act as the dependee actor. Figure 4.44
shows a scenario of the pattern described in this section (on
the left). Thus, the element to be delegated is a plan, and the
object dependum is a resource. The model on the right of the
figure shows the solution obtained after applying step 2.1, i.e.,
when the O-Der actor can access the SSA directly in order to
obtain the generated resource by the delegated plan. Thus, the

135

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

original resource dependency is redirected from the O-Der
actor to the SSA.

Before the delegation After applying step 2.1
_\ Actor ,
//, \\ /l, \\
O OO
Actor A \\ J Actor, % y

Figure 4.44 Organizational model after applying step 2.1 (the O-Der actor
acts as requester of information)

Step 2.2 In contrast to step 2.1, if the O-Der does not have
access to the SSA to obtain the resource generated by the
delegated plan, the original resource dependency remains the
same and another resource dependency must be created
between the SSA and the O-Dee. The dependee actor of this
new dependency will be the SSA.

Figure 4.45 shows the delegation of plan of the dependee
actor. The plan has a resource dependency associated to it.
Once the plan is delegated to the SSA, the dependency
relationship remains the same between the organizational
actors and a new resource dependency between the SSA and
O-Der actor is created. In this case the SSA will act as
provider of information of the delegated plan.

136

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

Before the delegation

Depender 4 !
Actor \ '

After applying step 2.2 i ‘
O-Der 0-Dee ! [
Actor Actor 9 y

Original dependency

g
.
N
~

New dependency
Figure 4.45 Organizational model after applying step 2.2

Step 3. Analyze the dependum object in the dependency relationship
under study; if the dependum is a plan, the dependency plan must be
redirected between the O-Der actor and the SSA. Figure 4.46 shows
an example of this step.

After applying the step 3
Before the delegation epende
Actor
Depende . \\ O Der
Actor \\ Actor

Figure 4.46 An example of the pattern when the dependum object is a plan

Step 4. Analyze the influence of this delegation in the organizational
actors.

Step 4.1 When an organizational actor provides information to
a delegated plan to execute it, a resource dependency between
the actor and the SSA must be created. The depender actor of
this new dependency will be the SSA. The new dependency
indicates the reception of information from the organizational
actor to the SSA.

137

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

Step 4.2 When an actor requires information from the
delegated plan, a resource dependency between the actor and
SSA must be created. The depender of this dependency will be
the organizational actor. This new dependency indicates the
delivery of information to the organizational actor from the
SSA.

Step 5. If more than one dependency relationship is generated during

the delegation of dependee actor plan to the SSA, then they must be

labeled with the same number in order to indicate their association.

4.4.4.5.6 Examples

The application of the steps of the dependee element delegation
pattern is illustrated with the example shown in Figure 4.42.

The first step in the solution of this pattern consists of delegating the
plan: Manage the reservations to the employee actor to the Car
Rental System actor. Second step must be omitted, because the
dependum is not a resource. Next, step 3 is applied, and the plan
dependency between the Company Manager actor and the Employee
actor must be redirected. Figure 4.47 shows the delegation of the
employee plan as well as the plan dependency redirected between the
Company Manager and the Car Rental System system.

Manage the
reservations,

Figure 4.47 An example of the organizational model after applying step 3 of this
pattern

The fourth step is related to the creation of new dependency
relationships among the organizational actors and the SSA in order
to provide or require information from the delegated plan to the SSA.
Figure 4.48 continues with the example shown above. A new
dependency is created between the Employee and the Car Rental

Car
Rental
System

AN

138

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

System; it indicates the need of the Car Rental System to obtain
information about the company cars. Additionally in this picture the
dependencies have been labeled with the number 2 to indicate the
relation among them (fifth step).

_--—+ CarRental
o7 Management
.
1 ,/ System

1 \
) 1
Prices and To provide !
Employee X . X 1
models info info of prices K

U

1

[Associated Prices and
Branches models info

Figure 4.48 Organizational model after applying all the steps of the pattern.

4.5 Summary

One of the main problems of current research works on
organizational modeling is the lack of a methodological approach to
map the elements of an organizational model into the elements of a
requirements model for the software system-to-be. Due to this
methodological lack, efforts in the organizational modeling phase
have not yet provided a practical solution for model transformation
in software development environments.

In this work, we have proposed a pattern language which allows us
to reduce the abstraction level of a “pure” organizational model so
that it is closer to the requirements model. This process has been
achieved by inserting the software system as an actor into the
organizational model and redirecting the relevant tasks, goals and
dependencies of the organizational actors to this new actor. In this
way, there is a pattern for each situation that arises in the redirection
of tasks or goals to the new organizational model. The new
organizational model generated from the application of FELRE
allows us to have a high-level description of the task that must be
supported by the information system. This high-level description

139

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

enables us to focus only on the relevant aspects to be automated,
thereby reducing the complexity of the analysis task. The generated
organizational model is, therefore, an intermediate model between
the organizational model and the software requirements model. The
proposed method complies with the MDA approach because it
implements the concept of PIM-to-PIM transformations.

Figure 4.49 shows a partial view of the organizational model
generated for the pattern language. This model includes the SSA and
the actors that interact with it. The new organizational model
represents a final result of the application of the goal analysis and the
pattern language. In this model, the software system is represented as
an actor (Car Rental System). The specification of the internal
elements of this actor represents all the functionalities that this actor
must provide for fulfilling the organizational goals. The model also
represents the interactions among the organizational actors and the
software system.

140

4.5 SUMMARY

Cars Sale
Maame /
v

Analyze the car
availabilit

Customer

Formalize
he reservatip

y

Resen

A Stated 4
ion info Reservz

Customer kioninfo Car

Paymen

t

Figure 4.49 Partial view of the organizational model, which includes the software
system actor

141

CH#

Part I

Late Requirements

Chapter 5

Extending the organizational
models

In this Chapter, we introduce the process to insert monitoring plans
into the organizational model. The monitoring plans enable the final
user to supervise the business activities needed to satisfy the
organizational objectives. Thus, we detail the generation process to
extend the organizational model where the monitoring plans are
defined. This model represents the relevant elements to be
considered in the construction of the software system. The aim of
this approach is to continue reducing the abstraction level between
the early and late requirements models.

5.1 Introduction

At the present time, there is no definite solution to the problem of
linking business (early) models with software (late) requirements
models in a methodological way. One of the main reasons for the
lack of solutions to this problem is the different nature of their
specifications. In the early requirements phase, the concepts are
related to the organizational context, whereas in the late
requirements phase, the concepts are related to the software system
to be developed. There is a significant difference between the
abstraction levels of the two requirements specifications.

The proposed method allows us to carry out a soft transition between
early and late requirements phases by detailing those elements that
are relevant in the construction of a software system. It is important
to point out that some of these elements may not be considered as
relevant when trying to understand the business context because they
are only important in defining its automation through an information
system.

Another contribution of this thesis is the insertion of monitoring
plans in the organizational model. The aim of monitoring plans is to
prevent or detect undesired behaviors in the system-to-be in order to
take the corrective measures to manage them.

5.2 The late requirements phase

The late requirements phase is mainly focused on describing the
system to-be within its operational environment along with the
relevant functions and qualities [Cast02].

We propose to extend the organizational model by representing the
objects of interest (concerned objects) associated to the relevant
plans and resources to be automated. This new model, which
contains the concerned objects, allows us to analyze the flow of
information in the enterprise and also permits us to analyze the
lifetime of the information managed in the organizational processes.

The organizational model that is extended with the concerned objects
will be the basis for the systematic generation of a requirements

146

5.2 THE LATE REQUIREMENTS PHASE

model, which is represented by using the use case models. The
extended organizational model is also the basis for the generation of
a conceptual model that is compliant with OO-Method.

Figure 5.1 shows an overview of the processes that make up the late
requirements phase. The inputs in this schema are the plans to be
automated that were identified using the goal-based requirements
elicitation process. The deliverables of these processes are: the
organizational model that is extended with the concerned objects and
the scenarios of the concerned objects.

The late New organi- X
Sgglc?gtbe requirements zational model . The monitory
S torated generation with the software plans insertion
process system actor prucess
The concerned
object model
generation
Cogend process
/ Input l—lﬁ
Process i
The extended Sc(;efn;réos
J) organizational
Deliverables N concerned
objects

Figure 5.1 Processes of the late requirements phase

A set of rules and algorithms that allow us to systematically carry out
the transformations between models are presented. Then, the concept
of monitoring is detailed.

5.3 'What i1s Monitoring?

Monitoring is often used to make a multi-agent system more robust
in the presence of undesirable behaviors such as faults. Several
approaches address the problem of monitoring in multi-agent
systems. They rely on events and their goal is to observe, analyze
and control the behavior of the system. These approaches usually
observe the execution of the multi-agent system in order to define its
current behavior model and correct the undesirable behaviors.

147

CHAPTER 5 EXTENDING THE ORGANIZATIONAL MODELS

There are several research works about the difficulties of using
monitoring to control undesirable situations.

Castelfranchi [Cast98], and Sichman and Conte [Sich02] introduce
interdependence graphs that are used to predict some undesirable
situations (e.g., inequity or incompatibility). Their analysis relies on
knowledge that is defined a priori, such as the number of agents,
their plans, their goals, and their relations of interdependence.
Kaminka et al. [Kami02] propose a monitoring approach in order to
detect and recover faults. This approach uses models of relations
between mental states of agents. These authors adopt a procedural
plan-recognition based approach to identify inconsistencies. They
argue that any failure comes from incompleteness of beliefs.

The works of Horling et al. [Horl01] present a distributed system of
diagnosis. The faults can directly or indirectly be observed in the
form of symptoms by using a fault model. The diagnosis process
modifies the relations between tasks, in order to avoid inefficiencies.
There are also monitoring techniques that are mainly used in the
analysis of problems presented in dynamic environments [Feat98]
[Kous04] [Fick95] [Cohe97] [Gues04].

5.4 'The monitoring plans msertion process

The addition of monitoring plans in the organizational model is one
of the contributions of this thesis. The main advantage of the
proposed technique is that it provides ongoing verification of
progress toward achievement of objectives and goals. The inclusion
of monitoring plans permits the business activities to be supervised,
observed, and tested and appropriately reported to the responsible
actors.

Our research work is focused on the analysis of the system to be to
define monitoring plans that must be installed to gather and analyze
pertinent information about the system’s run-time environment.
Therefore, we must detect those situations that adversely affect the
execution of the organizational processes. We need to analyze the
organizational context in which the system will be implemented,

148

5.4 THE MONITORING PLANS INSERTION PROCESS

how the organizational elements (goals, resources, planes) can be
affected, and who can help to solve these situations.

The monitoring analysis is applied in the organizational model that
has been extended by including the software system as a
organizational actor. In this work, the monitoring is implemented by
using preconditions that monitor the organizational plans. We
consider that the result of the monitoring process can play a relevant
role in determining the elements to be considered in the construction
of the system-to-be.

Nevertheless, the monitoring plans insertion process detailed here
requires great experience from the requirements analysts. This is
because the analyst must identify the elements and information that
can be affected during the system run-time. We propose some
guidelines to insert the monitoring plans into the organizational
model. The aim of these guidelines is to identify all the factors that
can affect the construction of the software system.

5.4.1 Monitoring plans and monitoring data

According to the Tropos approach, a plan represents a way of doing
something at an abstract level. When the plans are contained inside
the software system actor, the plans represent the actions that must
be supported by the system-to-be. The monitoring plans need to be
defined once the relevant plans to be automated through the software
system have been identified and delegated to the system actor.
Following, we detail the steps to carry out the insertion of
monitoring plans into the organizational model.

Step 1: Identify the plans to be monitored.

The first step consists of identifying the critical plans to be
monitored. These plans will be selected from the organizational
model which includes the software system actor.

In the Car Rental case study, the plan Register reservation of the
software system actor contains the reservation data (where a car is
assigned to a reservation) that is generated when the reservation is
registered in the software system. However, there are several
situations where the assigned car may not be available at the time of
delivery. Thus, the plan Register reservation is a candidate to be a

149

CHAPTER 5 EXTENDING THE ORGANIZATIONAL MODELS

monitored plan. The analyst must determine all the plans that could
be affected by unexpected situations. These plans are candidates to
be considered as monitoring plans.

Step 2: Determine the parameters to be monitored.

This step is carried out after the monitoring plans have been
identified. Each executed plan in the organizational model can be
associated to one or various resources that are created or modified
during the execution plan. Therefore, although the monitoring plans
are the central topic at this stage, it is also necessary to identify what
resources must be monitored.

Once the resource candidates to be monitored have been identified,
the conditions that activate the monitoring must be determined. For
example, the plan Register reservation has several associated
resources: car, reservation date, etc. In this case, car is the resource
that must be monitored. The condition that must be monitored is the
availability of the car that has been booked.

Step 3: Insert dependencies and new organizational plans.

In this step, new dependencies and plans must be inserted in the
organizational model in order to represent the actions (monitoring
body) that must be taken when the conditions for the monitoring
plans are reached.

The elements that compose the monitoring body will the be plans
executed by the SSA or by other organizational actors. In the first
case, the monitoring plans are defined as internal activities in the
software system actor. In the second case, the plans are represented
as strategic dependencies between the SSA and other organizational
actors. Figure 5.2 shows both schemas, where the preconditions to be
satisfied are represented as new plans to be executed inside the
software system actor.

150

5.4 THE MONITORING PLANS INSERTION PROCESS

Precondition Precondition

New plans
to execute

Figure 5.2 Schema of the monitoring plans in the organizational model

Step 4: Determining the success conditions.

This step consists of determining the success condition. By success
conditions, we mean the conditions that eliminate the need to
monitor a plan, so there is no reason to monitor it anymore. For
example, when a car is delivered to a Customer, the plans that
monitor the car availability must be terminated.

We propose four dimensions to characterize monitoring plans. Table
5.11 shows these four dimensions. The first column, Monitoring
plan, contains the name of the plan to be monitored. The second
column, Parameters of the monitoring, contains the condition to be
monitored. The third column, Period of time to carry out the
monitoring, contains the period of time which an element must be
controlled. Finally, the fourth column, Activities to do, describes all
the activities that must be executed if monitoring parameter is
affected.

Table 5.1 Dimensions to characterize monitoring plans

Monitoring Parameters of Period of time to Activities to
plan the monitoring carry out the do
monitoring

151

CHAPTER 5 EXTENDING THE ORGANIZATIONAL MODELS

5.5 Extending the organizational models with
the 1dentification of concerned objects

This section describes the process to extend the organizational model
in order to identify the relevant information® in the construction of
the system-to-be. There are two main sources for this information: a)
the plans performed by the organizational actors including the SSA
and b) the characteristics of the resources used, modified or
generated as a result of the execution of the organizational plans, in
the organizational context. The process to extend the organizational
model with the concerned objects is detailed by using rules, steps
and algorithms that enable the analyst to generate a new extended
organizational model. The following section describes the concepts,
notations and the models that are generated in the process of
extension of the organizational model.

5.5.1 Concepts and models

This subsection presents our definition of concerned object, which is
a key element in the transformation process of early to late
requirements. We also detail both models that are generated: the
extended actor diagram and the extended goal diagram. Finally, the
scenarios of the concerned objects are also detailed.

Definition of a concerned object

The term Concern has been widely used in the literature associated
to software engineering. It is often found in techniques that focus on
aspect-oriented software development (AOSD) [Sutt04].

A concern expresses a specific interest in some topic pertaining to a
particular system of interest (or other subject matter) [Hill99]. It is
important to point out that concerns do not exist until someone is
concerned about them. For example, in our proposed method, a plan

! By relevant information, we mean the information needed in the construction of an
information system.

152

5.5 EXTENDING THE ORG. MODEL WITH CONCERNED OBJECTS

does not constitute a concern until an analyst has some reason to be
interested in a plan as candidate for functionality in the system-to-be.
We use the concept of concerned object to represent an entity of
interest in the process of defining the system-to-be. Therefore, a
concerned object represents a resource that is used within the
organizational process or an abstract entity of information that will
be used in the software system-to-be.

A concerned object is represented by a circle, and its attributes are
represented by small circles that are associated to the concerned
object. The name of the concerned object and the names of the
attributes must be placed within each circle. Figure 5.3 shows an
example of a concerned object with its set of attributes.

Concerned
Object

Figure 5.3 Primitives of the concerned object model

The concerned object model

The concerned object model is an extension of the actor diagram and
the goal diagram of the Tropos framework. The proposed extensions
focus on describing the relevant information in the software system-
to-be through of the identification of concerned objects in the
elements of each organizational model.

The following subsections describe the structure of the extended
actor and goal diagrams. The structure of the scenarios of the
concerned object is also explained.

The extended actor diagram

The actor diagram is made up of the organizational actors, who are
related to other actors through dependency relationships. Therefore,
the main sources for the detection of the concerned objects are the
resource and plan dependency relationships, which involve
organizational plans to send and receive information to/from the
software system to-be. The extension of the actor diagram involves

153

CHAPTER 5 EXTENDING THE ORGANIZATIONAL MODELS

the representations of the concerned objects associated to the
resource and plan dependencies.

Figure 5.4 illustrates an actor diagram that is composed of two
organizational actors and the SSA. There are two resource
dependencies between the actors that show the flow of information
between them. Therefore, the extension of this diagram is carried out
over these dependencies.

Legend
@ Jconcemed Object
}éttributes of the

oncerned Object

Resource
dependency:

O Actor

ctor

Figure 5.4 The concerned object model (actor diagram)

The extended goal diagram

The goal diagram which is focused on actor activity provides a
microscopic view of the application domain. Therefore, the
extension of this diagram is related to the internal elements of each
actor (more specifically to actor plans and goals). The plans that
contain the SSA always involve manipulation of informational
entities that are relevant for the system-to-be. Thus, the plans in the
SSA must be extended with their corresponding concerned objects.
However, not all the goals need to be analyzed; only those that are
related to a set of plans by means-end links need to be extended
because these goals involve informational entities through plans.

Therefore, the internal plans in the goal diagram can be extended by
one or several concerned objects, depending on the information or
resources used in the execution of the plan. For example, a parent
plan can be composed of the set of concerned objects that are
identified in its child plans. In this way, the internal goals that

154

5.5 EXTENDING THE ORG. MODEL WITH CONCERNED OBJECTS

represent an “end” in a means-end will be extended with the
concerned objects that are identified in their child nodes.

Figure 5.5 shows two actors in a goal diagram. The elements of the
SSA have been extended with the identification of concerned
objects. For example, the SSA has a goal (Goal,) associated to three
plans (Plan;, Plan,, Plans) by a means-end link. Plan; is extended by
the concerned object “A”. Plan; is also extended by the same
concerned object.

*. Concerned { o e
*._ Objects

’
'
'
'
[l

[}

RS - Concerned
objects_{ o

Attributes SO

Figure 5.5 Concerned object model (goal diagram)

This situation represents the use of the same resource or information
in different plans executed in the organizational context. Plan; is
extended by the concerned object “B”. Thus, the goal G; of the SSA
is extended with the concerned objects of its associated plans
(concerned objects: “A’ and “B™).

The extension of the elements of the organizational actor is carried
out in the same way as in SSA. However, in this actor, plan;
identifies the concerned object “A” and “B” from its subplans, and
also identifies the concerned object “C”.

155

CHAPTER 5 EXTENDING THE ORGANIZATIONAL MODELS

Defining scenarios for each concerned object

As a natural consequence of sharing information in the
organizational context, the concerned objects identified in the actor
and goal diagrams can be identified in more that one element of the
diagrams. More specifically, the detected concerned actors can have
different attributes depending on the element where the concerned
object is identified. For example, the concerned object “A”, which
has been identified in the SSA of Figure 5.5, could contain different
attributes each time that the concerned object is identified in the
organizational model. Therefore, when a concerned object is
identified, the set of characteristics must be stored in order to obtain
the global characteristics of each concerned object. A scenario is a
situation where a concerned object is identified. The aim of the
proposed method is to capture the scenarios of each concerned
object.

The information of the analysis of concerned actors is stored in a
table; each column represents a parameter of the scenario and each
row represents the information of the concerned object each time that
it is used. Table 5.2 depicts the scenarios of the concerned objects.
Each parameter is explained in detail. The first column, Concerned
object name, contains the name of the identified concerned object;
the second column, Elements and associated links, contains the type
of element where the concerned object was identified (for instance, a
plan or a resource dependency or a subplan, etc.); the third column,
Associated elements, is only used for the concerned object identified
in the goal diagram. If the element that leads the concerned object is
involved in a means-end or and-or relationship with other internal
elements, then the value of this column indicates the name of the
parent node of the element that leads the concerned object. The
fourth column Used attributes, contains the attributes used in the
concerned object; the fifth column, Related actors, contains the
actors of the dependency (when the concerned object has been
located in the actor diagram) or the name of the actor where the
concerned object was identified (when the concerned object is
located in the goal diagram); finally, the sixth column, Label of the
concerned object, contains the state of the concerned object.

156

5.5 EXTENDING THE ORG. MODEL WITH CONCERNED OBJECTS

For example, when a concerned object is analyzed (to determine its
space of alternatives) then the label “Analyzed” is placed in the
object scenario. In another example, when the attributes of a
concerned object are divided in order to generate other concerned
objects the label “divide” must be placed in this column.

Table 5.2 Scenario of concerned objects

Concerned Elements Associated Used Related | Label of the
object and asso- elements attributes actors | concerned
name ciated links object

5.6 The generation process of the concerned
objects model

This section describes the generation process of the concerned
objects that is proposed in this thesis. Figure 5.6 shows the schema
of the generation process of the concerned objects model. The inputs
for this process are the organizational models (actor diagram and
goal diagrams) where the SSA is included. The process is
summarized in two stages: 1) the first stage consists in the
identification of the concerned objects and scenarios; 2) the second
stage consists in the reconciliation of the various scenarios for the
same concerned object. Finally, the outputs of the process are the
extended organizational models and the scenarios of the identified
concerned objects.

The concerned object model

. The extended
generation process

organizational
LIdentification of the concerned objects and models

Organizational scenarios ~ (:8
models —_ @] @ g@]
with the SSA

jon of the scenarios Scenarios of
o the concerned
objects

Legend

/ Input Process Deliverables

Figure 5.6 The schema of the generation process of the concerned objects model

157

CHAPTER 5 EXTENDING THE ORGANIZATIONAL MODELS

5.6.1.1 Identification of the concerned objects

As stated above, the concerned objects can be identified in the
resources, plans and goals, of the organizational model. Therefore,
attributes of a resource or the attributes used by a plan or goal must
be analyzed. It is important to point out that resources can be found
in dependency relationships or in parameters of a organizational
plan. However, goals and plans need to be analyzed as internal
elements in an actor or where they are represented as dependency
relationships.

Algorithms for the generation process of the concerned
objects model

The generation process of the concerned objects model is guided by
two algorithms. Figure 5.7 shows the first algorithm which details
the extension of the actor diagram. Figure 5.8 shows the algorithm to
extend the goal diagram. Both of these diagrams include the SSA.
These figures provide an overview of the algorithms of the
generation process of the concerned objects model, which is
represented by a control flow chart. The boxes in the figures
represent the activities that an analyst must perform to extend the
diagrams; these activities include the activation of a function or the
application of a rule. The diamonds represent the various inquiry
points. Diamonds have two exit points: one exit represents an answer
of “yes” and another exit indicate an answer of "no”. The arrows
denote the flow of the process as well as the iterations in the process.
The ellipses represent the inputs of the process and the outputs of the
process.

The set of rules and functions indicated in the proposed algorithms
are explained below in detail.

158

5.6 THE GENERATION PROCESS OF THE CONCERNED OBJECT

The actor diagram with
the SSA

Analyze each
—>» resource
dependency

The extended actor diagram
The extended goal diagram
The scenarios of the concerned
objects

Are there
plan dependencies
to be analyzed?

Are there
resource dependencies
to be analyzed?

Analyze each
plan dependency

A

yes
Identify the Identify the
concerned object (c:nclern?d Ogle;tl Legend
rules: 3, 3.
(apply rule 1) popr)g.z or33) D Inputs / Outputs
- <> Condition
Identify the L
attributes of the Identify the [Actiities
concerned object attributes of the — Flow
(apply rule 2) concerned object

(apply rule 4)

Create_scenario

Create_scenario()

¥
Label_element_ ¥
as_analyzed() Label_element_

as_analyzed()

Figure 5.7 The extended actor diagram control flow chart

159

CHAPTER 5 EXTENDING THE ORGANIZATIONAL MODELS

Goal diagram with
the SSA

Analyze each

X

organizational
actor

Are there
organizational actors to be
analyzed?

* The extended goal diagram
+ The scenarios of the
concerned objects

Analyze each
structure in the or-
ganizational actor

Legend
O Inputs / Outputs

<> condition
E] Activities
—> Flow

inthe o

there more structur

to be analyzed?

actor

Do an infix

traversing

Identify the
concerned object
(apply rule 5)

Create_Scenario()

le—

}

Continue
with traversing

Label_Element_

as_analyzed()

Afe there elements in th
organizational actor
to be analyzed?

Analyze element
inside the organi-
zational actor

Is the element a
hardgoal?

|| ned object (apply

Y
Identify the concer-

rules 3.1, or 3.2
or3.3)

isaplan
the element?

Identify the
concerned object
(apply rule 3.4)

!

Identify the
attributes of the
concerned object
(apply rule 4)

Figure 5.8 Extended goal diagram control flow chart

Rules for identifying concerned objects

Rule 1: A resource dependency between the SSA and another
organizational actor can be extended with one or several concerned

objects.

160

5.6 THE GENERATION PROCESS OF THE CONCERNED OBJECT

This is determined by the attributes of the resource. Therefore, the
attributes with similar semantics must be grouped together to
generate a concerned object. The following consideration must also
be taken into account: When the attributes of the resource refer to the
information of a organizational actor, the name of the concerned
object must be the same as the analyzed actor.

Rule 2: The attributes of the resource will be the attributes of the
created concerned object. The attributes of each identified concerned
object will be assigned according to the groups created in rule 1.

Example of rules 1 and 2: Figure 5.9 shows a resource dependency,
Customer data, which contains various parameters (Name, Passport-
number, Address, City, Home-phone, License, and Birthday). These
parameters and the name of the resource generate the concerned
object Customer. This concerned object is created because all the
information of the resource describes this actor.

Customer
data

} Attributes

Figure 5.9 Example for extending a resource dependency

Rule 3: An organizational plan executed in the organizational
context can be extended with one or more concerned objects. This
will be determined by the resources that are used or modified during
plan execution. The type of relationships or links associated to the
plan must also be taken into account in the identification of the
concerned objects. The following rules detail the process of
extension of a organizational plan:

161

CHAPTER 5 EXTENDING THE ORGANIZATIONAL MODELS

Rule 3.1 When a plan uses or modifies a resource, the plan
must be extended using this resource, which is represented as
a concerned object.

Rule 3.2 If a plan uses or modifies a resource that has not yet
been identified as a concerned object, then the plan must be
extended using this resource to create a concerned object.

Rule 3.3 When a plan does not use or modify any resource,
then the plan does not need to be extended with a concerned
object.

Rule 3.4 A composite plan® needs to be extended with the
concerned objects that include its children nodes. For example,
Figure 5.10 shows the structure of a composite plan and its
associated subplans. Thus, the concerned objects identified in
the subplans are used to define the concerned objects of the
composite plan.

QGeneraI
plan

O Concerned
Object

Figure 5.10 Example for extending a composite plan

Rule 4: The characteristics of the resources used in the performance
of a plan must be used in the identification of the associated
attributes of the concerned object identified.

Rule 5. A hardgoal is a candidate to be extended with concerned
objects if the goal is involved in a means-end link where the children
nodes are plans (Figure 5.11).

! This type of plan was defined in Chapter 4.

162

5.6 THE GENERATION PROCESS OF THE CONCERNED OBJECT

O] <G
-« Memsl;End e

Concerned
Object

we OO
® ®

Figure 5.11 Example for extending a goal in a means-end link

Functions

The functions used in the algorithm are the following:
Created_Scenario() and Label_element_as_analyzed().

Create_Scenariol)

The main objective of this function is to store the different scenarios
for each identified concerned object. The output of this function is
the set of scenarios of each concerned object in the organizational
model. For example, the scenario created for the concerned object
extra service that is identified in a resource dependency (Figure 5.12,
(a)) must contain the information shown in the first row of Table 5.3.
This row indicates the following: a) the name of the concerned object
is “Extra service” (first column); b) the concerned object has been
identified in a resource dependency (second column); c) The value
for the third column is empty for this example because the analyzed
element correspond with a dependency relationship and not an
internal element; d) The attributes used by this resource (Extra
services type, Pickup date, Return date) will be used to create the
attributes of the concerned object (fourth column); e) the name of the
actors involved in the analyzed dependency: SSA (Car Rental
System) and User Company (fifth column);) the last column will be
used in later processes.

163

CHAPTER 5 EXTENDING THE ORGANIZATIONAL MODELS

Data extras
info

(a) Extension in a resource dependency

ive the results of
car availability

(b) Extension in a subplan

Figure 5.12 Example of two concerned objects

Another example of a concerned object in the goal diagram is shown
in Figure 5.12, (b). The concerned object Car is shown with all the
attributes that are used in this state. This concerned object is also
located in a subplan (Give the results of car availability) that is
linked to its parent node by an AND decomposition link (Search car
availability). Thus, all this information must be placed in Table 5.3.

Table 5.3 Table of scenario concerned objects

Concerned | Elements and n Label of the
A . Associated Used Related
object associated | ib concerned
name links elements attributes actors object
Extra Resource Extra SSA-
service Dependency service | User
(Data extras type, Company
Info) Pickup
date,
Return
date
Car Sub-plan AND | Composite | Car type, | SSA
decomposition | Plan Plate,
(Obtain extra | (Search Pickup
service data) | car date,
availability) | Return
date

164

5.6 THE GENERATION PROCESS OF THE CONCERNED OBJECT

Label_element_as_analyzed()

The main objective of this function is to label each organizational
element in the diagram in order to know which elements have been
analyzed (the sixth column of the table of scenarios).

5.7 Summary

This Chapter has presented two relevant processes in mapping early
and late requirements phases: the monitoring plans insertion process
and the generation process of the concerned objects model.

The first process permits the definition of organizational plans to
supervise and observe the activities of the business. We have
proposed a set of steps for carrying out this process; however,
despite the guidelines presented in this thesis, this process of
definition of monitoring plans requires great experience on the parts
of requirements engineers. This is because an in-depth analysis is
necessary to identify the plans and the conditions that must be
monitored.

The second process extends organizational models in order to
identify the relevant information in the construction of the software
system.

The chapter 8 shows a partial view of the goal diagram for the Car
Rental case study with the concerned objects (Figure 8.12).

165

166

Chapter 6

Linking late requirements with
the ONME conceptual model

A methodological approach to generate the ONME' object-oriented
conceptual models from late requirements specifications is presented
in this Chapter. The proposed approach provides a number of steps
that enable the analyst to systematically use an organizational model
to specify an alternative set of conceptual models that reflect
different possibilities to represent the static structure of the system
to-be constructed. From this alternative solutions space, a specific
one is selected to be the input of the ONME CASE tool that makes
the automatic correspondence among the conceptual schema and the

! Olivanova Model Execution

CHAPTER 6 LINKING LATE REQ. WITH ONME CONCEPTUAL MODEL

software system. This Chapter also introduces an overview of the
ONME, the software generation method used in this research work.

6.1 Introduction

Software development is an activity that is increasingly complex and
that requires powerful techniques of elicitation, specification and
development. Software engineering has proposed several techniques,
methodologies and tools to achieve the goal of developing
information systems that appropriately fit user needs.

At the present time, there are very few research studies that are focus
on the problem of the mapping process between the elements of a
organizational model and the elements of a conceptual model that
reflects the structure of the system to be developed [Alen00] [Jian06]
Sant02]. We argue that this is a key phase in the software
development process because there is a strong relationship between
the semantics of the organizational models and the expected behavior
of the system-to-be.

We also argue that the process of mapping both organizational and
system specifications needs to be carried out in a systematic manner
in order to ensure its application in real software development
environments.

A methodological approach is proposed in this thesis to guide the
generation of an object-oriented conceptual model for the system-to-
be from a organizational model specification according to a goal-
oriented approach. Design issues are used to select the relevant plans
to be automated, which are represented as plans in the software
system actor. A pattern language is proposed to carry out this process
in a systematic manner. Then, design issues are addressed to select
the appropriate conceptual model. To fulfill the objectives of this
thesis, we have merged two well-known techniques: The Tropos
Framework to represent the organizational model with a social an
intentional approach; and the ONME software generation method to
represent the conceptual model and also to provide automatic
software generation from the conceptual schema. The proposed

168

6.1 INTRODUCTION

approach is illustrated step by step by using the Car Rental case
study as running example.

6.2 Some considerations about the ONME
Conceptual Model

In traditional requirements approaches, the conceptual model
represents “the semantics of the actual data in the proposed database;
its design focuses on issues that are specific to the conceptual content
and organization of the data” [Jian06]. In this approach, an object-
oriented conceptual schema is considered to be the resultant model
of the requirements analysis, where the schema represents the model
of the database. In this context, a UML object-oriented class diagram
is equivalent to an ER* diagram as a database design technique. In
this approach, the conceptual model is used to define the logical
design of the database through, for example, a relational database
schema in SQL.

However, in the ONME method, a class diagram represents more
than the database schema. The ONME conceptual model represents
not only the database, but also the structure of the software system.

In this context, we can establish some differences among class
diagrams as system generators and class diagrams as database
schemas.

e “Conceptually, an object does not need a key or other
mechanism to identify itself, and such mechanisms should
not be included in models.” [UMLO7]. However, keys are
very relevant in DataBase Design.

e A class is similar to an entity type, only operations are
added.

e Classes do not necessarily describe persistent objects that
might ultimately be stored as rows in a relational table.

e Classes can describe transient objects that exist only for the
duration of the program execution.

! Entity Relationship

169

CHAPTER 6 LINKING LATE REQ. WITH ONME CONCEPTUAL MODEL

e Abstract classes only describe fundamental characteristics of
low-level classes; therefore no examples can be defined for
abstract classes.

The key differences among class diagrams are operations and keys.
However, in this thesis, the main difference is that class diagrams
can model the database and the database application system, so class
diagrams represent not only the database design, but also the
software system-to-be.

6.3 The ONME conceptual model generation

The ONME [Past96] [Past97] is an object-oriented software
production method (Figure 6.1). Basically, we can distinguish two
components: the Conceptual Model and the Execution Model. When
facing the conceptual modeling step of a given information system,
we have to determine the components of the object society without
being worried about any implementation considerations. In the
Problem Space level a precise system definition is obtained by
means of a conceptual model.

In this context, we specify three models: the Object Model, the
Dynamic Model and the Functional Model. They describe the object
society from three complementary points of view within a well-
defined OO framework. Then, we specify the Presentation Model
using interface patterns in order to collect the interface information
required to generate an interface that is ready to be used in an
automated way.

Once we have an appropriate system description, a well-defined
execution model (in the Solution Space level) will fix the
characteristics of the final software product, in terms of user
interface, access control, method activation, etc. According to the
execution model a prototype that is functionally equivalent to the
specification is built in an automated way. The code generation
strategy is independent of any concrete target development
environment; even if at the moment our selected environments for
automated code generation are Visual Basic, Java, ColdFusion and
JSP.

170

6.3 THE ONME CONCEPTUAL MODEL GENERATION

Next, we give a short overview of the four models (object, dynamic,
functional and presentation) that constitute the conceptual model.

Problem

Space Level Conceptual Model

Object Model Navigational Model

Dynamic Model Functional Model -

Uses Presentation Model

Automated
Translation

Repository J

| Formal Specification

Application Tier (.NET, EJB)
Persistence Tier (SQL Server, ORACLE)

Interface Tier (Visual Environments, Web, XML)

Solution Empiricism (ESE)
Spacelevel _ _ _ _ _ _ _ o o _____________ \

Care Technologies, S.A.

Figure 6.1 The ONME conceptual model generation approach

6.3.1 The ONME conceptual model

The ONME [Past0l] [Past98] is a Model-Driven Development
(MDD) approach [Seli03] which automatically generates complete
object-oriented systems based on the information contained in the
conceptual models.

The key feature of this proposal is the integration of formal
specification techniques with conventional object-oriented modeling
techniques. The main advantage is that the models are built using
concepts that are much closer to the problem space domain. In
addition, this integration avoids the complexity associated to the use
of formal methods.

In a MDD approach, two main aspects must be clearly stated: which
conceptual modeling patterns are provided by the method and which
notation is provided to properly capture those conceptual modeling
patterns. Figure 6.2 shows an abstraction of the MDD approach
provided by the ONME.

171

CHAPTER 6 LINKING LATE REQ. WITH ONME CONCEPTUAL MODEL

Conceptual

/and\
00 conceptual
framework

D
a
D u]

[m]
o o

Conceptual modeling

patterns and notation /I Q \
) Aadeling oO \I

L/

Conceptual modeling

Perspective%

Modeler

Problem Space Solution Space

Figure 6.2 The ONME as a MDD approach

With regard to conceptual modeling patterns, The ONME has
adopted the well-known OMT strategy [Rumb98a] by dividing the
conceptual modeling process into three complementary views: the
object view, the dynamic view, and the functional model view
(adding a fourth view to specify presentation patterns). When
software engineers are specifying the system, what they are doing is
capturing a formal specification of the system according to the 04SIS
formal specifications language [Past95]. This feature allows the
introduction of a well-defined expressiveness in the specifications,
which is often lacking in conventional methodologies.

The use of such a formal specification provides the context to
validate the system in the problem space, obtaining a software
product that is functionally equivalent to the specifications. This
equivalence is achieved by creating a model compiler that
implements all mappings specified between the conceptual patterns
(problem space level) and their software representations (at the
solution space level). Naturally, we have had to introduce relevant
information to address specific features of 0451s in these diagrams

172

6.3 THE ONME CONCEPTUAL MODEL GENERATION

(Object Model, Dynamic Model, Functional Model, and Presentation
Model). Nevertheless, this is always done preserving the external
view that is compliant with the most extended modeling notation,
which is the UML [Booc99].

Hence, the subset of UML used in the ONME is the one that is
necessary to complete the information relevant for filling a class
definition in 045IS. In this way, the arid formalism is hidden from
the modeler when is describing the system by making it more
comfortable to use a conventional notation. Another principal
objective in the design of the ONME was to keep modelers from
having to learn another graphical notation in order to model an
information system. Having a formal basis allows us to provide a
modeling environment where the set of needed diagrams is clearly
established.

In the following, we briefly introduce the four conceptual model
views that exist in the ONME approach.

6.3.1.1 Object model

The object model is a graphical model where system classes and
relationships (association, aggregations, and inheritance) are
defined. Additionally, agent relationships are specified to state the
services that objects of a class are allowed to activate. These
primitives capture the static point of view of the system. The
corresponding the UML-based diagram is the Class Diagram, where
the additional expressiveness is introduced by defining the
corresponding stereotypes. Specifically, for each class, the Object
Model captures:

e Attribute: to indicate whether the attribute is constant,

variable or derived;

e Services: name of the services with their corresponding
arguments, distinguishing the new and destroy class services.
Also, a service definition can be included in the specification
of more than one class, representing a synchronous
communication mechanism between the object involved in
their occurrence. They are called shared services and the
participating services are linked with a double line.

173

CHAPTER 6 LINKING LATE REQ. WITH ONME CONCEPTUAL MODEL

o Derivations: derivation expressions for the derived attributes
(those whose value is dependent on other attributes).

e Constraints: well-formed formulas representing conditions
that objects of a class must satisfy.

The additional information associated with associations,
aggregations, and inheritance is the following:

e [For associated classes, to specify whether there is an
aggregation or a composition (following the UML
characterization) and whether the association is static or
dynamic.

e [For inheritance hierarchies, to specify whether a
specialization is permanent or temporal. In the former case,
the corresponding condition on constant attributes must
characterize the specialization relationship; in the latter, a
condition on variable attributes or the carrier service that
activates the child role must be specified.

Finally, integrity constrain allows specifying conditions that must
hold in any valid state of an object. They are specified within the
class scope as well-formed formulas built on class attributes.

Figure 6.3 shows an example of an Object Model, a view of a library
system with books, readers, and loans. Classes and their relationships
are depicted using the ONME notation using the OlivaNova
Modeler®.

For example, the discontinuous lines indicate agent relationships, in
this model, there is one client class (Librarian) and the others are
server classes. In the example, the objects of the librarian class can
activate the services new_reader, destroy_reader, and modify_reader
of the reader class.

The arrow between reader and unrealible_reader denotes that this
class is a temporal specialization of reader. This occurs when the
event to_punish is triggered. The solid lines between reader and
loan, loan and book, author and book, and book and supplier
represent an association between these classes. Finally, the double
lines denote shared services. For instance, the service to loan is
shared between the classes reader and loan.

174

6.3 THE ONME CONCEPTUAL MODEL GENERATION

I0ah author
id loawn A 1d_suthor
loan date TETE

. v
hending
destroy_los naw_author
FELUrRn dastroy_authe
T loan b’

1 I

0
|
0:M

)

book
id_book A
15BN
e 3
o loar

reader
address ~
COmpany
ENail
new_readar Al
return
to loan

¥

A
S| Jdestroy boca

% lmodify_book
=2 haew boglk
.

b

remdarta_punichiforgive

unrealih_reader
punish_date

3 | supplier |
— _ _ . comercial kA

forgive P libratian ("'h;-\ drv_numbook
14 Librardan FEinna id sannlier
TilnllTee Jereate_supp A

: T-{destroy_sup
v--.|oreate T lmedify supe ™

\.--]destroy

Figure 6.3 Class diagram for the library system
6.3.1.2 Dynamic model

The system class architecture has been specified using the Object
Model. Additionally, basic features (such as which object life cycles
can be considered valid and which inter-object communication can
be established) have to be introduced in the system specification. To
do this, the ONME provides a dynamic model. It uses two kinds of
diagrams: State Transition Diagrams and Interaction Diagrams.

The State Transition Diagram (STD) is used to describe the correct
behavior by establishing valid object life cycles for every class. By
valid life, we mean appropriate sequence of service occurrences that
characterizes the correct behavior of the objects that belong to a
specific class. The corresponding UML based diagram is the State
Diagram.

The syntax for transitions is the following:

175

CHAPTER 6 LINKING LATE REQ. WITH ONME CONCEPTUAL MODEL

[list_of_agents| *] : [preconditions] service_name [WHEN
control_condition]

where services preconditions state what conditions must hold for
activating and even and control conditions are conditions defined on
object attributes to avoid the possible non-determinist for a given
service activation.

Figure 6.4 shows a simple STD for the book class. Once a book is in
the state labeled book(), if a to_loan service occurs and the
precondition available = true is satisfied, the object will move to the
loaned state. Here, if a return service occurs, the object will move to
the book() state.

*Inew_book
[*]to_loan IF available = true

Figure 6.4 State transition diagram for the book class

Every service occurrence (i.e., new_book) is labeled by the agent
librarian, which is allowed to activate it. In this example the “*”
denotes that any valid agent class can activate the transition. As the
only valid agents for the new_book service are objects of class
librarian, both representations are equivalent.

In the example in Figure 6.5, once a reader is in the state labeled
WithouB (Without books), if a to_loan service occurs, the object will
move to the WithB (with books) state. Here, if a return service
occurs, the selected transition will be the one that satisfies the
corresponding control condition (n_books = 1 or n_books >1).

176

6.3 THE ONME CONCEPTUAL MODEL GENERATION

to_punish
[*]: modity_reader

@/_f‘t*]'new_readar *|:destroy_reader IF n_books = D@
*|:return VWHEM n_books =1

[*to_loan IF punish = false. @

[*}to_loan IF punish = falze return YWHEN n_toooks = 1

Figure 6.5 State transition diagram for the reader class

The Interaction Diagram (ID) specifies the inter-object
communication. We define two basic interactions: triggers, which
are object services that are activated in an automated way when a
condition is satisfied, and global interactions, which are transactions
involving services of different objects. The corresponding UML base
diagram is the collaboration Diagram where the context of the
interaction is not shown.

Trigger specifications follow the syntax:

Destination:: (trigger_condition) agent:service

The first part of the formula is the destination (the object (s) to which
the triggered service is addressed). The trigger destination can be the
same object where the condition is satisfied (self), or a specific
object (indicating the oid), or the entire class population if we are
broadcasting the service (class). The last part of the formula is the
triggered service with the corresponding agent.

Global interactions are graphically specified by connecting the
services involved in the declared interaction. These services are
represented as solid lines linking the objects (boxes) that provide
them.

177

CHAPTER 6 LINKING LATE REQ. WITH ONME CONCEPTUAL MODEL

There is one STD for every class, but only one ID for the whole
system, where all the inter-object interactions will be graphically
specified.

For the library system, an interaction diagram with the following
trigger can be defined:

Self:: (if (today() — loan.return_date) > 7) librarian:disable

It indicates that a trigger action (librarian:disable()) must be
activated when the return_date is greater than 7 days.

6.3.1.3 Functional model

A correct functional specification is a shortcut of many of the most
extended OO Methods. Sometimes, the model used breaks the
homogeneity of the OO models, as happened with the initial versions
of OMT, which proposed using the structured DFDs as a functional
model. The use of DFD techniques in an object-modeling context has
been criticized for being imprecise, mainly because it offers a
perspective of the system (the functional perspective) that differs
from the other models (the object perspective).
Other methods leave the free-specification of the system operations
in the hands of the designer. The ONME functional model (FM) is
quite different from these conventional approaches. In this model,
the semantics associated to any change of an object state are captured
as a consequence of a service occurrence. To do this, it is
declaratively specified how every service changes the object state
depending on the arguments of the service involved and object’s
current state. A clear and simple strategy is given for dealing with
the introduction of the necessary information. The relevant
contribution of this functional model is the concept of categorized
attributes.
Three types are defined: push-pop, state_independent, and discrete-
domain based. Each type will define the pattern of information
required to define its functionality.

e Push-pop attributes are those whose relevant events

increase or decrease their value by a given quantity. Events
that reset the attribute to a given value can also exist.

178

6.3 THE ONME CONCEPTUAL MODEL GENERATION

e State-independent attributes have a value that depends only
on the latest action that has occurred. Once a relevant action
is activated, the new attribute value of the object involved is
independent of the previous one. In such a case, we consider
that the attribute remains in a given state, having a certain
value for the corresponding attributes.

e Discrete-domain valued attributes take their values from a
limited domain. The different values of this domain model the
valid situations that are possible for object of the class.
Through the activation of carrier actions (which assign a
domain value to the attribute), the object reaches a specific
situation. The object abandons this situation when another
event occurs (a “liberator” event).

Table 6.1 shows the Functional Model for the attribute n_books of
the book class. This attribute is categorized as a push-pop because
it’s a relevant service that increases or decreases the attribute value
by a given quantity.

Table 6.1 Functional model example

Class:book Attribute:n_book Category: push-pop
increase librarian:to_loan() +1
decrease librarian:return() -1

In the example, Librarian:to:to_loan() is the increasing action and
librarian:return() is the decreasing action. This categorization of
attributes allows us to generate a complete 0451 specification in an
automated way, where service functionality is completely captured.

6.3.1.4 Presentation model

The object society structure, behavior, and functionally are specified
using the three conceptual models described above. The last step is
to specify how users will interact with the system.

This is done by the Presentation Model [Moli03] through the
definition of a set of Presentation Patterns. The Presentation Patterns
capture the information required to characterize what appearance the

179

CHAPTER 6 LINKING LATE REQ. WITH ONME CONCEPTUAL MODEL

application will have, and how the user will interact with the
application. These Presentation Patterns can be organized in three
levels:
e Level 1: The first level contains the Hierarchical Action
Tree (HAT) pattern, providing the access to the application.

o Level 2: The second level contains the Interaction Units. The
user interface is the decomposed in the following scenarios to
support user tasks:

e Service Interaction Unit (SIU): represents a dialogue where
a user executes a service. As part of the dialogue, the user
must provide the arguments of the service and the system
must validate them. In addition, the user can perform an
action to execute the service or to cancel it. The system will
have to inform the users of the occurrence of errors.

¢ Instance Interaction Unit (11U): the intention is to represent
data (from one class instance) to the user. It is defined on a
class and has the following properties: a visualization display
(to show the information), actions (performed on the object)
and navigation (reachability between instances).

e Population Interaction Unit (PIU): the intention is to
present data (from a set of class instances) to the user.
Filtering and ordering mechanisms can also be added to
improve the object selection and consultation.

o Master/Detail Interaction Unit (MDIU): the intention is
also to present information to the users. It is defined from
11Us and PIUs to show related information.

o Level 3: the third level is composed of patterns that add extra
semantics to the interaction units.

The precise description of the pattern can be found in [Moli03].
Figure 6.6 gives an overall view of the levels and the corresponding
interdependencies among patterns.

180

6.3 THE ONME CONCEPTUAL MODEL GENERATION

Level 1 Level 2
M A
~
Service

Inreraction [nir

Level 3

[niroduction

Defined

Selecrion

Argument

Grouping

Status
-1
Recovety
P Dependency
Higrarchical supplementary
Action Tree Information
=] Filter
Py r|.‘.l-.L|uli-.J|‘| I:'\— Order Criterion
Interaction L ni
= Display Set
-
Instance o \ctions
Ineeraction Uni
= Navigations
Masret, Detail Masrer
Legend o i _
Ineraction Uni [nreracton Unil
A " Details
A uses I Interaction Urits

Figure 6.6 Pattern language for presentation model (source [Moli03])

181

CHAPTER 6 LINKING LATE REQ. WITH ONME CONCEPTUAL MODEL

6.4 The generation process of the conceptual
model

This section describes our method for generating object-oriented
conceptual schemas from an organizational model that is represented
in the Tropos Framework. The entire methodology presented in this
thesis consists of six processes that span the spectrum from Tropos
business analysis to object-oriented conceptual modeling. We have
made the application of the process systematic by proposing rules,
patterns and guidelines for each one of the modeling stages.

Figure 6.7 shows an overview of our method. In this figure, a
parallelogram represents an input of a process; the squares with
rounded borders represent the processes of the proposed method, and
the squares represent the deliverables of the defined processes.

The organizational diagrams specified in the Tropos framework (the
actor diagram and the goal diagram) are the input of the first process:
the goal-based requirements elicitation process, which allows us to
have a deep understanding of the organizational environment in
order to identify the relevant tasks that should be automated to best
satisfy the organizational goals. Goals are the key concept in this
modeling stage where the current situation of the enterprise is
represented using the social and intentional concepts of the Tropos
framework. We argue that the representation of this situation is a
fundamental stage when an existing enterprise is being modeled. One
of the goals of this step is to determine the relevant actors in the
organization. Later on, in this same step, the strategic organizational
goals and their associated organizational plans are determined so that
the internal behavior of the actors needed to satisfy their own goals
and dependencies can be described. In this first process, which is
explained in Chapter 3, design guidelines are used to represent
quality attributes that the enterprise wants to improve by inserting a
software system that automates some relevant organizational
processes.

182

6.4 THE GENERATION PROCESS OF THE CONCEPTUAL MODEL

- The goal-based Relevant The generation New organi-
Organizational_, requirements —» tasks tobe —» Process ofthe —, zational model
Diagrams elicitation process B Jate requirements with the software
(chapter 3) (chapter 4) system actor
The generation The monitoring
process of the ¢e———————— plans insertion
concerned objects process
model (chapter 5) (chapter 5)
Legend
__/ Input J_I_l
j Process The extended The scenarios of
organizational the concerned
models objects
J Deliverables | l
The generation The generation
Process of the process of the ONME
ONME conceptual requirements model
model (chapter 6) (chapter 7)

Set of alternatives of
conceptual schemas
OOMethod

The requirements model
(Use case model)

Figure 6.7 Overview of the method to link business and system specifications

In the second process (the late requirements generation), which was
explained in Chapter 4, we carried out the delegation of the relevant
plans to be automated towards a new organizational actor that
represents the software system. It is important to point out that this
process of creation of a new organizational actor that represents the
system-to-be is one of the main contributions of this work. In current
research works that focus on using the organizational context to
generate software requirements specifications [Alen03] [Jian06]
[Sant02], the requirements model has the organizational model as
source, which is directly extended to represent domain concepts.

We consider that there are certain aspects that need to be also taken
into account in order to make the transformation between
organizational model and software specifications possible:

183

CHAPTER 6 LINKING LATE REQ. WITH ONME CONCEPTUAL MODEL

e First: Not all the organizational plans are candidates to be
automated; therefore, if there is no mechanism to isolate the
relevant information, all the information about plans to be
manually executed and plans to be automated are mixed in the
same model.

e Second: One of the main issues of the Tropos framework is the
that when large enterprises are modeled, the models are
overcharged containing a large number of modeling elements
in the same diagram. This can be even worse if the diagram
also includes the domain information needed to determine the
plans to be automated.

e Third: By inserting the software system actor (SSA) in the
organizational model, it is possible to illustrate the actors that
will interact with the system-to-be, and it is also possible to
determine the nature of the user interactions.

e Fourth: By inserting the SSA in the organizational model, it is
possible to focus the analyst’s efforts on the definition of the
plans that the system must perform based on the plans defined
within the system actor.

In our approach, the relevant goals and plans are delegated to the
SSA to indicate that this actor is the new one that is responsible for
fulfilling these goals and plans. One of the advantages of this
approach is that it is possible to take design decisions based on
current organizational goals and plans instead of starting the design
process from scratch. The goal and plan delegation is guided by a
pattern language that represents all the possibilities that exist for
reducing the abstraction level of a ““pure” organizational model to be
closer to a software requirements specification. As a result of this
process, a new organizational model that includes the SSA is created,
which represents the expected functionality of the system-to-be.

In the third and fourth processes (the monitoring plans insertion
process and the generation process of the concerned objects model)
the organizational model is extended to generate a model that shows
the relevant plans to be automated. These processes, which were
explained in Chapter 5, enable the analyst to identify the scope of the
system-to-be.

184

6.4 THE GENERATION PROCESS OF THE CONCEPTUAL MODEL

The resultant models obtained in these processes are the extended
organizational models and the concerned object scenarios. These
elements are used in the fifth process, the generation process of the
ONME conceptual model, which generates a space of alternative
object-oriented conceptual schemas that fit the business
functionalities. These elements are also used in the sixth process: the
generation process of the ONME requirements model (presented in
Chapter 7), which uses the extended organizational model with the
SSA to generate a specification of the requirements for the system-
to-be.

It is important to point out that in this thesis both approaches (the
generation of conceptual schemas from organizational models and
the generation of requirements models from organizational models)
have been proposed as alternative solutions for the problem of
associating business and software system descriptions.

The process for carrying out the ONME conceptual model generation
is presented below in detail.

Overview of the ONME conceptual model generation

In this section, an overview of the proposed method to generate the
object-oriented conceptual model is presented (Figure 6.8).

One of the main contributions of our work is the possibility to
generate a space of alternative conceptual models that reflect a
specific view of the structure of the system-to-be. The generation of
the space of alternatives consists in a progressive method that is
based on the analysis of relevant organizational goals and non-
functional requirements (represented as softgoals in Tropos).

The idea of generating conceptual schemas according to a specific
criterion is not a new idea; it was introduced in the 70°s to create
normalized database schemas. In [Codd79] [Chen76] [Saka80]
[Shar02] [Stee96] several criteria were defined to guide the
definition of database schemas that fit a specific criterion.

185

CHAPTER 6 LINKING LATE REQ. WITH ONME CONCEPTUAL MODEL

The generation process of the
The extended ONME conceptual model

organizational 1. Choosing alternatives

models - - — Set of alternatives

L of conceptual
schemas
. Concerned object optimization Concerned object modularity OOMethod
The scenarios (CObj_Optim) (CObj_Modularty)
it CF’ R 2. Generating conceptual models
objects
Legend

/ Input Process J Deliverables

Figure 6.8 The schema of the generation process of the ONME conceptual model

However, in object-oriented conceptual modeling, where the
conceptual model represents the database and the system structure,
there are only a few research attempts to create normalized schemas
to fit a specific criteria.
The inputs of this process of generating the space of alternatives are
the extended organizational models and the table of scenarios of the
concerned objects. The extended organizational models are those that
consider monitoring plans and those where the concerned objects
have been identified.
As stated above, this process is guided by a set of algorithms and
rules, which has been grouped in two sub-processes:

o Generation of a space of alternatives

e Generation of conceptual models

In the following sections, these two processes to generate the
conceptual model for the system-to-be are presented in detail.

6.4.1 Generation of a space of alternatives

The first step to generate a conceptual schema for the system-to-be is
the generation of the space of alternatives. To do this, the lifetime of
each concerned object (identified in the generation process of the
concerned objects illustrated in Chapter 5) must be analyzed. To do

186

6.4 THE GENERATION PROCESS OF THE CONCEPTUAL MODEL

this, we analyze the different scenarios in which a concerned object
has been manipulated throughout its lifetime.

By scenario, we mean some point in the organizational process
where a concerned object is queried or modified.

A concerned object can generate several scenarios in order to
represent the behavior of the relevant objects in the business from a
temporal perspective.

The scenarios of the concerned objects are represented using a table
of scenarios (Table 6.2). The concerned objects are stored in this
table with all their characteristics. Each row of the table represents a
scenario where a concerned object is used.

Table 6.2 Scenario of concerned objects (CObjs)

Concerned Elements Associated Used Related Label of
object and asso- elements attributes actors the
name ciated links concerned

object

For instance, Figure 6.9 illustrates the lifetime of the Customer
concerned object of the Car Rental case study. The lifetime is
composed of states in which the concerned object is used throughout
the lifetime of the software system-to-be.

187

CHAPTER 6 LINKING LATE REQ. WITH ONME CONCEPTUAL MODEL

1. Obtain Customer Info

2. Register Customer

The object is
created

Lifetime
Object

Figure 6.9 Lifetime of the Customer concerned object

First, the Customer concerned object is created when the plan Obtain
Customer info is executed. The next stage of the concerned object
occurs when the plan Register-Customer is executed.

Then, the plans analyze Customer, analyze credit card, and search in
black list also modify the Customer concerned object. It is important
to point out that a different set of attributes of the concerned object is
used in the different stages where the object is manipulated.

Later on, the generated concerned objects must be organized
depending on each alternative solution.

The analysis of the different stages of the concerned object enables
the analyst to obtain information about semantic associations among
attributes and also to obtain information about its usability:

o Identify the attributes that always appear in each state of the
concerned object. For instance, in the Customer concerned
object, the attributes: Name and Passport number appear in all
the object states (Figure 6.9). These kinds of attributes are
candidates to be considered as identifiers of the candidates
classes.

e ldentify those attributes that are rarely modified in the
organizational process. For instance, the attributes of the plan

188

6.4 THE GENERATION PROCESS OF THE CONCEPTUAL MODEL

Register-Customer: Title, Address, Home-Phone, Email and
Birthday. These attributes are only used in the creation of the
concerned object; therefore, they were not used in the
following stages of the concerned object. These kinds of
attributes are candidates to be considered as attributes of
classes in a conceptual schema that promotes optimization
criteria.

Discover the semantic relationship among attributes, this
gives the analyst the possibility of encapsulating closely
related attributes in new classes based on cohesion criteria.
For instance, Figure 6.10 shows the attributes engine, number
of cylinders and number of displacements, which can be
grouped into a new concerned object engine. Therefore, a
new class with the associated attributes can be created to
isolate these elements.

Reservation
Manager

Reservatiol)

Reservation
info

User
company

Figure 6.10 Attributes in two different concerned objects

The selection of a specific criterion is the basis for determining the
appropriate translation schema of attributes of this kind.

We have selected two different solutions, which are represented as
conceptual schemas, for the running example. The solutions are
based on the following criteria: optimization and modularity. As
stated above, the definition of conceptual schemas according a

189

CHAPTER 6 LINKING LATE REQ. WITH ONME CONCEPTUAL MODEL

specific criterion has been analyzed in depth in several research
works [Dull03] [Shar02] [Stee96] [AmbI03] [Bock97] [Desal7]. In
these works, there are standard solutions for creating a conceptual
model that appropriately fits the selected criteria.

In the following subsections, each alternative solution for the
running example is detailed. The generation of solutions according to
a specific enterprise criterion is guided by algorithms that permit to
represent the information of each concerned object to be represented
in order to satisfy the organizational goal.

It is important to point out that that the generation of different
conceptual schemas according to quality criteria affect not only the
definition of the database design, but also the generated software
system. However, the process to create new conceptual schemas is
based on the static part of the class diagram (class attributes and
relationships among classes), and it does not consider the dynamic
part of the schema (class methods). This is the reason why the
generation of alternative schemas is a data-based optimization
process.

6.4.1.1 Optimization strategy for conceptual model
generation

A definition of optimization in computer science is the following:
“improving a system to reduce runtime, bandwidth, memory
requirements, or other property of a system; in particular”
[WOpt07]. In database theory, optimization is analyzed in the
optimization of access paths and the storage of data in the file system
level [Shar02]. In conceptual modeling, optimization is regarded as
reducing the semantic distance among closely related attributes.

The strategy to create a global model that promotes optimization is to
create global classes in the conceptual model. This is to reduce the
response time when a class is queried or stored in a database of the
system. Therefore, the strategy to create a conceptual schema for
optimization consists of concentrating all the attributes as close as
possible in order to reduce the access to different databases when a
query is executed.

190

6.4 THE GENERATION PROCESS OF THE CONCEPTUAL MODEL

The algorithm for reconciling concerned objects according to the
strategy of optimization is illustrated below. The algorithm is guided
by the function Reconciling_optimization(), whose aim is to create a
complete concerned object. By complete concerned object, we mean
the concerned object that concentrates (as close as possible) all the
attributes that belong to the object throughout its lifetime.
The strategy of this process consists of creating a new table of
scenarios that contains the complete concerned objects. This table
will contain the attributes of the concerned objects grouped
according to their semantic distance in order to create global
concerned objects.
Table 6.3 depicts the structure of the complete concerned objects
table. The first column (Concerned object) contains the name of the
concerned object that is identified; the second column (Used
attributes) contains the attributes of the concerned object that is
identified according to the solution criteria (Optimization or
Modularity); finally, the third column (Label of the Concerned
object) contains the current situation of the concerned object (for
instance, if a concerned object was divided between other concerned
objects).

Table 6.3 Complete concerned objects Table (CObj_Optim)

Concerned object Used attributes | Label of the concerned object

In this solution criterion, the concerned objects being analyzed must
be placed in a new table called CObj_Optim, which will contain the
list of complete concerned objects grouped by the Optimization
criteria.

Next, the selected concerned objects must be compared with the rest
of the concerned objects in all scenarios tables (CObjs table). When
other scenario of the same concerned object is found, the attributes
of both concerned objects must be compared and unified by
including the attributes in the CObj_Optim table. The idea is to
create a table that mixes all the attributes for each concerned object.
The function Insert Mix-attributes() performs the match among

191

CHAPTER 6 LINKING LATE REQ. WITH ONME CONCEPTUAL MODEL

attributes, and it also executes the creation of the new table
CObj_Optim. Once a concerned object has been analyzed in the
scenario table, it must be labeled in order to indicate that it has
already been analyzed.

The Insert COAppropriate () function is used to insert a concerned
object in the CObj_Optim table with all the attributes that were found
in the lifetime of the concerned object.

For example, Figure 6.9 shows the lifetime of the Customer
concerned object. Once the algorithm for reconciling concerned
objects by optimization criterion is applied, the Customer concerned
object shown in Figure 6.11 is obtained. This complete concerned
object contains the following attributes: Name, title, passport
number, address, home-phone, cell phone, email, license number,
birthday, N-credit card, card holder, expire date and company. Thus,
according to the optimization criterion, we obtain a concerned object
makes up of all its attributes that were manipulated in its lifetime.

Figure 6.11 An example of applying an algorithm to reconcile concerned object by
the optimization criterion

The algorithms that perform the mapping among attributes and the
mixture of attributes are presented below. It is important to point out
that only the main algorithm is presented in detail. The secondary
functions are only described in the text. Table 6.4 shows the
complete concerned object table for the object Customer.

192

6.4 THE GENERATION PROCESS OF THE CONCEPTUAL MODEL

Table 6.4 The complete concerned objects table for the object Customer

Concerned Label of the
i Used attributes Concerned
object name !
object

Customer Name, title, Passport Number, Address, City, Home
phone, Cell phone, email, License Number,birthday,
N-Credit card, Card holder, expire data, Company

Algorithm for reconciling concerned objects by its optimization

Reconciling_Optimization()
Begin
i=1, k=1, N; //Num de scenarios of concerned objects
While (i<=N) do
If (Table CObjs [6][i] != “Analyzed”)
Insert COAppropriate (Table CObjs, Table COb_Optim,
i, k, Label)
Table CObj_Optim[1][k] = Table CObj[1][i]; // insert the first
[/l column in the table of scenarios “Concerned object name”
Table CObj_Optim[2][k] = Table CObjs[4][i]; // insert the second
[/l column in the table of scenarios “Used attributes”
Table CObj_Optim[3][k]= Label ;

J=i+1;
While (j < N+1)
If (CObj1[1][i] == CObj2[1][j]) then
Insert Mix-attributes (Table CObjs,
Table CObj_Optim, i,j, k, Label)
End if
Else j=j+1;
End while
End if
Else i=i+1,;

End Reconciling_Optimization

193

CHAPTER 6 LINKING LATE REQ. WITH ONME CONCEPTUAL MODEL

Insert Mix-attributes Function

(Table CObjs, Table CObj_Optim, i,j, k, Label)

The main objective of this function is to compare the attributes
stored in the different scenarios for each identified concerned object
(CObjs table) and to join all the attributes of a concerned object in
the CObj_Optim table. This table must contain all the complete
concerned objects in accordance with optimization criteria.

This function has the following elements as function parameters: the
CObjs table, which is analyzed in the following positions: column 4,
row i, and column 2, row j. The positions are analyzed in order to
determine if the attributes of both concerned objects are the same or
if some differences among attributes are detected. If there is an
attribute with a semantic difference, then it must be inserted in the
CObj_Optim Table in the position column 2, row k. Finally, the
“Analyzed” label must be inserted in column 6, row j of the CObjs
Table to indicate that this element has already been analyzed.

When a set of concerned objects has been grouped into a concerned
object, then, the “Grouped” label must be included in the attributes
of the objects of the CObj_Optim Table along with the name of the
concerned object that gives rise to the new concerned object.

6.4.1.2 Modularity strategy for conceptual model
generation

Modularity is the property of computer programs that measures the
extent to which they have been composed of separate parts called
modules [WMod07]. We consider encapsulation as the most
important quality of modularity.

The strategy to create a conceptual model that promotes modularity
consists of analyzing the use of the attributes of the concerned
objects throughout their lifetime in order to detect the information
that is used most frequently and the information that is very rarely
used. Based on this information, the data object can be encapsulated
according to this usability criterion. The idea of this process is to
implement the separation of concerns.

194

6.4 THE GENERATION PROCESS OF THE CONCEPTUAL MODEL

As stated above, a concern expresses a specific interest in some topic
pertaining to a particular system of interest (or other subject matter)
[Hill99]. In this sense, one of the most rapidly emerging technologies
in software engineering is the separation of concerns, which is an
established software engineering theory based on the notion that it is
beneficial to break down a large problem into a series of individual
problems or concerns. This allows the logic required to solve the
problem to be decomposed into a collection of smaller, related
pieces. Each piece addresses a specific concern where usability is the
selection feature.
The procedure to perform the optimization by modularity can be
summarized in the following steps:
Step 1. Use the CObject_Optim table (which was explained in the
previous section) to carry out the analysis of concerned
object attributes.

Step 2. Compare the scenarios of each concerned object with the
CObj_Optim table. This is done to determine the use of the
attributes throughout the lifetime of each concerned object.

Step 3. Analyze the concerned object attributes in order to determine
their usability. In this step we need to analyze the object
attributes to find those that are rarely used throughout the
lifetime of the concerned objects.

Step 4. Based on this criterion, the attributes that share usability
characteristics are used to create new classes in the object
model. The information about the concerned objects must be
stored in a new table called CObj_Modularity.

Step 5. Label the new concerned objects to indicate that a concerned
object was divided according to the usability criterion to
create two separate classes.

An example of this strategy is shown in Figure 6.12. The concerned
object Car has some attributes that are rarely used in the scenarios of
this concerned object. The attribute engine is only modified when the
Car is registered. Therefore, this concerned object must be divided in
two different concerned objects.

195

CHAPTER 6 LINKING LATE REQ. WITH ONME CONCEPTUAL MODEL

Car Engine

Car type, Engine, Engine Num
Plate, Color, "

s Mile Displacement
Status, Mileage, ‘_
Doors-Num, NumberCyl
Seats-Num
Cia manufacturer,
Year

Figure 6.12 Concerned object divided into another concerned object

The algorithm for reconciling concerned objects by the strategy of
modularity is presented below. The algorithm is implemented by the
function Reconciling_Modularity(), which encapsulates concerned
objects taking into account this usability throughout their lifetime.
To do this, the CObj_Optim table is used. First, the number of
concerned objects is obtained; then each attribute must be
individually analyzed and compared with the table of scenarios of
each concerned object (Cobjs table). This is done to obtain a
temporal list of each attribute and the scenarios where it is used. This
process is done with the function called Clasify_attributes().

The Reconciling_attributes() function determines the attributes that
are rarely used and those attributes that are frequently used together.
Therefore, a new concerned object will be created based on this
criterion by dividing an entire concerned object into small fragments
of information that are associated to a specific feature. This is done
to isolate (in different modules) the information that is used
frequently from the information that is rarely used.

A table (similar to the CObj_Optim Table) must be created to store
the new concerned objects, or those that have been modified (the
elements modified are those concerned objects that have been
divided into different objects according to modularity criteria,
therefore reducing the number of attributes). The table is called:
CObj_Modularity.

196

6.4 THE GENERATION PROCESS OF THE CONCEPTUAL MODEL

The algorithms that perform the mapping among attributes and the
separation of attributes are presented below. It is important to point
out that only the main algorithm is presented in detail. To facilitate
the reading of the method, the secondary functions are only
described in the text.

Algorithm for reconciling concerned objects by its MODULARITY

Reconciling_Modularity ()
Begin
i=1, k=1
N; //Num de concerned objects
While (i<=N) do
NALttr = Obtain_Num_Attributes(i)
While (j <= NAttr)
Attribute= Object_Optim[4][i].J
Clasify_attributes(Attribute)

End while j
ReconcilingAttributes()
End while i

End Reconciling_Modularity

Clasify_attributes(Attribute)

The main objective of this function is to compare an attribute with
each scenario where it appears. The result of this function is a
temporal table with all attributes information. The attribute to be
analyzed is the parameter of this function.

ReconcilingAttributes()

This function wuses the temporal table created in the
classify_attributes function. Therefore, these attributes must be
analyzed to determine if an attribute is frequently or rarely used and
which attributes generally appear together with the analyzed
attribute. These attributes must be joined to create a new concerned
object. The information is placed in a table similar to CObj_Optim,
but in this case, it will be called: CObj_Modularity table. The
attributes that have generated a new concerned object must be
labeled with the word “Divided”, along with the name of the

197

CHAPTER 6 LINKING LATE REQ. WITH ONME CONCEPTUAL MODEL

concerned objects that were affected in the attribute separation
process.

6.4.2 Rules for generating the conceptual model

The generation of the ONME object-oriented conceptual schema is a
process that is based on the space of alternatives determined in
previous steps. The idea is to define a specific conceptual model
according to the feature selected by the stakeholders. Therefore, in
this process, the tables generated from the conceptual model
(CObj_Optim table, CObj_Modularity table) are the basis for the
generation of the conceptual schema.

It is important to point out that the transformational rules for
generating the conceptual schemas are independent from the
alternative selected for optimizing the concerned object schema.
Before defining the rules to generate the conceptual model, an
overview of the specific sources for each fragment of the ONME
conceptual schema is presented below.

The ONME conceptual model is composed of an object model, a
dynamic model, a functional model, and a presentation model. We
focus on the object model that represents the data and the static
structure of the system-to-be. As state above, the extended
organizational models and the tables of the scenarios of the
concerned objects' are the bases for the generation of the conceptual
schema.

The process performs an analysis of the extended organizational
models and tables of the scenarios of the concerned objects looking
for the constitutive UML-based elements of an object model: classes,
services, attributes, integrity constraints, associations, aggregations,
inheritances.

o Classes are generated from the concerned objects
specified in the table of scenarios of the concerned
objects (CObj_Optim table or CObj_Modularity
table).

1 These tables will be the different alternatives for a solution, where the concerned
objects can be represented.

198

6.4 THE GENERATION PROCESS OF THE CONCEPTUAL MODEL

e Services are generated from the elements associated to
the concerned object in the table of scenarios (CObjs
table).

e Attributes can be obtained from the Used attributes by
the analyzed concerned object in the CObj_Optim table
or CObj_Modularity table.

e Associations and aggregations can be obtained by
analyzing the plans, resources or goals in the
organizational model. The aggregation can also be
obtained looking for concerned objects with the label
“divided” in the table of scenarios.

e Inheritance relationship can be obtained from extended
organizational models when a relationship of plays
(which represents the roles of an actor) between actors is
defined (only if they are considered as concerned objects
in the extended organizational model.)

6.4.2.1 Rule for identifying a class

Rule 1: For every concerned object identified in each space of
alternatives (CObj_Optim table, CObj_Modularity table), a
class will be generated in the class diagram.

Applying rule 1 to the partial view of the table of scenarios of the
concerned objects (Figure 6.13), the classes that can be obtained are:
Customer, Extra service and Reservation.

199

CHAPTER 6 LINKING LATE REQ. WITH ONME CONCEPTUAL MODEL

a) Table of scenarios of the concerned objects

Concerned Element and link Associated Element Used attributes Related
Object associated Actors
Customer Resource Dependency Customer name, Title, Passport Number, CRS-User
(Customer info) Address, City, Home phone, Cell phone, Company
email, License Number, Birthday
Extra service | Resource Dependency Extra services type, Pickup date, Return CRS-User
(Data extras info) date Company
Reservation | Sub plan AND General Plan (Search car Car type, Pickup Date, Return Date, CRS
decomposition (Obtain | availability) Pickup Zone

reservation data)

b) Classes generated

Customer Extra service Reservation

Figure 6.13 Example of classes generated for Car Rental case study

6.4.2.2 Rules for identifying attributes

Rule 2: All the attributes of a concerned object will be considered as

attributes of the created class in the class diagram.

Rule 3: The type of the attributes will be identified by analyzing the
scenarios of the concerned objects.

Rule 3.1: If the initial value of a concerned object’s attribute
remains unalterable in all the scenarios where the attribute
appears, then the type of this attribute must be CONSTANT, and
it must be generated in the class diagram.

Rule 3.2: If the value of a concerned object’s attribute is
manipulated in some pre- or post- condition of a plan or resource
in extended organizational models, then the type of this attribute
must be DERIVED, and it must be generated in the class
diagram.

Rule 3.3: If the type of an attribute is not CONSTANT or
DERIVED, then the type of the attribute will be VARIABLE,
and it must be generated in the class diagram.

An example of the generation of the attributes for a class is shown in
Figure 6.14, which is the result of applying rules 2, 3 and 3.1 to the
table of scenarios of the resource dependency Info Customer to

200

6.4 THE GENERATION PROCESS OF THE CONCEPTUAL MODEL

obtain the class Customer. The attributes of the Customer class are
Constant since they remain unalterable in the other states where they

\
Car can be Customer
rented
Constant Name

Constant Title

Constant Passport Number
Constant Address
Constant Home phone
Constant Cell phone
Constant Email

1------" Constant License nhumber
Constant Birthday

Obtain data
[customer]

Customer
Info

&
Figure 6.14 Example of attributes generated for the class Customer

6.4.2.3 Rules for identifying Events and Transactions

Rule 4: For each final plan or plan dependency in the extended
model, one or more events will be generated in the class
diagram.

Rule 4.1: If the analyzed plan handles only one concerned
object, then an event in the class diagram will be created. The
event will be placed in the class that is generated from the
concerned object.

Rule 4.2: If the analyzed plan handles a concerned object that
has the divided® label, then an event in each class of the
concerned object that is generated must be created; the type of
the created events will be Shared.

! The label “divide™ is placed on those concerned objects that have been divided into
other objects in the reconciling phase.

201

CHAPTER 6 LINKING LATE REQ. WITH ONME CONCEPTUAL MODEL

Rule 4.3: If the analyzed plan handles two or more concerned
objects (after the algorithm for reconciling concerned has been
applied), then it will be translated into an event of type Shared in
the classes that are generated by the concerned objects of the
analyzed plan.

In the event generation process, the New and Destroy events need to
be elicited by the requirements engineers. To do this, the scenarios of
the concerned objects must be taken into account to determine the
state of the object when it is created and the state of the objects when
the lifetime of the object is completed. It is important to point out
that both New and Destroy events imply user interaction with the
software system. This is the reason why these events must be
generated from plans that are associated to dependency relationships.
In Figure 6.15, we present an example of the final plan obtain data,
which generated the Customer concerned object. The event
obtain_data is created in the class Customer by applying the rule 4
and 4.1.

Customer

Car
Rental
System

Obtain data ()

Figure 6.15 Example of an event generated for the class Customer

Rule 5: For every plan with an AND decomposition link, a
transaction must be created. As stated above, a composite
plan is decomposed into a set of low-level plans to make it
operational. Thus, the decomposition implies a strong
dependency among the root and the leaf nodes. If the leaf
nodes are performed, then the root is also performed. The
decomposition is translated into a transaction in the class that
is created from the concerned object associated to the root
node.

202

6.4 THE GENERATION PROCESS OF THE CONCEPTUAL MODEL

Rule 6: For every plan or goal with an OR decomposition link, a set
of alternative methods must be created in the classes
generated from the associated concerned object. As stated
above, a composite plan can be decomposed into a set of
alternatives plans, where the satisfaction of any one of the
leaf nodes (that represent the alternatives) fully satisfies the
parent node. Therefore, this decomposition is translated into
events in the class that is created from the concerned object
associated to the root node.

6.4.2.4 Rules for identifying the association relationships

Rule 7: For every plan, resource or goal that handles two o more
concerned objects, an association relationship between the
generated classes of these concerned objects must be created.
The reasoning behind this rule is that, in a plan that creates
two or more concerned objects, these objects are usually
closely related. However, no indications are given in the
model to determine if the relationship can be modeled by an
association or an aggregation. For this reason, we have
selected the less restricted relationship (association) as the
default option. However, the analyst can decide to indicate
an aggregation in place of an association based on the
strength of the relationship among the concerned objects, the
visibility attributes, the existence dependency, reflexivity,
symmetry and the delete propagation schema [Albe03]. An
example of the generation of association relationships from
concerned objects is shown in Figure 6.16.

Register \ Reservation Credit card
Rent

payment

Figure 6.16 Example of an associated relationship

203

CHAPTER 6 LINKING LATE REQ. WITH ONME CONCEPTUAL MODEL

6.4.2.5 Rules for identifying the aggregation relationships

Rule 8: For every concerned object with the divided label, an
aggregation relationship between the generated classes of
these concerned objects will be created. It is important to
point out that the concerned objects that are labeled as
divided are the result of dividing a single class into two
highly cohesive classes based on usability criteria.
Therefore, a strong relationship exists among the divided
classes. An example of an aggregation relationship of a
divided concerned object is shown in Figure 6.12.

6.4.2.6 Rules for identifying the cardinality

Rule 9: To identify the cardinality of the associations and
aggregation relationships, the extended organizational
models need to be analyzed. The concerned objects that are
the source of the classes need to be analyzed to determine
the number of occurrences in which two specific concerned
objects appear together in an association or aggregation
relationship. However, it is important to point out that this
analysis only gives preliminary results to obtain the
cardinality in the relationships among classes in the class
diagram.

6.4.2.7 Rules for identifying the inheritance relationships

Rule 10: The play relationship of the Tropos framework is used to
create inheritance relationships. The play relationship
indicates the existence of generic actors that play different
roles in the organizational process. To define the inheritance
relationships, it is necessary to determine if the generic actor
and the corresponding roles have generated concerned
objects, if so, an inheritance relationship needs to be defined
between the classes that were originated from the actor and
its corresponding role. Figure 6.17 shows an example of the
generation of inheritance relationships from role
relationships.

204

6.4 THE GENERATION PROCESS OF THE CONCEPTUAL MODEL

Customer
BLAY 7y
Person Manager of Company
Company

Figure 6.17 Example of an inheritance relationship

Rule 11: In order to define inheritance relationships, we need to look
for concerned objects that are labeled with the “grouped”
label. The inheritance relationship will be created between
the generated class and the class that was the original source
of the generated class. Figure 6.18 shows an example of the
generation of an inheritance relationship from two concerned
objects, where the optimization criterion was grouped in
only one concerned object.

Car Available Car|
<+
Concerned Label of
object . the
name Used attributes o~
object
Car Car type, Car name, Engine Num, Displacement, Grouped
NumberCyl , Plate, Color, Mileage, Doors-Num, Available
Seats-Num, Cia manufacturer, Year, Price-car-day, | Car
Pickup Date, Return Date, Pickup Zone, Branch

Table of appropriate concerned objects by optimization criteria

Figure 6.18 Example of an inheritance relationship

205

CHAPTER 6 LINKING LATE REQ. WITH ONME CONCEPTUAL MODEL

6.4.2.8 Rules for identifying triggers and cardmality
restrictions

Rule 12: The pre- and pos-condition of the monitoring plans can be
used to identify triggers. This is because these kinds of plans
are used to observe the execution of the organizational tasks.
This is done to define the current behavior model and correct
the undesirable behaviors. When an undesirable event
occurs, then a set of events needs to be activated to allow the
system to recover from the failure. This kind of semantics
can be appropriately modeled using triggers in the system-
to-be. The pre- and post-conditions of the monitoring plans
need to be analyzed to find the conditions that start the
trigger.

An example of the conceptual model of the Car Rental case study
The extended goal model shown in Figure 6.19 is used to generate
the ONME conceptual models. This model is a partial view of the
Car Rental case study. The numeration of each element in the model
is used to facilitate the example. The main goal of the model is rental
car management, the subgoals derived from the main goal are:
Provide information about the car, Make reservations, Handover
car, Return the car, Manage other branches, Cancel reservations,
Query reservations and Modify reservations. The first two goals are
described in more detail. The concerned objects identified in each
element are also depicted.

Table 4.4 shows the scenario table for all the concerned objects
identified from the model in Figure 6.19. In this table, the lifetime of
each concerned object is represented for analysis purposes. The
scenario tables are the input for the process of generation of
alternative conceptual models based on optimization or
modularization criteria.

206

6.4 THE GENERATION PROCESS OF THE CONCEPTUAL MODEL

ojur ojul

ol

ojul prea
HpaId '6€

poINIaS ©NXT Jawoisny’
pIed ypald 3 e uonenssay ‘0| 1sno'ee
uoiepileA ‘gg

Auceieny 61

ojul A
-e|lee e ‘LT

ojur Anjigq
-ellene 1ed ‘T)6

pred ypaId

azheuy

/ ol
AN 20IMI8S BIXS

'leq L

ojul gy

aoueInsu|

5901135 ®! _E.
EJEp UreIq0

I18WO0ISNd

ozAleuy Aungejrene

ojul URIGo (Ger
Z | (&)

Ted
uonensasal .e BUoURI] J3y1o Ut Al
-Iqejrene azAreuy

SaydUeIq JaYI0
yim afeuepy

azi[ewiod 1| ieA. Jed

wE azAfeuy
oueiq sy} ui Aoalip 2
suonesasal o ALe,

SIed Ul ay Jo
uoNeULIoJUI 3PIAOId

Ted 8yl
JO suInjey

[EVETES]

SuoenIassl suoneA1asal no Aleg,

[ooue)

’ 182 JaAOpUEH

Juswiabeuey

SUONRAIDSAY e

B0 B Uy

Sjopow pue
saoud
A} jo ojul ‘g

Figure 6.19 Partial view of the concerned object model of the Car Rental case study

207

CHAPTER 6 LINKING LATE REQ. WITH ONME CONCEPTUAL MODEL

Table 6. 5 Table of scenarios of Figure 6.19

WaISAS [elusy Jed

auoz dnydid
‘are@ uwinyay ‘areq dnyaid ‘adA e

(Riaref
-|leAR Jed U21eas)
ue|d aysodwo))

(12 [opou
pue Sjep urelgO) ANV ueldang

1ed’'g

WRISAS [eluay Jed)
- Auedwo) Jasn

areq
uinay ‘areq dnxald ‘[epol ‘awey
$92IMBS elX3 ‘adA) S8dIMaS BAXT

(oyu1 s89INIBS BAXT
eleq) Aouspuadaq 22Inosay

S90IAIBS RAXT |

WaIsAS [eluay Jed

areq
winay ‘sreq dnyoid ‘japow ‘aweu
$30IMIBS BAIXT ‘90A) SB0IAISS BAIXT

(Rae|
-|leAe Jed yoress)
ue|d aysodwo))

[CERIINEN
e11x3 elep urelqo) ANy ueldans

S9JIAIBS BAXT 9

WISAS [elusy Je)

(Youeiq siy ur Ay
-|iqejreAe azAeuy)
[eob ansodwo))

(Aunreirene
Ied yoseas) ueld pua-suea|y

-lene 18D

TIqeTene
S30INIBS RIIXT ‘Je)
'SBOINISS BAIXT 'G

WaISAS [elusy Jed

Uouelq siyy ur Aujiqe,
-|reAe 9zAjeuy) [eob ausodwo))

-Tene 125 RiIqeene
S30IMS BIAIXT ‘1eD)
'S3OIAIAS BAIXT Y]

WaIsAS [eluay Jed

Rep-1ea-a0iid
‘s A ‘aimoejnuew Bl ‘WNN-siesg|

(sjopow pue saaud ayp Jo o))

aping — Auedwo) Jasn| ‘WNN-s100Q ‘aweu Ie) ‘adA Je)) Kouspuadaq aainosay ®’)yg
Rep-Ted-a0iid o]
‘Iea ‘1aimorjnuew BIY ‘WNN-SIeas| -ewlojul apinoid), (ogu
WAISAS [elUay Jed) ‘WNN-sJooq ‘awreu Ie) ‘adAse)| [eob ausodwo)| saoud apinoid) ueld pua-suespy| e g
Kep-1ed)
-90lid ‘JeaA ‘Jaimoginuew el ‘wnp|
-S]eas ‘WnN-slooq ‘abeayiy ‘10j0D)
‘areld ‘ MAolaquin uswade|dsig (siea e Jual
WaSAS [eluay Jed| ‘wnp aulbuz ‘aureu Jed ‘adA Q)| 3y} JO UORWLIOUI BPIADI) [209) ey |

108lgo
paul3du0d
3y} 4o j3qe

S10)Je paje|ay

saInquue pasn

SIUBWIJR
pareIoossy

SHuUl
pareIonsse pue Sjuswa|3

aweu
108[qo paulsouo)

208

6.4 THE GENERATION PROCESS OF THE CONCEPTUAL MODEL

WaIsAS [elusy Jed

Youelg
‘are@ uinyay ‘areq dnyaid ‘adA red)

T30 Ul AY]
-[Ige|reAR azAfeuy)
[eof aysodwo))

(youeuq
1auo ut Aujiqejrene 191j0S) pus-suesiy

1eJ 3|qe|eAY "9T]

Wa1SAS [eluay Je))

(sayouelq Jayo
ur Ajige|rene azAjeuy) eob ansodwo))

1) 3|qe|leny GT)

WaISAS [eluay Jed)
- Auedwo) Jasn

aleq dnyoid ‘adA sa1nIes BIIXT

9JIAIDS|
elX3 S(qelieAY YT

WaISAS [elusy Jed

(Rumae|
-|leAR Jed (0seas)
ueid aysodwo))

(Aunejrene aoinlas
BIIX3 8y} nsal aAI9) aNY uedgns

S9JIAIDS|
eiX3 s[qelieny ‘€T

WaIsAS [eluay Jed

auoz dnyaid ‘areq dnyaid ‘adAy se))|

(Ajicel
-|leAR Jed |2Jeas)
ueyd aysodwo))

(Aupaejrene)
1eQ a8y nsal 8A9) ANY ueidgng

1eQ 3|qe|eAY "¢T)

WRISAS [eluay Jed)
- Auedwo) Jasn

auoz dnyaid ‘areq dnyaid ‘adAy 1e))|

(oyu
Anjigejreae 1e)) Aouspuadaq 221n0say|

18 3|qe|ieny 7]

WaISAS [eluay Jed

areq dnyaid ‘adAy Jed)

(el
-|leAe Jed (oIeas)
ueid aysodwo))

Ajige|reAe Jed yaseas) aNy uejdgns

16D B(qeIleAY 0T

WalsAS [ejuay JeD
- Auedwo) Jasn)|

auoz dnydid
‘areq uimay ‘areq dnyold ‘adA e

(ojul
pajuem Jed) Aouspuadaq a0Inosay

18D g

RG]
Pauladuod
aU J0 [3qe]

siojoe pajejey

sanque pasn

SUETETE
PaYeI0SSY

SHUI| POIRIDOSSE pUB SJUSLWS|T

aweu
108[g0 pauladu0)d

209

CHAPTER 6 LINKING LATE REQ. WITH ONME CONCEPTUAL MODEL

WalsAS [eluay Jed

"£Z S108[00 PauIaau0d Jey) swes

(oyur Jawoy
-snJ ay) azjeuy)
ue|d ansodwo))

(oyul
JaWoIsnd urIqo) ANV ueldang|

Auedwo) ‘Jabe)
-Uew Auedwo) ‘uos
-lad ‘1BwWoisng gz

WalSAS [eluay Jed

(1owoisnd azAfeuy),
[eob ansodwo))

(oyur Jawosny
ay) azjeuy) ueld pus-sues|y|

Auedwo) ‘Jabe)
-Uew Auedwo) ‘uos
-lad ‘lawoisnd ‘1z

WRISAS [eluay Jed

(1owo)|
-sna azAjeuy) [eob aysodwo))

Auedwo) ‘1abe)
-Uew Auedwo) ‘uos
-1ad ‘18WoIsn) "0

sayuelq J1ay10
WRSAS [eIuay Je))

Youelg
‘e uwinay ‘ereq dnyaid ‘adAy 1e))

(oyu
Rujigejreny) Aouspuadap 821nosay

e 3|qe|reny 67

WaISAS [eluay Jed

Youelg
‘e uwinay ‘ereq dnydld ‘adAy re))

(sayoueuq

18y1o ui Ay
-|Iqe|reAe azAreuy),
[eob ansodwo))

(Ay
-llge|reA. ojul UrelgO) pus-sues|

e 3|qe|leny "87

sayouRIq JaYI0
WRISAS [eIuay Jed

youeu|
‘areq uiniay ‘areq dnyaid ‘adAi 5e)

(oyur uon|
-eAlasay) Aouapuadaq a0inosay

1eJ 3|qe|leAY LT

18(go
Paulsduod
aU Jo [3qe]

si0]08 pajejoy

sangue pasn

SUEET
PaYRIN0SSY

SyUI| PRIRIDOSSE puB SJUBLWS|T

aweu
198[g0 pauIadu0)d

210

6.4 THE GENERATION PROCESS OF THE CONCEPTUAL MODEL

preg)
1pal) ‘Auedwo) ‘1abe

(uon| -uew Auedwo) ‘uosiad
waysAg| -enIasal 19)sIBay)| awoisn) ‘e ‘sadln
[euay Je)d [eob aysodwo)| -19S ‘UoieAIasay ‘9]

(ogu1 Jowoy| (opur Jawoy

waysAg| JaWwoisn sniels ‘laquiny asuadi-sno ayy azAjeuy)| -sn) azAjeuy),
[eay Je | ‘auoyd awoH ‘A ‘ssalppy ‘lequin Hodssed ‘aweN| ueld pua-sueajy ANV uedang| Jawioisng ‘gzl

‘1apjoy pse) ‘pred 1paid-N ‘Aepyuig ‘Jaquiny (oju1 Jawoy (oju1 Jowoy

washs asuaalT ‘few ‘auoyd (180 *auoyd BWOk .gn ay azfeuy)| -sno ayp yoress)
[ejuay Je)) ‘A0 ‘ssauppy ‘IaquinN Hodssed ‘e ‘sWeN ued pus-sueey| ANV ueidgns 18WO0ISN) g

wel (Auedwo?) awen 19e1U02 ‘apo) Aouaby|
-sAS ejuay (1abeuew Auedwo)) (ogur 18woy fuedwo)
120 - Aued ‘asua0I ‘1aquinN Modssed ‘uawiuedaq ‘aureu Juaby -sn9) Aouapuad ‘joBeuew Auedwon)
-Wwo) Jasn| (uosiad) Aepyuig ‘JaquinN asuadi ‘apiL ‘awen| -9p 82IN0SAY| ‘U0SIad ‘IBWOISNY €7
18(go
sio)oe SAINGUIIE Pas SjuswWa@ [SYul| pareloosse aweu
PBUIRUOI | ooy : pajelnossy | pue sjuswalg | 198lqo paulsauo)

83U} jo [8qeT]

211

CHAPTER 6 LINKING LATE REQ. WITH ONME CONCEPTUAL MODEL

(yuswied

WaIsAg IETREINEY) I CERIVESTIVERE!
[eay Jed ueid aysodwoi-sibay) any uedgng S80IMBS BIXT TE
way Jodssed Jawoy
-sAg [euay| -snD ‘awenN ‘adAl Jawoisn) ‘snels ‘afes|i ‘100D (oui
1D —Aued ‘aleld ‘red adAL ‘InoH uinlay ‘UInoH-dn yaid ‘uiney uoneAIasay) Aoug)
-wo) Jasn| ‘areq dnydid auoz uinay ‘auoz dnxald ‘WNNAISSaY -puadap 82inosay| Je) ‘Uonenlssay 0f
(yuawiAed
WasAg 1l Ja1si6ay) (uorreniasal Ja)
[euay Je) ueyd aysodwo)y-sifay) any ueidgng| uoleAIasay ‘6]
(Auedwo)) awen 19€1U09 ‘apo)) Aouaby
(19beURW AURdWOo)) (quawfed
waishs ‘asuaaI ‘JaquinN Modssed ‘uawiredaq ‘awreu Juaby| Wl JasiBay) (1awoisn) Jo)
[eluay Je) (uosiad) Aepyuig ‘Jaquiny asuaoi ‘apil ‘ewen| uejd ausodwo)i-sibay) ANy ueidgng Jawoisn) '8
pIed upai) ‘Aued
-wo) ‘1ebeuew Aued
(sw| -wo) ‘uosiad ‘1awoy
WaIsAg -Red jual Jaisibay) -SNY ‘1) ‘SaTINIAS|
[eluay Je) ueld pua-sues|y| enx3J ‘UoneAIssay /]
198l00
sI0)oe SUETIETE] SHUI| pareIdosse awreu
pauIsdu0d sangupe pasn
palejay parernossy pue syuswa|3 108[00 paussauo)

91 §O [3qeT

212

6.4 THE GENERATION PROCESS OF THE CONCEPTUAL MODEL

walsAg|
[eluay JeD —yueq

uoirelidx3 ‘pred Jpai "oN ‘Ialioisn)

(oyur preg
1pai)) Aouapuad
-9p 90In0SaY

pIed JpaId "6¢

(pseo ypaio o)

wasAg -epifen) Aouspuad
[eluay JeD —ueg -ap 80In0SaY pJed 1pald '8¢
(youelq Jay10

youelg
‘snjels ‘abea|i ‘10100 ‘ae|d ‘adA) Je ‘InoH uiny

(uawied
a1 JaisIbay),

ul Jea ay} Jo uor
-enIasal JalsIBay)

youelq

WaSAS [ewuay .| -9y ‘INoH-dn %914 ‘uiniay ‘areq dnyald ‘winNAesay| ueld aysodwo)) ANV ueldgng| 1aylo uonenIasay ‘e
90II9S BIIXT Snyels ‘Uodssed| (pantas
Jawolsn) ‘awen ‘Jawoisn) ‘areld ‘adAl e ‘InoH (uawAed| -a1 se saaIIaS
uInay ‘InoH-dn %o1d ‘uinay ‘areq dmydld suoz winy jual salsiBay)| enx3 Jalsiboy)
WAISAS [eluay Jed| -8y ‘auoz dnyald ‘ wnNadIAeS exT ‘saainies x| ued ausodwo)| NV ueidgnsg| 891Aes eaXT Ied el
1ed sneig
‘1aWoisn) uodssed ‘awen ‘adA) Jawoisn) ‘snielg| (uswAed (paniasay
‘abea|ily ‘100D ‘Breld ‘8dAl 1eD ‘InoH uimay ‘InoH-dn| jual IaisiBay)| se Jed Jaisifiay)
W2ISAS [eluay Jed| Xdlid ‘uiniay ‘areq dnxaid auoz uiniay ‘auoz dnyold| ued ausodwo)| @Nv ueldagng| 1e) eg

WaISAS [eluay Jed)
- Auedwo) Jasn

yodssed Jawoisn) ‘awep ‘Iawoisn))|
‘are|d ‘adf1 5eD InoH uImay ‘InoH-dn aid ‘uiniay
‘aje@ dnyald auoz uinlay ‘auoz dnxdid ‘SadINIBS BIIXT

(oyur sa2IMIBS|
elx3) Aouspuad
-ap 824n0SaY

18D 's90IBs BIXT ‘2

193[q0
pauladuod
aU3 J0 e

SJ10]3e pale|ay

sainque pasn

SuBWa|d
parelnossy

SyuI| pajeIoosse
pue sjuawa(3

aweu

108[q0 pausaauo)

213

CHAPTER 6 LINKING LATE REQ. WITH ONME CONCEPTUAL MODEL

(@oueInsul
WASAS [eluay| “InoH uindy ‘InoH-dn %914 ‘uiniay ‘areq dnxaid ‘Mod| ojul) Aouapuad| Jawolsn))
1eD — aoueInsu|[-ssed Jawoisn) ‘awrep ‘adAy jawoisn) ‘ared ‘adAy Je) -3p 92IN0SaY| ‘1ed ‘aaurInsu| ‘gy|
(90ue] (yuaprooe|
-INSUI 10RAU0D)| 'SA BauRINSU|)

Wa1SAS [eluay Je))

[eob ansodwo))

ue|d pus-suesp

18D ‘dueINSU| T

WaIsAS [eluay Jed

‘adAy e “Iswoisn))

[ERIE]
-InNsul 19e1U0D)
[eob aysodwo)

Jawoisn)
‘JeD ‘soueInsul oy

193[q0
pauladuod
aU3 J0 e

SJ10]3e pale|ay

sainque pasn

SuBWa|d
parelnossy

SyuI| pajeIoosse
pue sjuawa(3

aweu

108[q0 pausaauo)

214

6.4 THE GENERATION PROCESS OF THE CONCEPTUAL MODEL

Table 6.6 shows the table resulting from the application of the
optimization criteria, where the concerned objects are joined based
on the semantic proximity of the concerned attributes.

Table 6.6 Appropriate concerned objects by optimization criteria for the Car Rental
case study

- Label of the
" Used attributes Concerned
object name .
object
Car Car type, Car name, Engine Num, Displacement, Grouped
NumberCyl , Plate, Color, Mileage, Doors-Num, Available

Seats-Num, Cia manufacturer, Year, Price-car-day, Car
Pickup Date, Return Date, Pickup Zone, Branch

Extra Extra services type, Extra serviceNum, Extra Grouped
services services name, model, Pickup Date, Return Date Available
Extra service

Customer Name, title, Passport Number, Address, City, Home
phone, Cell phone, email, License Number,
Birthday, N-Credit card, Card holder, expire data,

Company

Person Name, Title, License Number, Birthday

Company Agent name, Department, Passport number,

manager License

Company Agency Code, Contact Name

Reservation ReservNum, Pickup Zone, Return Zone Pickup Grouped
Date, Return, Pick up-Hour, Return Hour, Car type, Reservation
plate, Color, Mileage, Status, Customer type, other branch

Customer name, Customer passport
Credit card Customer, No. Credit card, Expiration

Insurance Car type, Plate, Customer type, Customer name,
Customer passport, Pickup Date, Return, Pick up-
Hour, Return Hour

Table 6.7 shows the table resulting from the application of the
modularity criteria, where the concerned objects are divided to create
more specific objects based on the usability factors.

215

CHAPTER 6 LINKING LATE REQ. WITH ONME CONCEPTUAL MODEL

Table 6.7 Appropriate concerned objects by modularity criteria for the Car Rental
case study

Concerned Label of the
obiect name Used attributes Concerned
! object
Car Car type, Name car, Engine Num, Displacement,
NumberCyl, Plate, Color, Mileage, Doors-Num, Seats-
Num, Cia manufacturer, Year, Price-car-day, Pickup
Date, Return Date, Pickup Zone
Available Car | Car type, Plate, Pickup Date, Return Date, Branch,
Pickup Zone
Engine Engine Num, Displacement, NumberCy! Divide Car
Extra Extra services type, Extra serviceNum, Extra services
services name, Model, Pickup Date, Return Date
Available Extra services type, Extra serviceNum, Pickup Date
Extra service
Customer Name, title, Passport Number, Address, City, Home
phone, Cell phone, email, License Number, birthday,
N-Credit card, Card holder, expire data, Company
Person Name, Title, License Number, Birthday
Company Agent name, Department, Passport number, License
manager
Company Agency Code, Contact Name
Reservation ReservNum, Pickup Zone, Return Zone Pickup Date,
Return, Pick up-Hour, Return Hour, Car type, Plate,
Color, Mileage, Status, Customer type, Customer
name, Customer passport
Reservation | ReservNum, Pickup Date, Return, Pick up-Hour,
other branch | Return Hour, Car type, Plate, Color, Mileage, Status,
Branch
Credit card Customer, No. Credit card, expiration
Insurance Car type, Plate, Customer type, Customer name,
Customer passport, Pickup Date, Return, Pick up-
Hour, Return Hour

Table 6.6 and Table 6.7 are the input for the process of generation of
the conceptual model. As can be analyzed from this table, the classes
generated from the application of different optimization criteria have

216

6.6 FUNCTIONAL MODEL GENERATION

significant differences that will have a correspondence in the

generation of the conceptual schema. Figure 6.20 shows the

conceptual model generated from the optimization criterion using the

proposed transformation rules. Figure 6.21 shows the conceptual

model generated from the modularity criterion.

(ojur-woisno-urelgo

(ojur-1awoisnd-urelqo

(ojur-1awoisny-urelgo

‘asuga fep!
. yuig 1UBPIdOYSABIURINSU|
_mnE,:c vodssed ‘JaquinN asusar
‘Jawiredaq P
SWEN joelu0y ‘aweu juaby oo
'3po9 Aouaby SweN INOH winay
J1obeuew “InoH-dn >oid
Auedwo)d Auedwon uosiad [esisAyd . T
r ‘areq dnford
_ ‘ yodssed Jawoisny
* allieu JawWoisny
AN ‘adfy sawoisny
‘ajeld
(1swoisny-1aisifay ‘adfyed
(oyur-Jawosn)-azAreuy
()ojur-Jawoisng-yoseas aoueunsu|
Auedwo) 17
‘elep alldxa ‘lapjoy pred ()paniasal-se-reo-iaisibiay
‘prea upai-N ‘Aepyuiq (Irene-ojul-urelqo
‘JIaQWINN 8suadI ‘|rewa (Aiqejreae ea
‘auoyd |89 *auoyd awoH ay) snsal a9
‘A ‘ssaIppy ‘IaguinN Oneny
S -1B0-j01eag ()1e-[apolLi-alep-urelqo
Jaworsny ()ojur-saoud-apinoid
Youeig ‘auoz n:xu,& ‘areq 1
T T unay ‘areq dnxald ‘Aep-rea-adlid e
1B2A 11BIN o 1 ‘aleq dmyold
WNN-SIEaS ‘WNN-5100Q ¥ P B
. . ety 19POW ‘aureu
‘aBea|ijy 10/0D ‘ale|d ‘iosequinN S0INI3S BT
‘Juswiaoe|dsiq ,
e e ‘3df) se0InIBS X
()youeIg-1ay10-uonenIasal-1asiBay ,m,w._%m Nw S92INAIBS eUIX]
IRy (Juonensasal-alsifiay
yodssed
i 1T JaWoIsny ‘auwreu Jawoisny _mo
. uopex Axm ‘ad) JawoiSn) ‘snyeis
pIea 1paID “ON sbeayopoamd'adh | [
‘Iwoisny T 18D ‘INOH WNay ‘InoH

pJes 11paid

-dnoid ‘umay ‘areq «T
dnyoid auoz winjay ‘auoz
dnyald ‘WNNAIBSDY

uonenAissay

Figure 6.20 Conceptual Model for the optimization criterion

217

CHAPTER 6 LINKING LATE REQ. WITH ONME REQ. MODELING

(Jojur-lawoisno-urelqo

(Jojur-1awoisnD-ureyg0

(ojur-iswoisny-ureiqo

Kepyuig
*13QUINN 9SUBII
‘oL

‘auen

uosiad [eaisAyd

()reo-japou-arep-urelqo

[LSYELTTIN
Juawaoe|dsiq
wny auibu3

aulbuz

(Irene-ojur-urelqo

(reay -rea-yareas

auoz dnyold
‘youelg

‘aleq wnay
‘areq dnxoid
ajed ‘adky 1en

JUBPI2OYSABIURINSU
TAGUINN 3SUBdIT
3] R “Jaquinu Hodssed
noHdn3orcl Juawnsedsq
‘unsy aWeN 19e1U0) auieu 1aby
‘areq dnyoid ‘apo9 Aousby
‘Hodssed Jawoisny J1obeuew
‘3l Jawoisny Auedwod Auedwon
‘adf) Jawoisn)
‘aeld
‘adA) 1) _
{oueunsu| q
1 ()1woisng-1asifiay
(ojur-Jawoisny-azAeuy
()ojur-Jowoisno-yoreas
Oprea-upaid-azfjeuy Mzl
‘ejep audxs 1apjoy pied
pied pa10-N ‘Aepuniq
uoneudx3
‘prea ypa1) *auoyd |80 ‘suoyd awoH
JONIBSAI-SE-30INBSeIX3-IalsIBaY ‘jawoisn) i *AuD ‘ssaippy ‘JaquinN
()youeig-ay1o-jrene-isanbay Jodssed ‘apn ‘aweN
(1rene-a0iAIaSeAIXE-S)NSBI-AND paed 1paad
Jawoisn)
areq dmpid P
*ad) seoines eix3
S92IAISS BIX] J
a|ge|reny i N T T
(Oyoueig-ap isifay Isibay
(paniesal-se-rea-sajsiboy
uodssed) synsal anID
Pt 18WOISND ‘aWeu JaWoiSN) ()e0-japowr-ayep-ureiqo
. ,_mBSm,»mn_an,_s_ ‘adf) Jowoisn) 'smeis ()oyur-saaud-apinoid
(ponsesarse-aoiag:arsife o e e —T1 ‘abeay ‘aieid ‘ody foueig auoz dmpid
()sea1nas-SEAIX-131S160Y H WSy InoH 18 "InoH uIniay ‘Inon-dn ‘ajeq uIndy ‘areq dnydld
-dn yoid ‘wniay ‘aleq | . 1T !
SB0JAIBS BIIXO Blep UBIqO v Id ‘uiniay ‘afeq dmpold fep-1e0-a0lid
§ i lEUNNAISS Y auoz wmay ‘auoz dmyjold o ‘B3, “IaInjoejnuew el
ajeq LN, ‘wnNABsaY WwnN-sreas
,mvm %x«om uouelg Jsyio ‘wnn-sioog ‘aBesN
‘|9pOp ‘aleu uonenisssy uolleniasay 41010 ‘are|d ‘|AD1BqunN
S90IIBS BIXT Juawaoe|dsiquin ‘auibuzg
‘adA) sa01MIas BAIXT ‘aweu se) ‘adh) rey
saoInIeS eaax3 | +T TT ae)d

Jed s|gejreny

Figure 6.21 Conceptual Model for the modularity criterion

218

6.6 FUNCTIONAL MODEL GENERATION

6.5 Dynamic Model Generation

The ONME dynamic model is represented by state transition
diagrams defined for each one of the classes in the object model.
This model represents the valid states in the lifetime of the objects of
the software system.

The generation of the dynamic model is directly associated to the
changes of values of the attributes. In this sense, a transition between
states implies changes in the value of the object attributes as result of
the application of a certain task. In the current proposal state, there
are no indications about the values of the attributes in the
organizational processes. The changes in the attributes values have
not been considered in our proposal in order to avoid overloading the
resultant model. However, if the dynamic model needs to be
generated, the changes in the attributes must be considered.

To obtain this model, the lifetime of the concerned objects needs to
be analyzed in order to detect the changes in the states and values of
the concerned objects (which are used to generate the classes in the
object model).

As stated above, we register all the occasions where a concerned
object is created, manipulated or deleted in the concerned objects
model. Therefore, this model is correctly adapted to determine the
state transition diagram. Thus, a) when an object is created the first
state of the object is created, b) when a modification of the attributes
of the object is detected, this indicates a transition to the following
state. c) If the value of the attributes back to previous values, then a
transition towards a previous state must be indicated. It is important
to point out that this is a preliminary analysis to obtain a dynamic
model.

6.6 Functional Model Generation

The ONME functional model represents the changes in the values of
the objects when a transition between states occurs. To obtain this
model, the lifetime of the concerned objects needs to be analyzed in
order to detect the changes in the states of the concerned objects. The
concerned object model has the register of all changes to the

219

CHAPTER 6 LINKING LATE REQ. WITH ONME REQ. MODELING

concerned objects. As stated above, the analysis of the changes in the
values of the attributes is a required condition to generate the
dynamic and functional models. Thus, modifications to the current
method must be proposed in order to consider this modeling element.
The generation of the functional model complements the generation
of the dynamic model, but in the generation of the functional model
the analysis is focused on registering the changes in the value of the
attributes of the concerned objects.

6.7 Summary

One of the main contributions of our research work is the definition
of the concerned object model as an intermediate representation
between the organizational model and software representation
models. The concerned object model has the appropriate abstraction
level to obtain the elements of an object-oriented conceptual model.
This is because the concerned model contains information about the
lifetime of the relevant objects in the organizational process. The
semantic proximity between the concerned object model and the
object-oriented conceptual schema enables the analyst to use the
latter to obtain the following elements of the object model: classes
(attributes, and methods), association and aggregation relationships,
and triggers.

The proposed method enables the analyst to produce an alternative
set of conceptual models according to a specific optimization
criterion. This approach, which has been historically used in database

220

Chapter 7

Linking late requirements with
the ONME requirements
model

In this Chapter, we introduce the proposed method to generate an
ONME! requirements specification for the system-to-be from the late
requirements models defined in previous modeling steps. More
specifically, the proposed method enables the analyst to generate
functional requirements, represented as UML use case diagrams,
from organizational models specified in the Tropos framework.

! Olivanova Model Execution

CHAPTER 7 LINKING LATE REQ. WITH THE ONME REQ. MODEL

This Chapter is structured in two sections: In the first section, we
briefly explain the foundations on requirements modeling. In the
second section, the proposed method is presented in detail.

7.1 Introduction

Nowadays, there is a wide consensus with respect to considering
requirements engineering as a fundamental activity in the process to
design and develop a software product. Traditionally, requirements
engineering has been defined as the systematic process of
identification and specification of the expected functions of a
software system.

Some authors have stated the definition of requirements engineering
as “the science and discipline concerned with analyzing and
documenting requirements” [Dorf90]. Kotonya restated the
definition of requirements engineering as “the systematic process of
eliciting, understanding, analyzing, documenting (and managing)
requirements” [Koto98]. Alexander [Alex02] and Hull [Hull02]
discuss additional properties of the text-based requirements (e.g.
priority and traceability) in conjunction with guidelines to improve
writing of requirements. The IEEE Computer Society [IEEEOQ3]
states ““Requirements identify the purpose of a system and the
contexts in which it will be used. Requirements act as the bridge
between the real world needs of users, customers and other
stakeholders affected by the system and the capabilities and
opportunities afforded by software and computing technologies. The
construction of requirements includes an analysis of the feasibility of
the desired system, elicitation and analysis of stakeholders' needs,
the creation of a precise description of what the system should and
should not do along with any constraints on its operation and
implementation, and the validation of this description or
specification by the stakeholders. These requirements must then be
managed to consistently evolve with the resulting system during its
lifetime.”

222

7.1 INTRODUCTION

In the software community, it is clear that when a software product is
designed and implemented, it is very important to ensure from the
beginning that the user requirements have been properly represented.
In recent years, many research efforts have been made to define
software production processes to generate software system from
software requirements. Some of these works offer a precise, rigorous
and reliable production process [Serd91] [Past99] where the system
is the result of the correspondence among the elements of a software
requirements specification and the implementation elements in a
target language. Most of these works use system requirements (late
requirements) as a starting point to develop the system. Even if this
approach solves many of the problems associated with the generation
of the software product, it does not ensure that the system integrates
the functionalities expected by the organizational users.

In these production processes, there is one main feature that is not
properly taken into account: the importance of understanding that the
information system should be the correct representation of the
requirements taken from the organizational model. McDermind
[McDe94] indicates that when the functional specification of the
software system is the focal point of the requirements analysis,
requirements engineers tend to establish the scope of the software
system before having a clear understanding of the user’s real needs.
It constitutes a very important reason why many of the systems
developed from a requirements model that focus only on the
functionality of the software system do not comply with their correct
role within the organization.

In a software production process that does not have the
organizational process model as a first stage, any attempt to generate
a prototype of the information system will be reduced by the
incapacity to assure beforehand the real usefulness of the system in
the context of the organizational tasks. We consider that it is only
possible to generate a software system that complies with the users’
needs if the software engineers have a precise knowledge of the way
in which the organization works.

There are research works that highlight the importance of using
organizational models as a starting point in the development of

223

CHAPTER 7 LINKING LATE REQ. WITH THE ONME REQ. MODEL

information systems [Bube94] [Cesa02] [Louc95] [Cast02].
However, there is currently no software development environment
that offers a methodological approach that is based on a
organizational model for the generation of prototypes of information
systems.

One of the reasons for the lack of methodological solutions to
incorporate organizational modeling (early requirements) as a key
requirements engineering process is the difference that exists
between the abstraction levels of the two specifications. The lack of
traceability methods has affected the practical application of the
organizational model technique in integrated software production
process environments. Thus, we argue that the determination of a
methodological approach to use the elements of an organizational
model to obtain the expected functionalities of the information
system is a basic requirement to assure its usefulness in practice.

In this Chapter, we present a method to generate information system
requirements from an organizational model represented in the Tropos
Framework. The requirements specification (use cases and scenarios)
generated corresponds with a specific requirements approach
RETO?, which is the requirements method and tool associated to the
0O0-Method CASE Tool. By doing this, we take a further step in the
process of integrating organizational modeling into industrial
software production process.

! Requirements Engineering TOol

224

CHAPTER 7 LINKING LATE REQ. WITH THE ONME REQ. MODEL

7.2 Foundations of the requirements model
the ONME requirements model

This thesis has been developed within the context of the OO-Method
project, which is an object-oriented method that provides a set of
well-defined and complementary graphical techniques to build a
conceptual schema and requirements model of the system-to-be. OO-
Method has an industry-oriented implementation called OlivaNova
Model Execution (ONME) [Oliv07], which is a CASE Tool that
provides an operational environment that supports all the
methodological aspects of the OO-Method which has been
developed in the context of an R&D project carried out jointly by the
Valencia University of Technology, CARE Technologies SA and
Consoft SA in Spain.

Nowadays, the ONME starts the software production process with
the definition of the late requirements for the system-to-be. One of
the aims of this thesis is to add an early requirements phase to the
ONME production process. To do this, the proposed method must
connect its resultant models with RETO, the software requirements
engineering tool of the ONME.

RETO defines a requirements model, which captures both functional
and usage aspects in a comprehensive manner. This is organized
through the use of three complementary techniques: the mission
statement, the function refinement tree and the use case diagrams.
The techniques that are used in RETO Requirements method include:
The Mission statement: it describes the purpose of the system in one
or two sentences. It also describes the major responsibilities as well
as a list of things the system is not to do. External interactions can
always be partitioned into functions. It is very useful to organize
these functions in a refinement hierarchy so that the root of the
hierarchy is the overall system function (the mission statement), and
the leaves are the elementary functions. The intermediate nodes are
groups of elementary functions and usually represent a kind of
activity or an area of business where the system is under
development.

225

CHAPTER 7 LINKING LATE REQ. WITH THE ONME REQ. MODEL

The Function refinement tree: it deals with external interaction
partitioning according to the different business areas or business
objectives. The function refinement tree can be used to represent a
hierarchical decomposition of the business functions of a system
which is independent from the current system structure. The resultant
tree is merely an organization of external functions and does not say
anything about the internal decomposition of the system. However, it
gives the entry point for building the use case model instead of
starting from scratch and avoids the potential problem of mixing the
abstraction level of use cases.

The Use case model: it includes the use case specification to specify
the composition of external interactions and the use case diagram to
show communication between the environment (actors) and the
system.

The use of the mission statement and the function refinement tree
together with the use case model is the key to finding a good
abstraction level for use cases that answer the question of what a use
case really is.

RETO gives methodological guidance to convert these requirements
into a precise conceptual schema (provided by the OO-Method
conceptual modeling constructs); RETO then links this conceptual
schema with the model-based code generation techniques of the OO-
Method in order to automatically generate the software system.

7.2.1 Requirements models

The purpose of the Requirements Model is to understand what is to
be built and to provide techniques to accurately capture the desired
properties for it. Furthermore, the purpose is to build a model of
these requirements in a manner that people without formal training in
the notation can understand and review.

One of the more influential techniques in software requirements are
scenarios. The scenario-based techniques have been used in software
engineering to understand, model and validate user requirements in a
non-formal manner. Some of the most relevant scenario-based
techniques are [Haum98] [Roll98] [Leit97] [Jaco95b]. These
research works use scenarios to elicit and validate requirements.

226

7.2 FOUNDATIONS OF REQ. MODEL ONME REQ. MODEL

Among the scenario-based techniques, use cases have been receiving
special attention in the software engineering community. The use
case modeling introduced in UML (Unified Language Modeling) by
Jacobson et al [Jaco92] is currently considered to be one of the most
relevant tools for capturing system requirements. Use cases capture
the system as it is viewed from the outside and depict the interaction
between the system and external actors. A use case describes the
sequence of steps that is performed by a user who interacts with a
system to accomplish a task or goal. However, the description of use
case only concerns what system functionalities exist, not the details
of the implementation of these functionalities. Use cases have
become one of the most popular techniques in object-oriented
methods. Even though they are described in an informal technique;
the use cases are widely used and have obtained a central place in
system development [Fowl98]. Use cases are valuable for several
reasons. First, they help discover requirements. Use cases allow you
to capture a user’s need by focusing on a task that the user needs to
do. Use cases can also help formulate system tests to ascertain that
the use case is indeed built into the system.

Since use case diagrams provide a clear way to represent the
structure of the requirements in a software system, they easily serve
as a means of communication between software developers and
users.

A use case diagram consists of a set of use cases, actors and their
relationships with each other. A use case represents a functionality of
the system-to-be, i.e, what the system does. An actor is an outside
user of the system, and the actor can interact with use cases defined
in the system. The relationships in a use case diagram can be divided
into four categories: association, include, extend and generalization.
However, when describing software requirements, in most cases, the
four categories are not enough to represent the complete
functionality of the system-to-be. Therefore, some descriptions for
each use case such as main flow of events, precondition, post
condition and exceptional flow events should be provided as
supplements to a use case diagram. All of this graphical and textual

227

CHAPTER 7 LINKING LATE REQ. WITH THE ONME REQ. MODEL

information yields a complete requirements model for a software
system.

7.3 The generation process of the
requirements model

This section describes our method for generating a requirements
model from organizational models presented in the Tropos
Framework.

The generation of a requirements model, which is represented using
UML use case models, is the result of a deep analysis of the
organizational context. Therefore, the analysis presented in previous
chapters (analysis of organizational goals, extension of the
organizational model with the software system actor and extension of
the organizational model with the concerned objects) are the basis to
provide the appropriate information to generate the requirements
model.

Santander and Castro [Sant01] have studied the generation of the use
case models from organizational models. Their approach focuses on
the translation process of the organizational models into a use case
model specification. To do this, the elements of the organizational
model are directly associated to the elements of the textual scenarios
of a use case model. However, the main issue of this work is the lack
of an intermediate step that allows the analyst to filter the relevant
information to be considered in the definition of the system-to-be.
Also, there are no guidelines in this work to help the analysts the
model generation. Therefore, it is complicated to generate a
organizational model that is correctly adapted to generate
requirements specifications. In our research work, we put more
emphasis on organizational model creation by providing guidelines
that allow us to generate organizational models adapted for use case
generation.

Following, a brief overview of the method for obtaining
requirements is presented. The Car Rental case study is used to
illustrate the proposed method.

228

7.3 THE GENERATION PROCESS OF THE REQUIREMENTS MODEL

Overview of the proposed method
One of the main objectives of this thesis is to define a systematic
approach to generate late requirements specifications that correctly
fit the objectives of the organizational actors.
The process begins with the understanding of the business context.
To do this, a goal analysis method must be performed to determine
the business objectives and the alternative solutions given to fulfill
these goals (Chapter 3). As a result of this process, the plans to be
automated are identified (Chapter 3); afterwards the software system
actor (SSA\) is inserted into the organizational model and the relevant
organizational elements to be automated through the system-to-be
are delegated to this new actor. This process permits the abstraction
level of the organizational model to be reduced so that it is closer to
software specifications (Chapter 4). The next process consists of
inserting the monitoring plans and extending organizational model
with the relevant objects, which we called concerned objects
(Chapter 5). The resultant model of these modeling stages is used as
input for the generation process of the requirements model explained
in this Chapter (Figure 7.1).
The proposed generation approach is composed of two steps that
guide the process of mapping between the organizational models and
the use case model specified in UML. This is done by defining the
correspondence between the elements of the organizational model
and the use case model and its corresponding scenarios. The first
step is the generation of functional groups. In this step, the
functionality of the software to-be is organized in packages. In the
second step, the process to discover the use case model is carried out
by doing the following:

e Discovering default use cases

e Discovering use cases through the analysis of the SSA
o Discovering use case actors

o Discovering relationships between use cases

e Building scenarios for use cases

229

CHAPTER 7 LINKING LATE REQ. WITH THE ONME REQ. MODEL

The generated model will contain a package diagram with all the
identified functional groups and the use case diagrams and their
scenarios.

The generation process
of the requirements model

1. Generating Functional groups

The extended organi- 2. Discovering Use Case Model
zational models and The requirements
< = N S
Table of appropriate g@ {T',- Model
concerned object {
j < P

2.1 Di: i 2.2 D i 2.3 Di:
Use Case by use case inthe yse cases actors
default SSA

2.4 Discovering 2.5 Building
relationship between scenarios
use cases

Legend

/ Input Process J Deliverables

Figure 7.1 Overview of the Requirements Engineering Generation Method

The use case model obtained from the application of the proposed
approach will be the source model for the RETO requirements tool.
It is important to point out that not all the information of the use case
model can be generated from the organizational model in an
automatic manner. This is because some of the sections of a use case
specification (i.e., the building scenarios detailed in section 7.3.3) are
the result of abstraction mechanisms of the software specification.

7.3.1 Generating functional groups

The first step of the generation process of the requirements model is
the generation of functional groups. A functional group describes the
different subsystems that an information system can be divided into.
Each functional group makes reference to an element that is
manipulated (through user’s interactions) by the software system. In
UML, this modeling technique is called package diagram and can be
used to group objects that provide related services. The package has
responsibilities that are strongly related. The package has low
coupling and low cohesion with respect to interfacing with other
packages in the system [LarmO1].

230

7.3 THE GENERATION PROCESS OF THE REQUIREMENTS MODEL

In this proposal, the functional groups are used to classify the
functionalities of the software system to-be. Each functional group
includes the whole information about the resource being
manipulated, generated or obtained by the system in an automatic
way.

The graphical presentation of the functional group is a tabbed folder,
where the name of the functional group must be written on the tab or
inside the folder. Figure 7.2 depicts this primitive.

Name of

Functional group

Figure 7.2 Graphical representation of functional group

Defining functional groups

In our approach, the model source to obtain the functional groups is
the actor diagram that has been extended with the concerned objects.
In this model, the dependencies that associate a organizational actor
and the SSA will generate the functional groups. To do this, Rule 1
and Rule 2 need to be applied.

Rule 1. Each concerned object identified in a resource or plan
dependency between an organizational actor and SSA must be
mapped in a functional group.

The reason for doing this is that a dependency between an actor
and the SSA implies an interaction between the actor and the
software system to manage a specific organizational resource.
Thus, this resource needs to be created and manipulated by the
system, which implies the creation of use cases (contained in the
functional group) to manipulate this informational resource.
Nevertheless, before creating a functional group the duplicity of
the functional group in the requirements model must be verified.
This is because the functional group could be created in another
dependency relationship with the same concerned object. Figure
7.3 illustrates an example of the creation of a functional group in
the extended actor diagram.

231

CHAPTER 7 LINKING LATE REQ. WITH THE ONME REQ. MODEL

Concerned Functional
object group
Resource

Figure 7.3 Creation of the functional groups in the extended actor diagram

With regard to the Car Rental case study, Figure 7.4 shows the
concerned object Customer identified in the resource dependency
Customer info between the clerk actor and the SSA. This concerned
object is mapped in a functional group.
Rule 2. The name of the functional group is composed of the
name of the concerned object and the word “Management”. If
the concerned object is manipulated in several situations, then
the name must be written in plural. Following with the
example of Figure 7.4, the functional group has the same name
as the concerned object.

Customer
Info
Customer Functional
Management § group

Figure 7.4 Customer Management functional group

7.3.2 Discovering the use case model

The second step in constructing the late requirements model for the
system-to-be is the generation of the use cases that are associated to
the functional groups. In following sections, each sub-step is
explained in detail to show how the use case model from the
organizational model is determined. Also, one or more scenarios
must be provided for each use case to expresses how the system
should interact with the end user or another system to achieve a
specific organizational goal.

232

7.3 THE GENERATION PROCESS OF THE REQUIREMENTS MODEL

7.3.2.1 Discovering use cases by default for each functional
group

During the development of case studies for this thesis, we found that
a set of basic use cases must be defined in each functional group to
manage the analyzed informational resource (create, delete and
modify elements). These default use cases must be inserted in each
functional group to ensure the correct management of the analyzed
requirements. Rule 3 defines the creation of these default use cases.

Rule 3. Default use cases Create, Delete and Modify must be
created for each functional group elicited in the previous steps
(Figure 7.5). These use cases allow us to ensure the
appropriate management of each functional group.

Functional

group

Figure 7.5 Use cases created by default

Figure 7.6 illustrates the functional group Customers Management
for the running example. The use cases created by default are: Create
Customers, Delete Customers and Modify Customers.

Create Customers

Customer
Delete Customers
Modify Customers

Figure 7.6 Example of use cases created by default for the Customer Management
functional group.

7.3.2.2 Discovering use cases in the SSA

Once the default use cases have been created for the elicited
functional groups, the next step consists of determining the use cases
from the organizational model that was extended with the inclusion

233

CHAPTER 7 LINKING LATE REQ. WITH THE ONME REQ. MODEL

of the software system actor. Therefore, an analysis of the internal
element of the SSA must be carried out to determine its relevance in
defining use cases for the system-to-be. As mentioned above, the
internal elements that compose the software system actor (SSA) are
goals and plans, which are associated through means-end and
decomposition links to compose a tree structure that reflects the
functions that must integrate the system-to-be. Therefore, the SSA
integrates one or more tree structures that correspond to goals that
have been delegated from the organizational actors.

The strategy to discover candidate use cases from the internal actors
in the SSA consists in traversing the tree structures looking for
evidence that an internal element can address a use case. This
process is organized in three complementary steps.

Step 1. An in-order traversing must be carried out to analyze each
internal element of the SSA. This procedure is similar to the one
illustrated in the second step of the method to apply the proposed
pattern language (Chapter 4, section 4.4.3) to delegate plans and
goals towards the SSA.

Step 2. For each internal element analyzed in the exhaustive tree
traversing, it is necessary to determine if it can be considered as a
candidate use case. If an internal plan or goal is involved in a
dependency relationship, then this element is a candidate for a uses
case. A dependency relationship implies an explicit interaction
between the SSA and organizational actors that uses the system to
perform a specific functionality. This approach fits the standard
concept of use cases, which considers that use cases are interactions
between a user and the system-to-be in order to achieve a goal
[Cock01].

In this proposal, if an internal plan or goal is not involved in a
dependency relationship, then this element is a candidate to be part
of a use case (i.e., as a step in the scenario that describes a use case,
or it can be a candidate to create a specific use case that is included
for a general use case). The rules associated with this step are the
following:

234

7.3 THE GENERATION PROCESS OF THE REQUIREMENTS MODEL

Rule 4. Each plan within the SSA that is directly involved in a
dependency relationship will be a candidate to be a use case in
the requirements model. For example, Figure 7.7 shows the
plan Obtain Customer info, which is involved in a dependency
relationship between the SSA and the Clerk actor. Therefore,
it can be considered as a candidate to be a use case.

Analyze
customer

," . Analyze the
+ Composite plan Customer infg
Customer | Obtain B
Info ustomer infg
Obtain customer info 37X

Obtain personal info

Candidate use case
Figure 7.7 Example of a use case generated from an internal plan.

Rule 5. Each plan within the SSA that is not involved in a
dependency relationship could be a candidate to be a part of
another use case in the requirements model. If the analyzed plan
has a composite plan1 as a parent node, which, in turn, is
involved in a dependency relationship, then the analyzed plan
will be a use case that is linked to the generated use case for its
node parent. These use cases will be linked through an «include»
relationship.

Figure 7.7 shows an example of Rule 5. In this example, the plan
Obtain personal info is the child node of the composite plan
Obtain Customer info, which is involved in the resource
dependency Customer info. This configuration creates a use case

1 A composite plan is a plan whose execution is carried out by decomposing it into
other sub-plans.

235

CHAPTER 7 LINKING LATE REQ. WITH THE ONME REQ. MODEL

manage the Customer (obtained from the composite plan Obtain
Customer info using Rule 4). A use case is also created from the
plan Obtain personal info using Rule 5.

Rule 6. Each monitoring plan inserted in the SSA will be a
candidate to be a use case in the requirements model. For
example Figure 7.8 shows the monitoring plan Analyze
availability of cars, which does not have a dependency
relationship between the SSA and another organizational
actor; however, it can be considered as a candidate to be a use
case.

Plan

D Monitory |

Analyze
car availability
of cars

Analyze availability
of car

Z__Precondition .-~~~

Precondition: Analyze while
Garage, Reservation date < = actual date
&& availability of car == TRUE

Figure 7.8 Example of a use case generated by a monitoring plan

Step 3. This step consists of determining the functional group for
each use case identified in the previous steps. The rule associated to
this step is the following:

Rule 7. If the plan or goal (which has generated a use case) is
linked to a dependency relationship, then it is necessary to
determine if this use case must be contained in the functional
group created from the dependency relationship. Before
allocating the use case in the functional group, it is necessary
to analyze if the candidate use case corresponds with the
semantics of some use case created by default in the functional
group (Create, Destroy or Modify). If so, the candidate use

236

7.3 THE GENERATION PROCESS OF THE REQUIREMENTS MODEL

case must substitute the use case created by default. Figure 7.9

! Obtain

<
ustomer infg
Obtain Customer info R Search the
1 customer infg,
Customer X .
‘\ Obtain personal
A info

Management

Customer
Info

Figure 7.9 Example for determining a functional group for a use case

/

The use case generated from plan Obtain Customer info was
included in the functional group Customers Management. This use
case is used to carry out the register of the Customers; therefore, the
use case Obtain Customer info must substitute the Create Customers
use case which was created previously by default, when the
functional group was identified. This process requires the
intervention of the analyst to determine if some of the generated use
cases must substitute the default use cases (creation, deleted or
modification use cases)

7.3.2.3 Discovering use case actors

The third step to obtain the use case model of the system-to-be
consists of discovering the use case actors. A use case defines a goal-
oriented set of interactions between external actors and the system
under consideration. Actors are parties outside the system that
interact with the system [UML99]. An actor may be a class of users,
roles that users can play, or other systems. Cockburn distinguishes
between primary and secondary actors. A primary actor is one
having a goal requiring the assistance of the system. A secondary
actor is one from which the system needs assistance in order to
satisfy its goal [Cock97].

237

CHAPTER 7 LINKING LATE REQ. WITH THE ONME REQ. MODEL

In UML [UMLO7], an actor (of use cases) specifies a role played by
a user or any other system that interacts with the subject. (The term
“role” is used informally here and does not necessarily imply the
technical definition of that term found elsewhere in this
specification.). The notation of an actor is represented by “stick
man” icon with the name of the actor in the vicinity (usually above

or below) the icon.

Customer
Figure 7.10 Notation of an actor in UML

In this proposal, the identification of actors is carried out by
analyzing organizational actors and the roles or agents in the
business, which have some kind of interaction with the SSA. Rule 8
defines the actor generation process.

Rule 8. The organizational actors with a dependency
relationship with the SSA will be candidates to be actors of the
requirements model. As commented above, a dependency
relationship of a organizational actor with the SSA implies an
explicit interaction that addresses a use case.

Rule 9. Plans without a direct association to dependency
relationships do not give rise to actors. This is because these
elements generate included use cases (which do not have a
primary actor) or generate parts of the fragment of a use case,
which already contains a primary use case actor.

Figure 7.11 shows an example of the application of Rule 8 to
discover an actor of a use case. The plan Obtain Customer info
has generated a use case with the same name as the plan. The
dependency relationship associated to the plan is analyzed to
determine the actor that participates in the dependency
(Clerk). As a result of applying Rule 8, this organizational
actor is translated into the actor that activates the use case
Obtain Customer info.

238

7.3 THE GENERATION PROCESS OF THE REQUIREMENTS MODEL

Customer
Management

E— Obtain Customer info

Clerk o7 \‘\\
L Analyze \>,
e customer N
/
/
/ Analyze the
Customer infg,
Customer
Info
Search the
customer infg
Obtain personal
A\ info

Figure 7.11 Example for discovering an actor of a use case

7.3.2.4 Discovering relationships between use cases

The fourth step of the process to generate the use case model consists
in discovering the relationships between use cases. The UML
standard supports three major relationships among use cases:
include, extend and generalization; they can be summarized as
follows [UMLO7]:

e Include:

An include relationship between use cases specifies that
an including (base) use case requires the behavior from
another use case (the included use case). In an include
relationship, a use case must use the included use case.

The notation for the include relationships are denoted as
dashed lines or paths with an open arrow-head pointing at
the inclusion use case and are labeled with the «include»
keyword (stereotype). The inclusion of a use case
involves the execution of the base use case up to the
inclusion point, inserting and executing the inclusion use
case, and then continuing with the execution of the base
use case. Figure 7.12 shows an example where use case A
includes use case B.

239

CHAPTER 7 LINKING LATE REQ. WITH THE ONME REQ. MODEL

including use case included use case
Figure 7.12 Example of the include relationship

In our method, the identification of «include»
relationships between use cases can be carried out by
analyzing the set of use cases generated through
composition plan relationships. Rule 9 defines the
generation of «include» relationships.

Rule 10. An «include» relationship must be created
between use cases when the composite plan in a
composition plan relationship has generated a use case
and its associated subplans have also generated use cases
(applying Rule 5). Therefore, an «include» relationship
between these use cases must be created, where the use
cases generated from subplans are included in the use
case generated from the composite plan.

Figure 7.13 illustrates a partial view of the Car Rental
case study. In this example, the application of Rule 4 to
the composite plan Obtain Customer info generates a use
case. A use case was also generated for the child node
Obtain personal info through the application of Rule 5.
Therefore, an «include» relationship between these use
cases is created.

Customer
Info

Figure 7.13 Example of the «include» relationship in the Car Rental case study

240

7.3 THE GENERATION PROCESS OF THE REQUIREMENTS MODEL

e Extend:

It is a relationship from an extending use case to an
extended use case that specifies how and when the
behavior defined in the extending use case can be inserted
into the behavior defined in the extended use case
[UMLO7]. The extension takes place at one or more
specific extension points defined in the extended use case.
Note, however, that the extended use case is defined
independently of the extending use case and is
meaningful independently of the extending use case. On
the other hand, the extending use case typically defines
behavior that may not necessarily be meaningful by itself.
Instead, the extending use case defines a set of modular
behavior increments that augment an execution of the
extended use case under specific conditions.

The notation for the extend relationship is shown by a
dashed arrow with an open arrowhead from the use case
providing the extension to the base use case. The arrow is
labeled with the keyword «extend». The conditions of the
relationship as well as the references to the extension
points are optionally shown in a note attached to the
corresponding extend relationship (See Figure 7.14).

Condition:

Extension point:
— N «extendy

Extension points)<< = -€= == -~~~ O

Figure 7.14 example of the extend relationship

Rule 11. An «extend» relationship must be placed
between two use cases when a plan has been associated
with a monitoring plan. Thus, this plan generates a use
case and the monitoring plan also generates a use case.

241

CHAPTER 7 LINKING LATE REQ. WITH THE ONME REQ. MODEL

Analyze availability
of cars

In Figure 7.15, the plan Obtain car for preparing to be
rented generates a use case (applying the Rule 4) and the
monitoring plan Analyze availability of cars generates
also a use case (applying the Rule 6). Therefore, an
«extend» relation between these use cases must be
created, where the precondition of this relationship will
be the same than the precondition of the monitoring plan.

Obtain car fol
preparing

ll
«extend».»
-

’
’
'
'
r
\

Precondition: Analyze while|
Reservation date < = actual date|
&& avalibility of car == TRUE]

Car

Figure 7.15 Example of the «extend» relationship in the Car Rental case study

Generalization:

A generalization is a taxonomic relationship between a
general classifier and a specific classifier. Each instance
of the specific classifier is also an indirect instance of the
general classifier. Thus, the specific classifier inherits the
features of the general classifier.

A Generalization is shown as a line with a hollow triangle
as an arrowhead between the symbols representing the
involved classifiers.

The arrowhead points to the symbol representing the
general classifier. This notation is referred to as the
“separate target style.” In this proposal, the
identification of generalization relationships can be

242

7.3 THE GENERATION PROCESS OF THE REQUIREMENTS MODEL

performed by analyzing the roles played between the
organizational actors. Rule 12 details how to discover
relationship of this kind in the requirements model.

Rule 12. The Tropos framework includes a modeling
primitive to represent the roles that are played by the
organizational actors. In our proposal, these roles are used
to generate the generalization relationships.

To illustrate this situation, in Figure 7.16 we show an
example of a generalization relationship among actors in
the requirements model.

Employee
Company

s
-

Manager Clerk

Figure 7.16 Example of generalization relationships

7.3.8 Building scenarios

The use case diagram visualizes the system’s interactions and
captures the scope of the system-to-be. The simplicity of these
diagrams makes them a great communication tool. The use case itself
details what the system must do, while the scenarios detail how the
expected functionality must be performed by the system.

The last step of the method to discover the use case model consists in
defining the scenarios of the use cases in accordance with RETO, the
requirements engineering tool of the OO-Method approach [Insf03].
RETO uses the type of scenarios [Jac092] [Hsia94] where entity
types, not individual entities are used. Thus, they do not refer to
Smith but to customers. Each execution of a type scenario is an
instance scenario (or Use-Case instance).

243

CHAPTER 7 LINKING LATE REQ. WITH THE ONME REQ. MODEL

RETO implements mechanisms to generate an object-oriented
conceptual schema from the requirements model specification. The
0OO-Method, in turn, generates the fully functional software system
from the conceptual model. In this thesis, our objective is to generate
the RETO requirements model (use cases and scenarios) in order to
provide a software development process that starts with
organizational modeling activities and finishes with a fully
functional software product.

The structure of the RETO use case description is composed of three

sections: the first section is a summary of what the use case is about;

the second section describes the basic course of action, which is the
most important course of events, giving the best understanding of the

use case. Variants of the basic course of events are represented in a

third section, called the alternative section. A specified condition

permits deciding which alternative to execute, and the flow of
control is then transferred to this alternative.

An overview of the RETO structure for the use case scenarios is

presented below.

1. Use case summary section. This section contains information
about the scenario. The information represented in the section is
the following:

a) Name. This is the use case name.

b) Actors. These are external agents that communicate with the
use case, indicating who initiates the use case and the type of
communication involved: input, output or input/output.

c¢) Pre-Condition. This is a condition that should be satisfied in
order to execute the use case

d) Purpose. This is an explanation in natural language of what
the use case is for.

e) Includes to. This is a list of all individual use cases that are
included in the use case model.

f) Extend to. This is a list of all the use cases from which the
current use case is an extension. For each use case, the
corresponding condition and extension point in the referred use
case is indicated.

244

7.3 THE GENERATION PROCESS OF THE REQUIREMENTS MODEL

2. Basic course section. This section contains the steps that occur
during the use case. This specification should include all the
steps of the use case from the triggering event to the accom-
plishment of the goal. They are numbered paragraphs (steps)
and are usually written in a conversational style between actors
and the system [LarmO01].

3. Alternative section. This section contains steps that complement
the specification of the basic course of the scenario. The steps
included in this section are not a course of steps on their own;
they are only used in those cases where a given condition holds
and some steps must be accomplished in order to complete the
scenario. After the execution of this step, the original scenario
continues its course of steps (e.g. in a car rental system, when a
Customer returns a car, if the return hour is before the return
hour of the contract, a discount is created for his or her personal
account).

An overview of this structure is illustrated in Table 7.1.

Table 7.1 Use case description structure

Name:
Actors
Purpose:
Pre-condition:
Includes to:
Extends to: UC Name Extensions Condition
point
Basic Course Sections
General Actor/system communications System response
Alternative Section

Name: Condition:

General Actor/system communications System response

245

CHAPTER 7 LINKING LATE REQ. WITH THE ONME REQ. MODEL

In this proposal, the process to build scenarios begins by selecting
one of the elicited use cases. Then, the plan which was the source for
that use case must be analyzed in order to obtain the use case
scenario. In this case, the resource relationships associated to the
plan that gives rise a use case are also a correct source for the
generation of use case scenarios. The following rule helps in the
construction of scenarios.

Rule 13. The resource relationships permit the functional
groups to be determined; they also help to deduce the steps of
the scenario.

For example, Figure 7.17 shows the resource dependency
Customer info, where the SSA depends of the Clerk actor for
obtaining the Customer information (i.e., Name, Passport-
Number, Address, City, Home-home, License, Birthday). In
this way, some steps for the Create Customer use case can be
deduced.

For example, (1) the system requests the Customer
information, (2) the clerk introduces the Customer
information, etc.

/

/

i

G < '
<

Search the
customer info
Obtain personal

« h
A\ info S/

Figure 7.17 Resource relationship for obtaining some steps for the create Customer
scenario

246

7.3 THE GENERATION PROCESS OF THE REQUIREMENTS MODEL

7.3.3.1 Guidelines to obtain use case scenarios from
organizational models

The following guidelines were developed to help the analyst in the
process of obtaining use case scenarios from organizational models.
Use case name: The use case name in the template of the scenarios
will be the same as the use case elicited using Rule 3, Rule 4, Rule 5,
and Rule 7, where the use cases were determined.

Use case actors: The actor (s) of the use cases will be those actors
that interact with the SSA through dependency relationships which
were source of use cases (Rule 8 and Rule 9).

Use case pre-Conditions: The preconditions for the use case will be
the same as the precondition of the plan which generates the use
case. As mentioned above, the formal definition, of the Tropos
modeling elements include some aspects that were not represented in
the graphical representation of the modeling diagrams. Two of these
elements that are represented in the formal definition are the pre- and
post-conditions of the organizational plans.

Use case purpose: The explanation about the purpose of the use case
must be written by software engineers based on the goals that make
operational the plans used to generate the use case model. These
goals represent the rationalities behind the plans of the SSA.

Use case relationships: The relationships include and extend must be
specified according to the relationships generated among internal
plans in the SSA (Rule, Rule and Rule 12).

Use case basic course of action: This information will be obtained
by analyzing the elements related to the plan that were the source of
the generated use case. It is important to point out that
decomposition and means-end relationships permit the analyst to
detail the set of steps needed to fulfill a goal (means-end links) as
well as the sub-steps required to perform an organizational plan
(decomposition links). In the case of decomposition, the fulfillment
of the child nodes implies the fulfillment of the parent node.
Therefore, these internal refinement structures will be the basis to
define the actions associated with a use case.

At this point, it is important to identify those resources or plans
where the actors that are associated to the SSA play the role of

247

CHAPTER 7 LINKING LATE REQ. WITH THE ONME REQ. MODEL

dependee in the dependency relationship (i.e., the system waits for
actions or resources of the organizational actor) because the actions
associated to this dependency must be used to indicate the user
intervention (column actor communications in the scenario
template). On the other hand, those resources or plans where the
actors that are associated to the SSA play the role of depender in the
dependency relationship (i.e., the organizational actors wait for
actions or resources of the system) must be analyzed to specify the
system responsibilities (column system response in the scenario
template). Rule must be used to specify this situation.

Alternative section: This section requires an in-depth analysis of the
use case to determine whether the condition holds and to establish
some steps to accomplish the entire scenario. Thus, this information
must be completed by requirements engineers.

Example of the use case model of the Car Rental case study

An example of the use case model generated by applying our
proposed rules to the running examples is shown in Figure 7.18,
where the use cases of the Customer Management, Reservations
Management, and Cars Management functional groups are shown.
The use case description structure is shown in Table 7.2.

248

7.3 THE GENERATION PROCESS OF THE REQUIREMENTS MODEL

ojul
euosIa Urelgo

Uoienlasay Aipop

UoleAIaSaY 919[8Q

0JUl UORAIRSBY UEIG0

Jauoisn) ypoyy

Jawoisn) avjeq

ASREET
===~~{(" 0jurBwosn) ure;
«apnjoup WL JBLOISND U0

uawaBeuey
Jauioisng

dafoidu3
fuedwog

uaLaBeueyy

SIed o
Aigerrene azfjeuy

e
-7 QUK

Burredaud Joj
182 Burelqo

1) a11Q

ojul e Ureiqo

uawaBeuey
sie)

Figure 7.18 Use Cases of the Car Rental case study

249

CHAPTER 7 LINKING LATE REQ. WITH THE ONME REQ. MODEL

Table 7.2 Example of the use case description structure

Name: Create Customers

Actors Clerk

Purpose: The use case permits the information of a Customer to be
register

Pre-condition:

Includes to: Obtain personal info

Extends to: UC Name Extension Condition

point

Basic Course Section

General Actor/system communications System response

(1)The
Customer
wants to make
a reservation

2) the Clerk selects the option of
register a Customer

(3) the system requests
Customer information

(4) the Clerk introduces Customer
information

(5) the system registers the
Customer

7.4 Summary

One of the contributions of this thesis is a methodological approach
to generate software requirements from organizational models.

A set of guidelines has been developed to establish the
correspondence between the modeling elements of an organizational
model and the modeling elements of a requirements model for the
system-to-be. The guidelines help the analyst to define the system
functionalities from the organizational plans. To do this, several
steps must be fulfilled to generate an organizational model that
integrates the software system as an explicit actor in the model.

250

7.4 SUMMARY

These steps have been defined in previous chapters where a process
to reduce the abstraction level of a “pure” organizational model that
uses goal-based elicitation processes and pattern language methods
has been proposed. As a result of these previous analyses, an
organizational model that includes the SSA is created. The
organizational model that is extended with the SSA is the basis to
generate the requirements for the system-to-be.

The use of an intermediate model (organizational model with the
SSA) is one of the differences of the proposed method with current
research works in the area, where the software requirements are
directly generated form business functionalities.

It is important to point out that the generation of the requirements
model is a simple process based on model transformation rules. This
transformation is possible because the level of the intermediate
model is closer to the requirements model. In this sense, the
intermediate model represents the expected functionalities of the
system-to-be. This is also the kind of information that is represented
in a UML requirements model. Thus, we consider that both models
represent the same information but represented in a completely
different manner, one using UML and the other using the Tropos
Framework.

251

Chapter 8

Case Studies

This Chapter details the case studies carried out in this research work
in order to validate the proposed methodology to obtain requirements
and conceptual models from organizational models.

8.1 Introduction

The rules, methods and patterns proposed in this thesis have been
validated with three real case studies:
e Golf Tournaments Management

e Car Rental
e Technical Meeting Management

CHAPTER 8 CASE STUDIES

First two case studies were developed in the academic domain,
whereas the last case study was developed in the context of industrial
projects developed in the CARE Technologies enterprise. The
application of the case studies was the source of most of the ideas
presented in this thesis. The case studies were used to evaluate and to
improve the proposed methods. This is why, in this Chapter we show
the evolution of the proposed approach to generate requirements and
conceptual models, pointing the lessons learned in terms of the
advantages and issues of the analyzed methods.

The case studies developments are discussed in following sections.
Syntheses of each project are followed by discussions of the
methodology and the lessons learned through the application of the
method.

8.2 Description of the case studies
8.2.1 Technical Meeting Management

The Technical Meeting Management was developed in the Valencia
University of Technology in the Department of Information Systems
and Computation, which organized the Workshop Requirements
Engineering (WER"02) in year 2002. The aim of this case study was
to model the organizational processes associated to the organization
of a technical meeting and also the process to review papers to be
presented in the meeting.

8.2.1.1 Description of the case study

The purpose of this case study was the analysis of the organizational
context in order to obtain the requirements specification of a
software system which handles the process of submission,
assignament, evaluation and selection of papers for a conference.

In this case study, the organizational behavior needed to manage the
technical meeting was also modeled. In this case, following events
were considered: participants lodging management, participant’s
transportation management, participant’s meal management,
management of the proceedings generation, etc.

254

8.2 DESCRIPTION OF THE CASE STUDIES

8.2.1.2 Methodology and case study artifacts

The Technical Meeting Management case study was conducted over
a 5-month period. The average size of the models generated by
students of a doctorate course is the following: 12 actors, 55
dependencies, 70 actors” internal activities.

The first step carried out in this case study was the definition of the
current situation of the enterprise using the i* Framework. Figure 8.1
shows a fragment of the strategic rationale model* for this case study.
This fragment defines the review process for the technical meeting.
Some events in this case study are the following: the Chair of the
Program Committee (PcChair) determines the topics of interest and
selects the members of program committee (PcMember). The
members can delegate the responsibility of reviewing to additional
reviewers (Reviewers). Finally, the PcMembers and Reviewers send
the evaluations to the PcChair indicating acceptance or rejection.
The next step of the process consists of determining the type of
interaction of each organizational actor model with the SSA, which
is called Conference Review system. An important concept used in
this process is “module”. A module represented the set of tasks
performed by the actor to satisfy its goals with another actor. The
modules were represented by internal task-refinement trees in the
actors of the strategic rationale model. An actor could have more
than one module; this indicated that the actor should fulfill more than
one goal in the organizational model. In the case study, the PcChair
had the modules: assign paper to adequate PcMembers, obtain the
highest number of quality papers, obtain quality reviews and send
notifications and reviews to the Authors (Figure 8.1).

1 At the beginning of our research work , we started working with the i* framework

255

CHAPTER 8 CASE STUDIES

N |

e ™ O
ws

-oduosapseL e 99 D

18POW sfeuoney oberens - ANIOI1

siamainay ainbope
0y aded uBisse

I8qUWBINIG >

SIUBWIWIOD
uBisse

uonenfena
ubisse

suoneayifenb
ubisse

smainal
) siamanay
o1 siaded puas,

slamaIney
109]8s

uonenfens
ubisse

SM3INBL
Aupenb og

JBMBINSY > .
SMaIAB)
Auenb ureigo
- - RN N suonedynou Jo

Buipuas ain2as

uoleaynou
urego uonesHou

siouiny auy o) smaina
puE suonEalou puss

SMaIAaI
Aurenb og

siamaInay
awenbape
0 Jaded ubisse

SwaInal Jo
Buipuss ainosg

siaded Jo uon
-euBisse 21n02s

Sieded auy)
uBIsse ApInd

1aquiaNdd arenbape!
o1 Jaded ubisse

sa1aut Jo
1] ureIgo

smainas
fagenb
ureyqo oL

151] 15849)U1
urelqo

SPIU0D
an|0sal
pue Aynuspy

mainas
01 15qWaNd
0 siaded puss

smaina
Aupenb ureiqo

siony
01 SMaInaI pue

sioqny
2 01 Smainal pue
suofjRolIIou puas

saded 1oy
20 angssew e pua

151 Jaded

siaded ureygo
aresaush

JaquiBaNod
awenbape
01 Jaded ubisse

siaded
Auenb o saquiny
153461y 3U) UreIgo

256

8.2 DESCRIPTION OF THE CASE STUDIES

At this stage, we applied the proposed guidelines (presented in
Chapter 4) to insert the system actor into the organizational model.
As a result of the process of selection of the relevant information, a
new organizational model is created (Figure 8.2) that represents: a)
the actors with dependencies with the software system actor (SSA),
b) the resources and task dependencies between the organizational
actor and the SSA, and finally, c) the goal dependencies that have
been derived in task and resource dependencies between the
organizational actors and the SSA.

257

CHAPTER 8 CASE STUDIES

S
£
E
<
=
S
kS .
S 8
b= g =
E 5
2 3
5 &
S g
B
j3
2 g
g >
g 2
¥ g s El
c
g s cg
8 s2
£3
=E og
5
5
g
g
g
g 51
® 2 2!
=] g @
=] 5 - =
= — k7]
(] EB ggg g
o =2 3
& 2 £ € £
& 5
=2 —
= k]
eu)
3
s b=}
2 c 2 - 3
E E 22
3 82
&] z 5
% 8= 8 E
& 35]
g8 e S
&8 H g
H 2
2 2
E <
cs] 2
ag%
253
23
58
@
2
2]
S
- g
g3
-5 32
S g
2 = B8
£ 5 Z2
s 2 g
g
EE g
'S
Tz 2
2
o
T
Qo
£
@
=
S
o

Figure 8.2 Insertion of the SSA into the organizational model

Once the relevant information has been selected and isolated in the
SSA, our proposed method focuses on the translation process of the
new organizational models in a use case model specification.

258

8.2 DESCRIPTION OF THE CASE STUDIES

Therefore, the proposed steps were used to establish the
correspondence between the elements of the organizational model
specified in the i* framework (with the explicit representation of the
system actor) and the use case model and the corresponding
scenarios specified in UML.

The result of the application of the transformational steps [Estr03a]
[Past02] to the Technical Meeting Management case study is shown
in Figure 8.3, which represents a fragment of the generated the use
case model.

_—> Send paper
Assing papers
appropriate Reviewer:

PcMember
Author)
Assign papers
Appropriate PcMembersg
Send quality
Send notifications reviews
To the Authors
Reviewer
PcChair

Figure 8.3 Partial view of the use case model

The representation of use case scenarios was done using a variant of
the template proposed by L. Constantine [Cons99]. The Constantine
template was used to show a sequence of events between the actors
and the system. Table 8.1 illustrates an example for the use case
Send Reviews.

259

CHAPTER 8 CASE STUDIES

Table 8.1 Specification of the use case Send Review

Use Case Name: Send Review

Include: None

Extend: None

Preconditions The PcMember has logged into the system.

Post conditions The system saves a new review information
Primary Actor PcMember

Secondary Actors None

Roles Reviewer

User intentions System responsibilities

1. The PcMember selects “Enter| 2. The system asks for Paper ID.

Review"

3. The PcMember introduces Paper ID | 4. The system verifies paper ID and the

system displays paper title.

5. The system asks for review data

6. The PcMember introduces values for
Originality, Technical Quality, Relevance
and Overall Rating.

7. The system asks for reviewer's
comments

8. The PcMember introduces Author and
Program Committee comments, and

9. The system saves the review

information.

selects “Apply”.

Asynchronous extensions

The Reviewer can select Stop at any point

Synchronous extensions

If there is no paper ID, the system displays an error message at point 4.

Another of the objectives of the proposed method is the direct
generation of a conceptual model from the organizational
specification.

In developing this case study, a preliminary version of the
transformational rules was used to generate a conceptual schema
from an organizational model that contains the SSA. This first
version of the rules takes the organizational model to directly

260

8.2 DESCRIPTION OF THE CASE STUDIES

generate the conceptual model. In the current version of the
transformation method, the conceptual model is generated from the
concerned object model obtained from the organizational model. At
the end of this section, some conclusions are outlined to indicate why
this first approach was not an appropriate means to achieve the thesis
objectives.

Translation of Actors

The actors that participate in dependency relationships with the
system actor are represented as classes in the conceptual schema.
The identification attribute of the actors of the organizational model
is used to create the identification attribute of the classes, which
represent these actors. The rest of the actors” attributes are defined as
variable attributes in the specification of the classes. This is a
consequence of the lack of information of the organizational model
to determine the stability of its attributes. For this reason, it is not
possible to carry out a distinction between constant and variable
attributes. In our case study, for example, the attributes PcMemberld
and Authorld are used to create the identification attribute of the
classes PcMember and Author.

The mechanisms of creation and destruction of instances as well as
the mechanisms of modification of variable attributes are placed by
default in the conceptual model specification.

Translation of resource dependencies

The resources of the organizational model are translated into classes
of the conceptual schema. Their attributes are used to create the
attributes of their corresponding classes in the conceptual model.

In this first version of the translation process, a constant attribute was
included in the definition of the resource to indicate the existence
dependency with other resources in the model.

The existence of a constant attribute in the description of a resource
allows us to create a relationship between the class of the specified
resource and the class of the resource which is specified as constant
attribute. To determine the relationship type, it is necessary to
determine whether the classes placed as a constant attribute is “part
of”” the class which contains it. In this case, the relationship is an

261

CHAPTER 8 CASE STUDIES

aggregation. In case where no strong relationships between classes
can be detected, an association relationship must be specified.

In our case study, for example, the Notification appears as a constant
attribute of the resource Paper. In this case, the Notification is part of
the Paper. Therefore, an aggregation between the classes
Notification and Paper is created. It must be pointed out that there is
no information that allows us to identify the type of aggregation or
association obtained from the resource dependencies. Table 8.2
shows the OASIS specification for the classes Paper and
Notification.

Table 8.2 Specification of the resource Notification and Paper in OASIS Language

Complex class Paper aggregation of Class Notification
Notification(inclusive, dynamic, identification
univalued, disjoint, strict, notnull); Notificationld: (Notificationld);
identification Paperld: (Paperld);
Paperld: (Paperld); constant_attributes
constant_attributes Notificationld: Nat; Paperld: Nat;
Paperld: Nat; end_class
end_class

Translation of links between actors in resource dependencies

In this preliminary version of the transformation rules, the actors and
resources involved in dependency relationships are used to generate
the associations among classes in the conceptual schema. In this
approach, an association must be defined between an actor and the
resource involved in a dependency relationship.

Figure 8.4 shows a partial graphical representation of the conceptual
schema obtained from the translation process for the case study.

262

8.2 DESCRIPTION OF THE CASE STUDIES

Notification Reviewer
Notificationld Reviewerld
Paperld name
sendingaddress em_a!l .
comments affiliation
Interest_list evaluation Assign_Qualifications()
Assign;Comments()
PcMembngd . Assign_Evaluation()
Preferential_topics Send F?eview()
Paper
Paperld
author Review
coauthor Reviewld
title n
Clarity
PcMember f:SitZCI relevance
st:tus final_recommendation
PcMemberld T final_review
name Submit_Paper() status
email Assign_Paper_PcMember() N
affiliation Send_Review()

Send_Interest_List()

Assign _Qualifications() Author PcChair
Assign_Comments() N
Assign_Evaluation() Authorld PcChairld
Send_Review() name name

email email

affiliation affiliation

Assign_Paper_PcMember()
Generate_PcMember_List()
Identify_and_Resolve_Conflicts()

Submit_Paper()

Send_Notification()
Sort_Papers()
Resolve_critical_cases()

Figure 8.4 Conceptual Schema of the Conference Review System case study
8.2.1.3 Lessons learned

The Technical Meeting Management case study was the first real
project developed in this research work. The application of the first
version of the proposed method to generate requirements and
conceptual schemas from an organizational model is the source of
following lessons learned:
e One of the main conclusions of this work is the relevance of
explicitly representing the SSA in the organizational model.
This enables the analyst to isolate the behavior of the system
in an individual actor. This behavior is the source of the
candidate functions to be automated by the software-to-be.
An initial set of guidelines were proposed to systematically
carry out this process (see [EstrO3b], [Estr02]).

263

CHAPTER 8 CASE STUDIES

e Other conclusion in this case study was the need to explore
new ideas for generating the requirements model. In this first
case study, which was published in [Past02] [Estr03a], a
guided process to map the organizational model and the use
case model was proposed. In this proposal, we defined a set
of steps to establish the correspondence between the elements
of the organizational model specified in the i* framework
(with the system actor integrated in explicit form) and the
UML use case model and the corresponding scenarios.
However, in this first version we have detected the need of an
intermediate modeling stage to filter better the functionalities
of the system-to-be.

e Other conclusions in this case study was the need to explore
new ideas for generating the conceptual model. We have
detected that with the application of the initial set of
translation rules (published in [Mart03] [Mart04b]), we
obtained the conceptual model of the organizational model,
and not the conceptual model of the information system-to-
be. This is because the relevant objects in this model belong
to the business domain and these do not belong to the
software system domain. In this context, if the generated
conceptual model is implemented, the developed software
system allows us to animate the behavior of the
organizational model. We argue that an intermediate
modeling stage is needed to obtain the relevant objects to
define the system-to-be from the organizational model that
contains the SSA. Therefore, the concerned objects will
belong to the information system domain.

8.2.2 Golf Tournament Management

The Golf Tournaments Management (GTM) case study is a real
project of the Care Technology Company.

8.2.2.1 Description of the case study

The objective of this case study was modeling an enterprise which is
dedicated to manage and monitor Spanish golf tournaments. In the

264

8.2 DESCRIPTION OF THE CASE STUDIES

case study, the golf tournaments are validated by the Golf
Federation, which ranks golfers in the golf championship. One of the
main concerns of the golf organization enterprise is to provide partial
results for each game. To do this, there are controllers that register
the results of the golfers for specific holes. The results of the games
must be validated by the Golf Federation to be considered as valid
games.

The enterprise is responsible in partial and final classification of the
games. The enterprise must also ensure the validity of the data of the
games. To do this, representatives of the federation monitor all the
games, and they play the role of “notary” of the results that the
organization offers.

The professional’s golfer must register in different games. However,
they could not be registered in all the games of a championship to
obtain the final prize. In each golf field, the players compete in two
games (typically in different journeys) and the best players compete
in the final journey (unique). The best golfer in all journeys is the
champion of the game.

The enterprise must register the results in each game in order to
show partial and final results. The partial and final results generate
news that need to be communicated on-line to the golfers.

8.2.2.2 Methodology and case study artifacts

This case study was developed by three development teams. The
composition of the development teams was as follows: (i) Team 1
consisted of three expert analysts in the use of advanced tools for
generating conceptual schemas from requirements models?; (ii) Team
2 included three expert analysts in the use of the CASE tool for
automatically generating information systems from conceptual
models?; (iii) Team 3 included two expert analysts in the use of i* for
organizational modeling.

This case study was conducted over a 9-month period. One of the
objectives of this case study was evaluating the strengths and
detected weaknesses of the framework used. Other of the objectives

! At the beginning of the evaluation, this team had limited knowledge of i*.
2 At the beginning of the evaluation, this team had no knowledge of i*.

265

CHAPTER 8 CASE STUDIES

was to evaluate our methodological approach to generate
requirements and conceptual models from organizational models.
The average size of the models generated by the development teams
was: 8 organizational actors, 42 actors’ dependencies, 103 actors”
internal activities.

In this case study, a second version of the transformation process
was used in order to obtain a requirements and conceptual model for
the system-to-be.

The evaluation of our proposal consists in building the organizational
model for the case study, and to determine the tasks that required to
be automated. In this context, the patterns of automation were
identified and the translation rules were applied to the running
example. Figure 8.5 shows a fragment of the organizational model
for this case study. The shaded elements in Figure 8.5 were used to
illustrate the proposed translation patterns. This model represents the
actors who perform tasks in the business: the Organization (the
company), the Golfers, and the Controllers and the Golf Federation.
There are several dependencies among the actors: the Organization
depends on Golfers to obtain the registration information for each
player. The Golfers depend on the Organization to obtain a card with
the game information. The Organization depends on the Controllers
to get the partial results of each game. The Organization also
depends on the Federation to validate the results of the games.

266

8.2 DESCRIPTION OF THE CASE STUDIES

s)nsa.
[erued wioyu|

synsa. [en
-led Jasifay

saureh ayy
10 S)nsal
SlepileA

uoieapa

STepIeA

diysuonejey
uopisodwodsp ————

“ aapuadag IQI Japuadag
. diysuonejgy Aouspuadag

92IN0S3y _H_

s)nsal \

s)nsa
[ened N

aweo \

. saweb

Y

s)nsal
fensed
ysiand

pawuojul SIa}
-106 a8y} daay|

s)nsal [euly

aweh
depieA

siiand

dweh ay) Inoqe
"0jul apinold
s)nsal

arepifeA

pIed

aweh yoes
0] S19]|0JU09

Jusweulno}

abeuep

ubissy

aweb ayy

abeuep ,
siajjoh

1a1sifay

pred

(s1a}09)

UONeLIOUI PUBS

v_@EAHV P09 D

ope -~
’ i}

feuoneziuebio jo Arepunog +
puabaq

3} INoge uonew
-10jul MOUY

s)nsal
1918169y

uoirewojul
puas

‘ Juswreuino)

ul aredpiied

Figure 8.5 Strategic Rationale Model of the Golf Tournament Management case

study

267

CHAPTER 8 CASE STUDIES

Once the strategic rationale model, which is shown in Figure 8.5, has
been defined, we need to apply the proposed pattern language to
make the model transformation systematic. Figure 8.5 shows an
example of pattern application: The task Register Golfers of the
Organization actor complies with the characteristics of the
Depender-Dependee Actor tasks Automation Pattern. This is because
this task was linked to the task dependency send information
(Golfers) which also need to be automated. Once the pattern was
applied, a task decomposition in the SSA was created (the parent
node was the Register Golfers task, and the child node was the
obtaining information). Both, a dependency relationship and an
interaction relationship were also created. The results of the
application of this pattern are shown in Figure 8.6. The dependencies
that were modified or generated in this example are labeled with the
number 1.

In other example, the task Validate results of the games of the
Organization actor complies with the characteristics of the Dependee
Actor task Automation Pattern. In this case, only the dependee actor
task was automated. We applied the steps indicated for the dependum
is a resource. The results of the application of this pattern are shown
in Figure 8.6. The dependencies that were modified or generated in
this example are labeled with the number 3. Another example is
shown by the task Publishing Partial Results of this actor complied
with the characteristics of the Depender Actor Task Automation
Pattern. In this case, only the depender actor task was automated.
We applied the steps indicated for the dependum is a resource. The
results of the application of this pattern are shown in Figure 8.6. The
dependencies that were modified or generated in this example are
labeled with the number 2.

The Final Task without dependencies Automation Pattern is also
discovered in the task Manage Golf Courses of organization actor.
When the pattern was applied, this task was transferred to the SSA
and a new dependency task between the Organization actor and the
SSA was generated. This dependency allowed us to indicate that the
Organization would provide the information about the golf courses to

268

8.2 DESCRIPTION OF THE CASE STUDIES

the SSA. For this reason the element Golf Courses was placed as a
parameter of the task dependency.

Finally, the goal Golf Tournament Management of the Organization
actor complies with the characteristics of the composite plan or
composite goal automation pattern. In this example, the tasks
Register Golfers, Publish partial results and Manage Golf Courses;
which are subtasks of the Golf Tournament Management Goal, have
already been transferred to the SSA. For this reason, this goal was
also transferred to the SSA. All this examples are shown in Figure
8.6. The paper [MartO4a] shows the rules of the pattern language
proposed, where first version of the pattern language was used for
carrying out this case study.

Another organizational model generated by using the pattern
language is shown in Figure 8.7. This model was generated by the
expert analysts in the use of advanced tools for generating
conceptual schemas from requirements models (Team 1).

Golf
Federation

Game | ___o--eo___
3 Results PPiad Manage
- Tourna-
ment

Game
Results

Partial 2
Results

Enter golf
courses Inform.
(golf course)

Validate
results of
the game

Publish
partial
results

Obtain
golfer’s
information

L= Legend

- !} Boundary of organizational actor

\
"""" Software C) Goal Q Task
(I

System Resource

Dependency Relationship

Depender —] }— Dependee
Decomposition
Relationship

p Interaction

Relationship

Figure 8.6 Organizational model generated by the application of the pattern
language

269

CHAPTER 8 CASE STUDIES

waisAs
aremyos
s194|06
10} spred
arelausah /
EVEE)
S)Nsal noge ojur 1ers

reuy aweb yoea apmnoud 291 pue
Snsa’ L
_m__:mn_ ushand CR SRR sa|npayos
Naiaed ubisse auyep
- s194/06
paw.ou coweb dnoib
siay06 e~
ayy deax g
- pauisse|o
mwﬁ:ou 2q 01 sowep sioy106
o 19181601
gTSTRITOR Cougy sunsd (s13110.3U0d\ (sajoy) (aweB) oyun (s123106) oyl
fensed) synss. 0Jul S9S1N0O _m:_b .m_:m 0Oju1 SI8]10U0, erep soweb 191us s194j0b 191U e
ened 1siue 1106 121u0 feul 15y oy Saloy Jaug

Loneziuebio)

soweb
arepien

’ ojul

JUEINEVITTS) sioyoB
synsa.
aweb

ysiand
synsas d
Jo1s169y
JuBWeuINoY
ur aredonred
synsa.1
o rensed

D

uonesapas
J09

Figure 8.7 Another organizational model generated by the application of the pattern

language

270

8.2 DESCRIPTION OF THE CASE STUDIES

Once the organizational model with the SSA is obtained with the
pattern language, the requirements model can be generated using this
new organizational model. For carrying out this process the teams of
development were focused on: a) the dependencies between the
organizational actors and the SSA, and b) the internal tasks of the
SSA.

Figure 8.8 shows all functional groups discovered using the
transformational steps [Past02] [EstrO3a] to the Golf Tournament
Management case study.

Game Partial result

Golfer management
management management

Final result
management

Card management

Golf course Controller

Hole management
management management

Figure 8.8 Example of functional groups discovered in the Golf Tournament
Management case study

The use cases generated by default in each functional group are:
creation, deletion and modification. They will permit us the
manipulation of the resources through of the SSA.

The use case actors will be those that interact with the SSA. This
interaction can be a dependency relationship between the
organizational actors and the SSA.

Figure 8.9 shows the use cases detected for the functional groups in
the case study.

271

CHAPTER 8 CASE STUDIES

Game Golfer

management Management \
oo Group Golfers
reate Games Register Golfers
Modify Games Delete Golfers

Modify Golfers

Delete Games

Partial result
management

Controller

management ‘
Publish Finals results Delete Controllers
Create controllers

Modify Controllers

Delete Partial results -
A . Assign controller
Modify Partial results / \ : by game)

Golf course Card
management management

Create Golf courses Create Cards
Modify Golf courses Delete Cards
Delete Golf courses Modify Cards

Final result
management

Publish Finals results Delete Hole
Create Finals results Modify holes

Delete Finals results

Modify Finals results Create Holes

Figure 8.9 Functional groups and the use cases discovered in the Golf Tournament
Management case study

Lt

Create Partial results

.O

)

.O

Assign holes
by game

Figure 8.10 shows the conceptual model obtained in the Golf
Tournament Management case study. The rules used for generating
this model were the shown in the [Past02] [EstrO3a].

272

8.2 DESCRIPTION OF THE CASE STUDIES

<<Constant attribute>>

&

Golfers Cards

Tournament

Member number Member number

Name Code Name

Title Description Holes

Address Date Game

Home phone Hour Date

Cell phone Hour
Register golfers

Game
Final results <<Constant Golf courses
Game attribute>> Code Name golf course
Member number Description Code
Name Tee start Description
Score' ! <<Constant Date Holes
Description attribute>> Hour Address
1t golf-courses
<<Constant
attribute>>
Partial results
Holes Controllers
Game <<Constar)
Member number attribute>> Code Code
Name Description Name
Score_ ! Longitude Address
Description Home phone
Cell phone
Assign holes by game

Figure 8.10 Partial view of the conceptual model of the Golf Tournament
Management case study

8.2.2.3 Lessons learned

The Golf Tournaments Management (GTM) case study was the

second real project developed in this PhD Thesis. The application of

the second version of the proposed method to generate requirements

and conceptual schemas from a organizational model was the source
of following lessons learned:

e The proposed guidelines to insert the software system actor in

the organizational model are not enough for a novel analyst.

It is true that the guidelines offer a global idea of the process

to generate the model, it is also true that they do not offer a

273

CHAPTER 8 CASE STUDIES

systematic approach to carry out this process. This case study
makes explicit the need to generate a set of patterns for
inserting the SSA to the organizational model in a systematic
manner.

e As aresult of developing this case study, a set of patterns was
developed besides the corresponding pattern language that
indicates in the conditions in which the patterns need to be
applied. The proposed pattern language considers all
possibilities to delegate modeling elements from the
organizational actors to the software system actor.

8.2.3 Car Rental
8.2.3.1 Description of case study

The objective of this case study was to model the processes of the
DENIA RentaCar enterprise which is dedicated to manage car rental
in Alicante, Spain. RentaCar has several branches in towns in
several cities of Spain. These branches are located in tourist areas,
and the set of cars to be rented have variations depending on two
well differentiated seasons: winter and summer.

The cars are usually bought at the beginning of the season and sold,
at the end of it. The purchase operations of the cars usually take into
account their sale after a certain period of time (six months).

The main activity, the rental, involves other kinds of derived
activities such as the car maintenance and repair, and extra rentals
(telephone, driver, etc.).

Purchase & sale

At each branch cars, classified by car group, are available for rental.
Only cars on the authorized list can be purchased.

Every new car should be covered by an insurance policy.

The car can be sold agreeing a price and a date of delivery. Cars are
to be sold when they reach one year or 40,000 kilometers, whichever
occurs first.

Employees
Each branch has a manager and users company. The Users can
perform all habitual tasks of management (rent or return cars, change

274

8.2 DESCRIPTION OF THE CASE STUDIES

rentals, maintain Customer data, maintain operations, etc.). The
Manager can perform the same operations as users. However, they
can also handle higher-level management tasks:

e Purchase, sale and eliminate cars

e Maintain rates (rental, insurances, and extras)
e Control insurance policies
e Manage employees

Rentals
Most rentals are through advance reservations; the rental period and
the car group are specified at the time of reservation. RentaCar will
also accept immediate (“walk-in”) rentals, if cars are available.
At the end of each day, cars are assigned to reservations for the
following day. If more cars have been requested than they are
available in a group at a branch, the branch manager may ask other
branch if they have cars they can transfer to him/her.
A car can be rented for different purpose, for example Tourism,
Industrials, or to be reserved by some manager of the company.
A car from another branch may be allocated, if there is a suitable car
available and there is time to transfer it to the pick-up branch. Some
issues that must be taken into account are:
e Reservations may be accepted only up to the capacity of the
pick-up branch on the pick-up day.
o If the Customer requesting the rental has been blacklisted, the
rental must be refused 90 minutes after the scheduled pick-up

e A Customer may have multiple future reservations, but may
have only one car at any time

e Only cars that are physically in RentaCar branches may be
assigned.
e The end date of the rental must be before any schedule
booking of the assigned car for maintenance or transfer.
Returns

Cars rented from one branch of RentaCar may be returned to a
different branch. The renting branch must ensure that the car has
been returned to some branch at the end of the rental period. If a car

275

CHAPTER 8 CASE STUDIES

is returned to another branch than the one that rented it, ownership of
the car is assigned to the new branch. If the car is returned late, an
hourly charge is made up for a 6 hours™ delay; after 6 hours a whole
day is charged. Some issues that must be taken into account are:
e Ifacaris returned to a location other than the agreed drop-off
branch, a drop-off penalty is charged.

e The car must be checked for wear (brakes, light, tires exhaust,
wiper, etc.) and damage, and repairs scheduled if necessary.

o If the car has been damaged during the rental and Customer is
liable, the Customer’s credit car company must be notified of
a pending charge.
Servicing
For simplicity, only one booking per car daily is allowed. A rental or
Extra service may cover several days. Also, the rent of a car can be
with driver and phone. The rent of car must include insurance.

Customer
A Customer can have several reservations but only one car rented at
a time. RentaCar keeps record of customers, their rentals and bad
experiences such as late return, problems with the payment and
damage to cars. This information is used to decide whether to
approve a rental. Some issues that must be taken into account are:

e Each driver authorized to drive the car during a rental must

have a valid driver’s license.

e Each driver authorized to drive the car during a rental must be
over 25.

Walk-in rentals
The end date of the rental must be before any schedule booking of
the assigned car for maintenance or transfer.
If there are several available cars of the model or group requested,
the one with the lowest mileage should be allocated. Some issues
that must be taken into account are:

o If a rental request does not specify a particular car group or

model, the default is group A (the lowest-cost group).

276

8.2 DESCRIPTION OF THE CASE STUDIES

e Reservations may be accepted only up to the capacity of the
pick-up branch on the pick-up day.

e |f a specific model has been requested, a car of that model
should be assigned if one is available. Otherwise, a car in the
same group as the requested model should be assigned.

o If no specific model has been requested, any car in the
requested group may be assigned.

Handover
The end date of the rental must be before any schedule booking of
the assigned car for maintenance or transfer.
If there are several available cars of the model or group requested,
the one with the lowest mileage should be allocated.
When a rental has been guaranteed by credit card and the car has not
been picked up by the end of the schedule pick-up day, one day’s
rental is charged to the credit card and the car is released for use the
following day. Some issues that must be taken into account are:

e The driver who signs the rental agreement must not currently

have a car on rental.

e The car must not be handed over to a driver who appears to
be under the influence of alcohol or drugs.

e The driver must be physically able to drive the car safely.

e The car must have been prepared —cleaned, full tank of fuel,
oil and water topped up, tires properly inflated.

e The car must have checked for roadworthiness —tire treat
depth, brake pedal and hand brake lever, travel lights, exhaust
leaks, windscreen wipers.

Car maintenance & repairs

In this context, some issues that must be taken into account are:
e Each car must be Extra serviced every three months or 10,000
kilometers, whichever occurs first.

e A car that needs repairs must not be used for rentals.

277

CHAPTER 8 CASE STUDIES

8.2.3.2 Methodology and case study artifacts

This case study was conducted over a 9-month period. The average
size of the models generated was: 13 actors, 143 dependencies, 219
actors” internal activities.

This case study has been used as example along the document.
Therefore, we have only included the final models obtained from
applying the methodology proposed in this thesis to the case study.
Figure 8.11 shows a partial view of the actor diagram of the Car
Rental case study where the SSA is included as a organizational
actor. The actors involved in this diagram are: a) Customer who can
play the role of person, b) Company Manager, c) User Company who
can be the manager or Clerk actor, d) Mechanic, e) Insurance
Company, f) Bank, g) Other branches and h) Car Rental System.

278

8.2 DESCRIPTION OF THE CASE STUDIES

ojul

UOReAIdSY 9

[
Molog

ojul

Augereny

uonepieA

pIeo Jpald

a

ojul

pieaypaId ‘11

3pIS 189

10 UOEIION

walshs
[elsY 1)

ojul
30uBINSU| 'g

T

ojul
RIS 0T

ojul
UONRAIDSY ‘6

ojul
Jowoisng ‘g

0Jul S30INIBS
Anerreny g

ojul 12
Aungereny

ojul
Augerreny ¢

ojul e
paweme

oju sjapow
pue S30Ud ‘T

a9luers
poo9

SIed aseyaind

ojul
Jowoisny T

Djul J8WoIsn) ‘|

ojul
Jowoisny T

usl sie)

Figure 8.11 Actor diagram of the car rental case study

The goal diagram for the case study with the SSA is shown in Figure

8.12.

279

=

280

CHAPTER 8 CASE STUDIES

=
=)
oju o ol =)
poInIaS BIIXT Jawosny’
pIea 1paid : 3 uoneAIasay 0g| Isnoee «
ojul pred LonepIEA ‘88 1.y ” ojut Ayjicre|rene %
npaid '6€ I poInIas enx3 Tl <
gxm. GG\ vm ensaspyfl 1ed) gbedi B m
QR BAX - 7 Aedug) 9ISAl S
I =
@ L2 floniasai s ') 20IAI3S BIXD Rl \ o A S
- \ -ejleAe ey - Ie [}
- p1ea 1pain) ve moh,nw_mmwhxm Te] sosibay Jfeu o awoisiN, 0T 06 o
u ﬁamm_ azAleuy (oyeiq] - redwgerios] e| auyoress R o] —
\ Ic RBSY ONBS3I SE I 9ISA (NS - N TN 80IMIBS BIXS %
o) ¢ sasiboy Uoeniasay oy sow qelre) fujqeyrene N eleq L
pal yoyiq Jatpo Ul o saisibey /0! _MEQWS <01SN9 UreNq 189 yore : m
\ o Jo ‘MasaY sl 77 Aufcreirene seo [1) S -
| og] Aed 1ais1bay foe ioffonioee Joworsno ayft sunsal aNOfqeyt 5 ~ v0|
| Joisibey i T Je \ e
L JasiBay ke fea jopow pu \ s
:__ eAIaS) O A [Goish Iqeliene Jed .JM_H_U i ajep urelqo T
MO __Mv redwo Ul Szfeuy Lp sinsal an9 >
P Quawked jual Te 9T €T ©
aaueinsu) ' T R i A A PSR 16 59410 U Ssomias eibe ©
ol 2y ; eduw oisfyly [Gz] 20w 8T [qeprene 1SanbFEL o va urelgo =
Juap1ooe “SA - azA[euy fungejrene | fanceyene) /| sjapow pue o
q ; aoueINSy|) oJul urelg0 (B @ S| seoyoreas / saoud w
T 1ep) ayrjo ol g
e Jeg /SR
@_ d 5 %) g INID DI =
2oueInsSul uonensasal Byouelq Jauyio U Al “—
1Qbeue) Iqe]re; 2UIX;
0 [19e8u0D 2ISAl 9z]eisiBay el T| -1qeireae azAjeuy R L ') ©
7 youelq sy} M
ueinsy| -e|eAe azAfeuy / =
d
IEETET ! —
‘Sajouelq Jay10 : J]
U aBeue ozl IIGEIEAE 120 g 2l =
SUoNeAIasay ETTN aut ezffeuy 19) \enx: ©
Aiend] JoueIq 8y} ul Apoalip Jrent s3oud apinoid o
SuoneAIasal 40 suIiay
suoleasal 1no Alred, suoieAIasal Ino ALred), (o) - o~
[9oue) - —
sieoealayjo [T 1) foe)
suoeAIasay Jed JanopueH uonewliojul apiAoid o)
- - —_
>
-~ . i
Jualabeuep walsAs —--"
e RRUEY] - -\ [euey Jed

(opur-lawoisno-urelqo

(oju-lswoisno-urelgo

(ojur-lawoisng-urelgo

8.2 DESCRIPTION OF THE CASE STUDIES

1UBPIRIYSABOURINSU|

INOH winiay
‘1noH-dn %014
‘umay

-1e9-1j01eas ()Jeo-{apow-siep-ureiqo

wniay ‘sreq dnyold ‘Aep: d

‘afieali 10]0D ‘aleld ‘KssqunN

‘asuaor e
‘Jaquinu Uodssed “Jaquiny $ﬂ“om_
aueN ej0) S SBL
by ‘aureu Juaby. ‘aueN
Auedwios 1sbeuewr
Auedwod uosiad jeaisAyd
()awoisny-1asifiay
(ojur-lowoisny-azAfeuy
(Jojur-lawoisng-yoreas
Auedwod
‘ejep andxa ‘Japioy pred
‘prea upai-N ‘Aepyuiq
*J3QUINN 3SUBDIT ‘|lewd
*auoyd J122 ‘auoyd awoH
‘A0 'ssaippy ‘Uaquinn
Jodssed ‘a1 ‘aleN
Jawoisnd
KT T
(Jyoueig-1aupo-uonensasas-1asiboy
B (uoneniasal-iaisibay
Jodssed
.. JBW0ISND ‘allieU JBWIOISND)
. :o_ﬁ:ﬁ._xm L *adA) Jawoisng ‘smeis
pIed Ipal) "oN ‘abealiy 10100 ‘areld ‘adAy |_ 1
‘lswoisn)y 1T Jed ‘INoH wniay ‘INoH .
-dn od ‘winiay ‘areq *T
pJed 1paid dnxoid suoz wnay ‘auoz

The conceptual models generated from the organizational model are
shown in Figure 8.13 and Figure 8.14, the first conceptual schema
was generated taken into account the Optimization criterion.
Therefore, the classes are generated in a global way, while Figure
8.14 shows the conceptual schema generated with the modularity
criterion.

dmyoid ‘wNNAIBSaY

uoneAAlasay

281

7 ‘are@ dnyald
‘ yodssed Jawoisn)
‘ aweu Jawoisn)
‘adf1 Jawoisny
‘areld
*adfy e
{oueuansu|]
ay) sInsal N9
Oreny ()paniasal-se-aain1as-11sIBay
()seanuas-senxa-1alsifay
()ojur-saoud-apinoid 0!
()rene-a01nas-S)NSaI-9A19)
Youeig ‘auoz dmyoid ‘area | g SROIAIBS BIIXD BlEp UIRIGO
aeq iy
WNN-STEas ‘wn mamo_u 7 ‘areq drpid
IN-SeaS ‘WnN-s100Q ‘[8POIN ‘awreu
L " S30INBS BIXT
,195%_ Isia ‘adfy seawuas enx3
wnp aubug
‘aleu e S82IAISS BAIX]
‘adfy re

Figure 8.13 Conceptual Model with the Optimization criteria

CHAPTER 8 CASE STUDIES

(ojur-Iawoisn)-ureigo

(Jojur-Jawoisn)-urelqo

(ojuriawoisnd-ureiqo

1UBPIAIYSABOUBINSU]
ToQUINN 3SUBJTT
INOH winjay Jaquinu odsseg AKepuyuig
“InoH-dn Yoid “upueiag *13qUINN SN
‘winiey BWeN Jo'IU0D ‘ureu usby ‘L
‘aleq dnyoid ‘apo) Aouaby ‘aweN
‘Modssed Jawoisnd xed Jabeuewl
| uedwo:
auey sauorsn) o) Auedwo) uosJad [esdisAyd
adf) Jowoisn)
‘ajeld
‘adf) e
ajueansu|
TT
(Jojur-jawiojsno-yoreag
()prea-upaig-azheuy Auedwod
“elep aiidxa ‘1apjoy pre)
‘pIed upai)-N ‘Aepuniq
uoneldk3 *1aquINN asuaIT ‘rewa
‘prea upai) ‘auoyd |20 ‘auoyd awoH (eo-japou-apep-ureijo
isifoy dswoisny | 1T ‘D ‘ssaippy ‘IaquinN
()uoueig-1ayo-jrene-jsanbay vodssed ‘apn ‘aweN
()Irene-soinaSEIXS-S)NSBI-9ND pJaed 1paid [LSYEL TN
Jawol1sn) Juswiaoe(dsiq
wnN auibu
akeg dnypoid ¥ N
‘adfy sao1nias eaxg
T aulbug
SBJINIBS BeU1XT
a|qe|reny N _ TT T
(uoueigriap isibay]
()paniasal-se-rea-1alsibay
Jodssed 8y} synsal a9
youeig JBWOSNY ‘aUeU JBWOISN) ep-ureiqo
‘snjeys ‘abealiy ud-apinoid

()paniasal-se-a0inas-1ajsiBoy

410109 ‘are|d ‘adfy e
“INOH W8y ‘InoH _V

‘adfy sawoisn) ‘smeis

“abea ‘areld ‘adfy

youeig ‘auoz dnyald

[(EERIIVESS ia1siBay y .\ . 18D 'NoH wniay noH-dn | ‘aleq wniay ‘areq dnyold

SBOINIaS BIIX3 EIep URIGO n___u_“_u_uﬂ ﬁﬂaﬂ%% Yoid ‘wmiay ‘ereg dnyrd [T°T “fep-1e0-39d

Pl "UINNAIBS3Y U0z wniay ‘auoz dnyold p— ‘1eaA ‘laImaejnuew el

ajeq wnpy 'WINNAISSSY WNN-SIeas

‘ajeq dnyold Uplize] JE e ‘wnN-si00q ‘afea|iy

/PO ‘aureu uonenIssay uoleAIasay 410100 ‘@1eld ‘[f0IequinN

SB0IIBS I3 Juswade(dsiguiny ‘suibu3

‘adfy sao1as ex3 ‘aweu sed ‘adf) e
EERIVVEISR=Si b I I T Jep

(irene-ojur-ureigo

auoz dmyaid

‘Youeig
A_ ‘ajeq wnjey

‘aleg dnyald
aleld ‘adk) e

1ej s|qe|reny

Figure 8.14 Conceptual Model with the Modularity criteria

The requirements model generated from the organizational model is

shown in Figure 8.15.

282

8.2 DESCRIPTION OF THE CASE STUDIES

Cars
Management

[

1vatioh Customer
Management Management

Company

’ . Include
Oblain CuStomerinfo)= = = <o r - _»_ > Obtain Personal

info

Obtain Car info

Delete Car

Delete Customer

Modify Customer

Employee
Obtaing car
for preparing

«Exlend», P

Analyze availability Manager Clerk
of cars

Modify Reservation

Figure 8.15 Partial view of the requirements model of the Car Rental
8.2.3.3 Lessons learned

This section summarizes the lessons that were learned from the Car
Rental case study:

e This case study demonstrated the usefulness of an initial stage
to detect the relevant tasks that need to be automated in order
to better satisfy the organizational goals. Using this approach
(which is based on organizational goal analysis) it was
possible to better elicit the early requirements.

e This case study makes it explicit the usefulness of inserting
the software system actor in the organizational model in order
to isolate the expected functionality of the system-to-be.

e This case study demonstrates the need to consider an
intermediate stage that can reduce the abstraction level of the
late requirements specification to be closer to the design

283

CHAPTER 8 CASE STUDIES

stage. In our research work, a concerned object model is
proposed in order to identify relevant elements for the
information system domain.

e The intermediate model, which manages elements of the
software domain, enables us to provide a systematic
generation of an object-oriented conceptual model.

e The intermediate model also enables the analysts to generate
a space of alternative conceptual models according to a
specific optimization criterion.

o In developing this case study, we improve some rules and we
add new rules to the proposed method to generate the
requirements model. We also propose rules for building
scenarios of the use cases according to RETO model. These
method improvements have been detailed in Chapter 7.

8.3 Summary

The application of several case studies was very useful to
demonstrate the applicability of the method. In fact, each case study
enables us to improve the method until a stable state has been
reached in the proposed method.

284

Chapter 9

Conclusions and Further
Research

This chapter revises the stated research objectives and the main
findings that can be drawn from this work. We also examine to what
extent the research objectives have been met. The related
publications derived from this research are also presented. Finally,
we discuss the future research directions generated from this research
work.

CHAPTER 9 CONCLUSIONS AND FURTHER RESEARCH

9.1 Conclusions

The contributions of this thesis are discussed by analyzing the
research goals presented in Chapter 1, where three goals were
proposed as a solution to the problems outlined:

e To reduce the abstraction level of a “pure” organizational
model so that it is closer to the requirements model.

e To propose a methodological guide that allows a
requirements model to be obtained from an organizational
model.

e To propose a methodological guide that allows a conceptual
model to be obtained from an organizational model.

These research goals were satisfied by developing three key
processes of this thesis: the refinement process of the organizational
model, the generation process of the conceptual models and the
generation process of the requirements model.

9.1.1 The refinement process of the organizational
model

The first goal of this thesis has been achieved by an initial elicitation
process that allows the current situation of the enterprise to be
represented and also permits the identification of the relevant tasks
that need to be automated in order to better satisfy the organizational
goals. A set of proposed steps that take into account quality factors,
contradictions and contributions among plans has been proposed to
identify the plans that must be automated through the system-to-be.
This approach introduces a pattern language that allows us to
consider all possible delegations of organizational plans to a new
organizational actor that represents the software system-to-be.

In this process, the abstraction level of an organizational model is
reduced by inserting the software system actor as an explicit actor in
the organizational model. The model enables the analyst to focus
specifically on describing the behavior of the system and on defining
the dependency relationships of this actor with the rest of

9.1 CONCLUSIONS

organizational actors of the enterprise. Thus, it is possible to create a
organizational model that is closer to the requirements model.

One of the key steps in this process is the generation of an
intermediate model to identify the relevant information to generate
the system-to-be in terms of concerned objects and relationships. We
argue that the intermediate model represents the system requirements
because it defines the expected functions of the system that are
encapsulated in the boundary of the software system actor. One of
the advantages of this approach is the explicit relationship between
the organizational goals and the expected functionalities of the
system. Thus, it is possible to justify the existence of a specific
system function based on the achievement of objectives and goals.

9.1.2 The generation process of the conceptual
models

The generation process of the conceptual models generates a space
for alternative solutions in order to generate object-oriented
conceptual models. This process is guided by a set of rules that
define the steps needed in the definition of the conceptual model.
The analyst manages the generation of the conceptual model
according to specific optimization criteria. Therefore, instead of
generating a unique conceptual model, this proposal enables the
analyst to generate a model that is adapted to modularity,
optimization, etc.
The second goal of this thesis has been satisfied by addressing the
following sub-goals:
e Extending the organization model with monitoring plans and
concerned objects. This is done in order to create a
requirements specification that is closer to the system-to-be.

e Defining methodological guidelines that allow us to establish
the correspondence between the organizational requirements
that best satisfy the organizational goals and the conceptual
model of the system.

In this thesis, we propose an extended organizational model with the
concerned objects as an intermediate model between the late

287

CHAPTER 9 CONCLUSIONS AND FURTHER RESEARCH

requirements specification and the conceptual model. The concerned
object model permits the analyst to determine which elements are
relevant in order to define the static structure of the system-to-be.
This goal has been achieved by the generation process of the
conceptual models, where the abstraction level of an organizational
model is reduced with the identification of concerned objects, which
allows us to define relevant elements in the information system
domain.

9.1.83 The generation process of the requirements
model

The generation process of the requirements model establishes a
correspondence between the organizational requirements that best
satisfy the organizational goals and the requirements of the system
that is to be constructed.
The generation of the requirements model is guided by a set of rules
that define the steps needed to transform the elements of the
intermediate model (extended organizational model) into the
elements of a UML use case model and its corresponding scenarios.
It is important to point out that the source of the requirements
generation process is the organizational model that explicitly
contains the software system actor.
The third research goal of this thesis has been satisfied by addressing
the following sub-goals:
o Developing guidelines that allow us to establish the
correspondence between the late requirements model and a
UML use case model.

e Developing guidelines to define the elements of the scenarios
(primary actor, normal flow of action, preconditions, etc.) for
each use case defined in the model

9.1.4 Using orgamzational model in the software
production process

One of most interesting questions discussed in this thesis is the
selection of the best alternative to use organizational models within

288

9.1 CONCLUSIONS

the software production process. In the first stages of this work, it
was difficult to give a clear answer to this question. This is because,
in the initial research stages, we used a “pure” organizational model
to make the model transformations, which is the same approach that
current research works in this area uses. In this approach, the
organizational model contains information from the organizational
domain without references to the system to be developed. In this
scenario, the generation of a late requirements model from the
organizational model seems to be the best option because of the
semantic distance between organizational concepts and conceptual
modeling constructs.

However, in the current stage of our research work, it is possible to
provide a better answer to the question of what the best way to use
organizational model is: conceptual model generation is the best
alternative, at least for the generation of the static part of the
conceptual model. We support this with idea with the following: the
organizational model and the concerned objects model that have
been proposed in this thesis are equivalent to the requirements model
for the system-to-be (late requirements). These intermediate
transformation processes allows the analyst to represent: a) the
expected functionality of the software system and b) the relevant
objects (classes) to be considered in the definition of the static part of
the conceptual model. Thus, the intermediate models reflect the same
information that is presented in a requirements model: the expected
functionality of the software system. This model represents the
concerned objects as classes in the object model and the plans as the
methods of the classes that have been generated.

For this reason, the transformation of the intermediate model into a
late requirements specification (by using a use case model) is a
simple mapping of concepts from both models.

We can conclude that, in our approach, the refinement steps are the
adequate to directly generate the conceptual model instead of using
late requirements models as the intermediate modeling stage.

289

CHAPTER 9 CONCLUSIONS AND FURTHER RESEARCH

9.1.5 Summary of contributions

Several contributions have been made in this thesis:

A method to identify the relevant plans to be automated,
which provides a set of rules to identify the relevant tasks* to
be automated from the high-level goals of the stakeholders.

A pattern language, which provides a systematic model
transformation process between the organizational model and
the model that explicitly includes the software system actor.

A method for inserting monitoring plans, which provides a
set of rules to detect undesirable behaviors in the system-to-
be in order to take the corrective measures to manage them.

A method to define a space of alternative models, which
provides rules to define a conceptual model that fits a specific
optimization criteria.

A method for linking late requirements with the ONME
conceptual model generation, which provides a set of rules
and algorithms to obtain a conceptual model from an
organizational model.

A method for linking late requirements with the ONME
requirements model generation, which provides a set of
rules and algorithms to obtain a requirements model from an
organizational model.

! The word “relevant” has been used in this thesis to indicate those elements whose
automatic executions better satisfy the business goals.

290

9.2 RELATED PUBLICATION

9.2 Related Publications

The contributions of this thesis are supported by the set of
publications carried out throughout this research work. These
contributions have been published in three international journals,
three book chapters, and thirteen conferences and workshops.

9.2.1 International Journals

Alicia Martinez, Oscar Pastor, Hugo Estrada. “A pattern
language to join early and late requirements”. Journal of
Computer Science and Technology (JCS&T), special issue on
Software Requirements Engineering. Vol. 5, No. 2. July 2005.
ISSN 1666-6038.

Alicia Martinez, Hugo Estrada, Oscar Pastor. “Generation of
requirements model from organizational models: a pattern-
based approach”, Informatics Technology Management
Journal Num. 7, Vol. 2. December 2004. ISSN 1657-8236
pp. 11-21, (published in Spanish).

Oscar Pastor, Alicia Martinez Rebollar, Hugo Estrada.
“Generation of Software Requirements Specifications from
Business Models”, Informatics Technology Management
Journal, Num. 1, Vol. 1. 2002. ISSN 657-82364. pp. 53-65,
(published in Spanish).

9.2.2 Book Chapters

A. Martinez, O. Pastor, J. Mylopoulos, P. Giorgini. “Chapter
8 From Early to Late Requirements: A Goal-Based
Approach”, Agent-Oriented Information Systems IV. Editor:
Springer Berlin / Heidelberg. Volume: Volume 4898/2008.
ISBN: 978-3-540-77989-6. February 2008.

Oscar Pastor, Hugo Estrada, Alicia Martinez. i*, its
applications, variations, and extensions. The strengths and
weaknesses of the i* Framework: an experimental evaluation.
Editors: (Accepted for its publications by MIT Press)

CHAPTER 9 CONCLUSIONS AND FURTHER RESEARCH

J. Sanchez Diaz, O. Pastor Lopez, H. Estrada Esquivel, A.
Martinez Rebollar, J. Belenguer Faguas, “9. Semi
Automatic Generation of User Interface Prototypes from
Early Requirements Model”, Perspectives on Software
Requirements Editors: Julio Cesar Sampaio do Prado Leite,
Jorge Horacio Doorn. Kluwer Academic Publishers, Boston
Hardbound, ISBN 1-4020-7625-8. USA 2004.

9.2.3 International Conferences and Workshops

Alicia Martinez, Oscar Pastor, John Mylopoulos, Paolo
Giorgini, “From Early Requirements to Late Requirements: A
goal-based approach”, in Eight International Bi-Conference
Workshop on Agent-Oriented Information System (AOIS-
2006), Luxembourg, Luxembourg, June, 2006.

Hugo Estrada, Alicia Martinez, Oscar Pastor, John
Mylopoulos, “An experimental evaluation of the i*
Framework in a Model-based Software Generation
Environment”, in 18" Conference on Advanced Information
Systems Engineering (CAISE 06). Luxembourg, Grand-
Duchy of Luxembourg. June 2006. Lecture Notes in
Computer Science, Vol. 4001, ISSN: 0302-9743. 2006. Pp.
513-527.

Alicia Martinez, Oscar Pastor, Hugo Estrada. “A pattern
language to join early and late requirements”, in VII
Workshop on Requirements Engineering (WER 04), Tandil
Argentina 2004. pp 51-64.

Alicia Martinez, Oscar Pastor, Hugo Estrada. “Isolating and
specifying the relevant information of an organizational
model: a process oriented toward information system
generation”, in International Conference on Computational
Science and its Applications (ICSSA 2004). Perugia, Italy
Springer LNCS 3046, pp. 783-790.

Hugo Estrada, Oscar Pastor, Alicia Martinez and Jose
Torres-Jimenez. “Using a Goal-Refinement Trees to obtain
and refine organizational requirements”, in International

292

9.2 RELATED PUBLICATIONS

Conference on Computational Science and its Applications
(ICSSA 2004). Perugia, Italy, Springer LNCS 3046, pp. 506-
513.

Hugo Estrada, Alicia Martinez, Oscar Pastor. “Goal-based
business modeling oriented towards late requirements
generation”, in 22nd International Conference on Conceptual
Modeling (ER 2003) October 2003, Chicago, IHllinois, USA.
ISBN 3-540-20-299-4, Springer LNCS 2813, pp. 277-290,
2003.

Alicia Martinez, Jaelson Castro, Oscar Pastor, Hugo Estrada.
“Closing the gap between Organizational Modeling and
Information System Modeling”, in VI Workshop on
Requirements Engineering (WER 2003). Piracicaba SP,
Brazil, 2003. pp 93-108.

Hugo Estrada, Jaelson Castro, Oscar Pastor, Alicia Martinez.
“Goal-based organizational modeling oriented towards late
requirements generation”, in 17th Brazilian Symposium on
Software Engineering - SBES'2003.

Hugo Estrada, Alicia Martinez, Oscar Pastor, Juan Sanchez.
“Generation of Software Requirements Specifications from
Business Models: a goal-based approach”, in V Workshop on
Requirements Engineering (WER 2002). Valencia, Spain
November 11-12, 2002, pp. 177-193, (published in Spanish).

Alicia Martinez, Hugo Estrada, Oscar Pastor. “The Business
Model as starting point of the software requirements: a
methodological approach”, in 9° International Congress on
Computer Science Research (CIICC’02). Puebla, Mexico.
October 2002, pp. 197-208, (published in Spanish).

Alicia Martinez, Hugo Estrada, Juan Sanchez, Oscar Pastor.
“From Early Requirements to User Interface Prototyping: A
methodological approach”, in 17th IEEE International
Conference Automated Software Engineering (ASE2002).
Edinburgh, UK. September 2002, pp. 257-260.

293

CHAPTER 9 CONCLUSIONS AND FURTHER RESEARCH

9.3

Hugo Estrada, Alicia Martinez, Oscar Pastor, Javier Ortiz,
Erika Nieto. “Automatic generation of an Executable
Conceptual Schema from a organizational model”, in V
Iberoamerican Workshop Requirements Engineering and
Software Environments (ldeas2002), La Habana, Cuba, April
2002, pp. 281-292, (published in Spanish).

Hugo Estrada E., Alicia Martinez R., Oscar Pastor L., Javier
Ortiz H., Octavio A. Rios T. “Automatic generation of a OO
Conceptual Schema from a Work flow product model”, in IV
Workshop on Requirements Engineering (WER2001).
National Technological University, Buenos Aires Argentina,
November 2001, pp. 223-245, (published in Spanish).

Future research directions

With the modeling method proposed in this thesis, our intention is to
give a further step in the process to integrate organizational modeling
as an initial step the software production process. Our future works
can be summarized as:

Develop a prototype that automates the proposed method. At

present several students are working in this direction.

Develop a deeper analysis about of use of the monitoring

plans.

0 Determine how the monitory plans can be used in the
early requirements phase.

Increase the strategies of the space alternatives to generate

the conceptual models.

294

Bibliography

[Albe03] Albert M., Pelechano V., Fons J., Ruiz M., Pastor O.
Implementing UML Association, Aggregation, and
Composition. A Particular Interpretation Based on a
Multidimensional Framework. In proceedings of the 15"
Conference on Advanced Information Systems
Engineering (CAISE 03). Klagenfurt, Austria, 2003. pp
143-158.

[Alen03] Alencar F. M. R., Pedroza F., Castro J., Ricardo C. O.
Amorim. New Mechanism for the Integration of
Organizational Requirements and Object Oriented
Modeling. In proceedings of the VI Workshop on
Requirements Engineering (WER 2003), Piracicaba,
Brazil. November 2003. p.109-123.

[Alen00] Alencar, F., Castro, J., Cysneiros, G., Mylopoulos, J., From
Early Requirements Modeled by i* Technique to Later
Requirements Modeled in Precise UML, In Proceedings of
the 11l Workshop on Requirements Engineering (WER
2000). Rio de Janeiro, 2000. pp 92-108.

[Alen99] Alencar F., Mapping an Organizational Model in Precise
specification. Ph.D. Dissertation, Department of
Informatics from University of Pernambuco. Recife, Brazil
1999.

[Alex02] Alexander, I. F., Stevens, S., Writing Better requirements,
Addison-Wesley, 2002.

[AmblO3] Ambler Scott. Agile Database Techniques Effective
Strategies for the Agile Software Developer. John Wiley &
Sons. USA, November 2003.

BIBLIOGRAPHY

[Alex79] Alexander C. The Timeless way of Building. Oxford
University Press, New York, 1979.

[Alex77] Alexander C., Ishikawa S., and Silverstein M. A Pattern
Language:towns, bulding, construction. Oxford University
Press, 1977.

[Alpu05] Alpuente M., Gallardo M. M., Pimentel E., and Villanueva
A. A Semantic Framework for the Abstract Model
Checking of tccp programs. Theoretical Computer Science
346(1):58-95, 2005.

[Anto98] Anton, A. I. and Potts, C., The use of goals to surface
requirements for evolving systems, in Proceeding of the
International Conference on Software Engineering (ICSE
1998), 1998, pp. 157-166.

[Anto97] Antdn I. Annie. Goal Identification and Refinement in the
Specification of Software-Based Information Systems.
Ph.D. Thesis, Georgia Institute of Technology, Atlanta,
GA, USA, June 1997.

[Anto96] Anton Annie. Goal based requirements analysis. In
Proceeding of 2nd International Conference on
Requirements Engineering ICRE’96, Colorado, USA,
1996. Pp. 136-144.

[Arau03] Araujo J., Coutinho P. Identifying Aspectual Use Cases
Using a Viewpoint-Oriented Requirements Method. 2nd
International Conference on Aspect-Oriented Software
Development, Boston, USA, March 2003.

[Beed97] Beedle Michael A. COOherentBPR —A pattern language to
built agile organizations, Plop-97 Conference, 1997.

[Bide02] Bider Llia, and Khomyakov Maxim, If you wish to change
the world, Start with yourself. An Alternative Metaphor
Objects Interaction. In proceedings of the 4st International
Conference on Enterprise Information Systems (ICEIS
2002), Ciudad Real, Spain 2002. Vol. 2, pp.732-742.

296

BIBLIOGRAPHY

[Bock97] Bock B.Douglas. Entity-Relationship Modeling and
Normalization Errors. In Journal of Database
Management. IGI Publishing, Hershey, PA, USA, 1997,
8(1): 4-12.

[Bohe96] Boehm B. Identify quality-requirements conflicts. In
Proceedings of the 2nd International Conference on
Requirements Engineering ICRE'96, Colorado spring,
Colorado, 1996.

[Boeh78] Boehm B., Brown J.R., Kaspar H., Lipow M., McLeod G.,
and Merritt M. Characteristics of Software Quality. TRW
Series of Software Technology. North Holland,
Amsterdam, 1978.

[Booc99] Booch G., Rumbaugh J. and Jacobson 1. The unified
Modeling Language Users Guide. Addison-Wesly, 1999.

[Bres04] Bresciani P., Giorgini P., Giunchiglia F., Mylopoulos J.,
and Perini A., TROPOS: An Agent-Oriented Software
Development Methodology. In Journal of Autonomous
Agents and Multi-Agent Systems, Kluwer Academic
Publishers; May 2004, 8(3):203-236.

[Bube98] Bubenko J.A., Jr, D. Brash and J.Stirma. EKD User Guide,
Dept. of Computer and System Science, KTH and
Stockholm University, Sweden ESPRIT Project No.
22927, ELEKTRA, Document, Feb. 5, 1998.

[Bub95] Bubenko, J. A., Jr and Kirikova M., Worlds in
Requirements Acquisition and Modeling, in: Information
Modeling and Knowledge Bases VI. H. Kangassalo et al.
(Eds.), 10S Press, Amsterdam, 1995, pp. 159-174.

[Bube94] Bubenko, J. A., Jr and M. Kirikova, Worlds in
Requirements Acquisition and Modeling. In 4" European-
Japanese Seminar on Information Modeling and
Knowledge Bases, edited by K. Sweden, H. Kangassalo
and B. Wangler, 10S Press, The Netherlands, 1994, pp.
159-174.

297

BIBLIOGRAPHY

[Busc98] Buschmann, R. Meunier, H. Rohnert, P. Sommerland and
M. Stal, Pattern - Oriented software Architecture: A
system of Patterns. John Wiley & Sons, 1998.

[Cast02] Castro J. Kolp M. Mylopoulos J. Towards Requirements-
Driven Information Systems Engineering: The Tropos
Project. In Information System, Elsevier 2002, 27(2): 365-
389.

[Cast01] Castro, J., Alencar, F. M. R., Cysneiro F., G., Mylopoulos,
J. Integrating Organizational Requirements and Object
Oriented Modeling. In proceeding of 5th IEEE
International Symposium on Requirements Engineering.
IEEE Press, 2001. pp.146-153.

[Cast98] Castelfranchi C. Modelling social action for Al agents.
Artificial Intelligence. 103, 1998. pp. 157-182.

[Cesa02] Cesare S. Mark Lycett, Business Modelling with UML,
distilling directions for future research. In proceedings of
the Information Systems Analysis and Specification
(ICEIS) Ciudad. Real, Spain, 2002, pp. 570-579.

[Chen76] Chen P.P. The Entity Model —Toward a Unified View of
Data. ACM Transaction Database System 1976. 1(1): 9-
36.

[Chun00] Chung, L., Nixon, B., Yu, E. and Mylopoulos,J. Non-
Functional Requirements in Software Engineering. Kluwer
Academic Publishers 2000.

[Clar96] Clarke Edmund M. and Wing M. Jeannette. Formal
Methods: State of Art and Future Directions. ACM
Computing Surveys, December 1996, 28(4):626-643.

[Cock01] Cockburn Alistair, Writing Effective Use Cases, Addison-
Wesley, USA, 2001.

298

BIBLIOGRAPHY

[Cock97] Cockburn, Alistair. Structuring Use Cases with Goals.
Journal of Object-Oriented Programming, Sep-Oct, 1997
and Nov-Dec, 1997. Also available on
http://members.aol.com/acockburn/papers/usecases.htm

[Codd79] Codd E. F. Extending the Database Relational Model to
Capture More Meaning. ACM Transaction Database
System. 1979, 4(4): 397-434.

[Cohe97] Cohen D., Feather M.S., Narayanaswamy K., and Fickas
S. Automatic Monitoring of software Requirements. In
Proceedings of the 19" International Conference on
Software Engineering (ICSE 1997), Boston, May 1997.

[Cons99] Constantine L.L; Lockwood L.A.D. Software for Use: A
practical Guide to the Models and Methods of Usage-
Centered Design. Addison Wesley 1999.

[Copl95] Coplien J. O., and Schmidt D. C., Eds. Pattern languages of
program design, ACM Press/Addison-Wesley Publishing
Co., New York, NY, 1995.

[Copl91] Coplien J. O.Advanced C++ Programming Styles and
Idioms. Addison Wesley1991.

[Coss02] M. Cossentino, P. Burrafato, S. Lombardo, and L.
Sabatucci. Introducing pattern reuse in the design of multi-
agent systems. Agent, Infrastructure, Tools and Aplication
(AITA'02) workshop at NODe02 Erfurt, Germany,
October 2002. pp 8-9.

[Curt88] Curtis Bill., Kasner Herb, Iscoe Neil, A Field Study of the
Software Design Process for Large Systems,
Communications of the ACM, (31), 11, New York, USA,
1988, pp. 1268-1287.

[Dard03] Dardenne A., van Lamsweerde A., and Fickas S. Goal
directed requirements acquisition. Science of Computer
Programming, 2003. (20)1-2: 3-50.

299

BIBLIOGRAPHY

[Dard93]

[Dario6]

[Desa07]

[Dijk02]

Dardenne, A., van Lamsweerde A., and Fickas, S. Goal
Directed Requirements Acquisition. Science of Computer
Programming, vol. April 1993, Pp. 3-50.

Darimont, R. and van Lamsweerde, A. Formal Refinement
Patterns for Goal-Driven Requirements Elaboration, in
Proceeding of the 4th ACM Symposium on the
Foundations of Software Engineering (FSE4), San
Francisco, October 1996. pp. 179-190.

Desai. Anil. Database Design. Website
http://mcpmag.com/columns/article.asp?EditorialsiD=22
Last access December 2007.

Dijkman Remco M., Joosten Stef M.M. Deriving Use
Case Diagrams from Business Process. Technical Report
TR-CTIT-02-08 Centre for Telematics and Information
Technology, University of Twente, Enschede, 2002. ISSN
1381-3625.

[Domm99]Van Dommelen W., Joosten S., and de Mol M.

[Dorfo0]

[Dull03]

Comparative study to aids for managing business
processes (in dutch: Vergelijkend warenonderzoek
hulpmiddelen beheersing bedrijfsprocessen. Technical
report, Department of Finance, The Hague, 1999.

Dorfman M., Thayer R.H. System and Software
Requirements Engineering, IEEE Computer Society Press,
1990.

Dullea J., Chen R. lIssues and Quality Measures for
Database Design. Proceedings of 7th IASTED
International Conference on Software Engineering And
Applications (SEA2003) November 2003 Marina del Rey,
CA, USA.

[Estr03a] Estrada H. Martinez A., Pastor O. Goal based business

modeling oriented towards late requirements generation.
In proceedings of the 22™ International Conference on

300

BIBLIOGRAPHY

Conceptual Modeling (ER 2003). Vol. 2815, Chicago,
Illinois USA, October 2003. Pp. 277-290.

[EstrO3b] Estrada H. Castro J., Pastor O., and Martinez A. Goal-

[Estr02]

[Feat98]

[Fick95]

based organizational modeling oriented towards late
requirements generation. In proceedings of the 17th
Brazilian Symposium on Software Engineering
(SBES'2003). Octubre 2003. Manaus, Amazonas, Brasil.

Estrada H. Martinez A., Pastor O., and Sénchez J.
Generation of Software Requirements Specifications from
Business Models: a goal-based approach. In Proceeding
of the V Workshop on Requirements Engineering (WER
2002). Valencia, Spain November 2002, pp. 177-193

Feather M.S., Fickas S., Van Lamsweerde A., Ponsard C.
Reconciling System Requirements and Runtime Behaviour.
In Proceedings of the 9th International Workshop on
Software Specification and Design IWSSD'98. IEEE.
Isobe, Japan, April 1998.

Fickas S., and Feather M. Requirements Monitoring in
Dynamic Environments. In Proceedings of the 2nd
International Symposium on Requirements Engineering
(RE’95), York, IEEE, 1995.

[Fick92] Fickas S. and Helm R., Knowledge Representation and

Reasoning. in the Design of Composite Systems. IEEE
Trans. On Software Engineering, June 1992. pp. 470-482.

[Fowl98] Fowler Martin. Use and Abuse Cases. Distributed

computing. April 1998.

[Fowl97] Fowler M. Analysis Patterns: Reusable Object Models.

Addison -Wesley 1997.

[Fran03] Frankel S. David, Model driven Architecture, applying

MDA to enterprise computing, Wiley publishing, Inc.
USA, 2003.

301

BIBLIOGRAPHY

[FuxmO3]Fuxman Ariel, Liu Lin, Pistore Marco, Roveri Marco,

Mylopoulos John: Specifying and Analyzing Early
Requirements: Some Experimental Results. Proceeding of
the 11th IEEE International Requirements Engineering
Conference (RE'03), Monterey Bay, California USA 2003.
Pages 105.114.

[FuxmO1]Fuxman Ariel, Formal Analysis of Early Requirements

Specifications. MS Thesis. University of Toronto, Toronto,
Canada, 2001.

[Gamm95] Gamma E., R. Helm, R. Johnson, J. Vlissides. Design

Patterns, Addison-Wesley, 1995.

[Gamm94] Gamma E., Helm R., Johnson, R., Vlissides J. Design

[Garz02]

Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, Mass., 1994.

Garzas Javier and Mario G. Piattini Velthuis, 9 Patrones y
refactorizaciones en la calidad software. Editors. Mario G.
Piattini, Felix O. Garcia, Calidad en el desarrollo y
Mantenimiento de Software. Ed. Ra-Ma. Espafia 2002.

[Gior05] Giorgini P., Mylopoulos J., Sebastiani R.. Goal-Oriented

[Gior03]

[Gior02]

Requirements Analysis and Reasoning in the Tropos
Methodology. In Engineering Applications of Artificial
Intelligence, Elsevier 18(2), March 2005.

Giorgini P., Mouratidis H., Schumacher M. Security
Patterns for Agent Systems. In proceeding of the Eighth
European Conference on Pattern Languages of Programs.
2003.

Giorgini P., Mylopoulos J., Nicchiarelli E., and Sebastiani
R. Reasoning with Goal Models. Proceedings of the 21st
International Conference on conceptual Modeling
(ER2002), Tampere, Finland, October 2002. LNCS-
Springer Verlag.

302

BIBLIOGRAPHY

[Gonz04] Gonzalez-Palacios Jorge and Luck Michael. A Framework
for patterns in Gaia: A case-study with Organisations. In
proceeding of the Agent-Oriented Software Engineering,
5th International workshop AOSE 2004. New York, NY,
USA, July 2004. pp. 174-188.

[Gros01] Gross D., Yu E. From Non-Functional Requirements to
Design through Patterns. Requirements Engineering.
Springer-Verlag 2001, Vol. 6, pp. 18-36.

[Grun99] J. Grundy, Aspect-oriented Requirements Engineering for
Component-based Software Systems, In proceedings of the
4th IEEE International Symposium on Requirements
Engineering, IEEE Computer Society, Limerick, Ireland,
1999, pp. 84-91.

[Gues04] Guessoum Zahia, Ziane Mikal, Faci Nora. Monitoring and
Organizational-Level Adaptation of Multi-Agent System.
In Proceeding of the Autonomous Agents and Multi-Agent
Systems (AAMAS2004). New York 2004. Pp.514-521.

[Hamm93]Hammer Michael and Champy James, Reengineering the
Corporation: A Manifesto for Business Revolution. Harper
Collins New York, USA, 1993.

[Haum98] Haumer, P., Pohl, K. & Weidenhaupt, K. Requirements
Elicitation andValidation with Real World Scenes. |IEEE
Transactions on Software Engineering 24 (12), 1998. pp.
1036-1054.

[Hill99] Hilliard Rich. Aspects, Concerns, Subjects, Views...*. In
proceedings of the 14™ Annual ACM SIGPLAN
Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA"99). Workshop:
Advanced Separation of Concerns, 1999.

[Horl01] Horling B., Benyo B., and Lesser V. Using self-diagnosis
to adapt organizational structures. In 5th International
Conference on Autonomous Agents. Montreal, 2001.
ACM Press. Pp. 529-536.

303

BIBLIOGRAPHY

[Hsia94]

[Hullo2]

Hsia P., Samuel J., Gao J., Kung D., Toyoshima Y. and
Chen C., Formal Approach to Scenario Analysis. IEEE
Software, March-April, 1994. 11(2). pp. 33-41.

Hull, M.E.C, Jackson K., Dick, A.J.J., Requirements
Engineering, Springer, 2002.

[IEEEQ3] The IEEE Computer Society. Computing Curriculum,

[Insf03]

[Ins02a]

[InsfO2b]

[1S001]

Software Engineering. Public Draft 1. Software
Engineering Education Knowledge Software, July 2003.

Insfran Emilio. A Requirements Engineering Approach for
Object-Oriented Conceptual Modeling, PhD Thesis,
Department of Information Systems and Computation,
Valencia University of Technology, 2003.

Insfran E., Diaz 1., Burbano M. Modeling Requirements to
Obtain Conceptual Models (in Spanish). V Workshop
Iberoamericano de Ingenieria de Requisitos y Ambientes
Software (IDEAS’2002). April 2002. pp 1-13.

Insfran E., Pastor O., Wieringa R. Requirements
Engineering-Based Conceptual Modelling. In proceeding
of the Requirements Engineering (RE), March 2002. 7(2):
61-72.

International ~ Standard ISO/IEC 9126: Quality
Characteristics and Guide Lines for their use. Geneve
(Switzerland), 2001.

[Jaco99] Jacobson 1., Booch G., and Rumbaugh J. The Unified

Software Development Process. Addison-Wesley,
Reading, MA, 1999.

[Jaco95a] Jacobson Ivar, Ericsson Maria and Jacobson Agneta, The

Object Advantage: Business Process Reengineering with
Object Technology. ACM Press / Addison- Wesley
Publishing Company, 1995.

304

BIBLIOGRAPHY

[Jaco95b] Jacobson, I. & Christerson, P. A Growing Consensus on
Use Cases. Journal of Object-Oriented Programming,
1995. 8(1): 15-19.

[Jaco94] Jacobson I., Ericsson M., and Jakobson A. The Object
Advantage: Business Process Reengineering with Object
Oriented Technology. Addison-Wesley, Reading, MA,
1994.

[Jaco92] Jacobson I., Christerson M., Jonsson P. and Overgaard G.,
Object Oriented Software Engineering, a Use Case Driven
Approach. Addison Wesley. Reading, Massachusetts 1992.

[Jian06] Jiang L., Topaloglou T., Borgida A., Mylopoulos J.
Incorporating Goal Analysis in Database Design: A Case
Study from Biological Data Management. In proceedings
of 14™ IEEE International Requirements Engineering (RE
2006): Minneapolis, USA. Septermber 2006. Pp. 196-204.

[KamiO2] Kaminka G. A., Pynadath D. V., and Tambe M.
Monitoring teams by overhearing: A multi-agent plan-
recognition approach. Journal of Intelligence Artificial
Research, 17. 2002. pp. 83-135.

[Kiri94] Kirikova, M. and Bubenko, J. A. Software Requirements
Acquisition through Enterprise Modelling. Stockholm
University, Sweden. 1994,

[Kend99] E. Kendall. Role models: Patterns of agent system analysis
and design. BT Technology Journal, October 1999, 17(4):
46-57.

[Klep03] Kleppe A., Warmer J., Bast W. MDA EXPLAINED, the
model driven architecture: practice and promise, Addison
Wesley, ISBN: 0-321-19442-X, Boston, April 2003.

[Kolp03] Kolp Manuel, Paolo Giorgini, John Mylopoulos.
Organizational Patterns for Early Requirements Analysis.
In proceeding of the 15th Conference on Advanced
Information ~ Systems Engineering (CAISE '03),
Klagenfurt/Velden, Austria 2003. Pp. 617-632.

305

BIBLIOGRAPHY

[Kolp01] M. Kaolp, J. Castro, and J. Mylopoulos. A social
organization perspective on software architectures. In
First Int. Workshop From Software Requirements to
Architectures (STRAW’01), Toronto, Canada 2001. pp. 5-
12.

[Kors99] Korson, T.. Constructing Useful Use Cases.

http://software-
architects.com/publications/korson/usecase3. (1999).

[Koto98] Kotonya G. and Somerville 1. Requirements Engineering
process and techniques, JnonWiley & Sons, USA 1998.

[Koub00] Koubarakis M. and Plexousakis D., A Formal Model for
Business Process Modeling and Design. In proceeding of
the 12th Conference on Advanced Information Systems
Engineering CAISE 2000, Stockholm, Sweden 2000, pp.
142-156.

[Kous04] Koushik Sen, Abhay Vardhan, Gul Agha, and and Grigore
Rosu. Efficient Decentralized Monitoring of Safety in
Distributed Systems. In proceeding of the 26th
International Conference on Software Engineering
(ICSE'04), IEEE, 2004.

[Kula03] Kulak Daryl Eamonn Guiney, Use Cases requirements in
context. Addison-Wesley, USA, 2003.

[Lams01] Lamsweerde A Goal-Oriented Requirements
Engineering: A Guided Tour. Invited minitutorial,
Proceeding 5th IEEE International Symposium on
(RE’01), Toronto, IEEE, August 2001, pp. 249-263.

[Lams00] van Lamsweerde, A., Requirements Engineering in the
Year 00: A Research Perspective. In Proceeding of the 22
Int. Conference Software Engineering, Limerick, ACM
Press, June 2000.

[Lams98] van Lamsweerde, A., Darimont, R., and Letier, E.
Managing Conflicts in Goal-Driven Requirements
Engineering. IEEE Transactions Software Engineering

306

BIBLIOGRAPHY

24(11). Special Issue on Managing inconsistency in
Software Development, November 1998. pp. 908-926.

[Lams95] van Lamsweerde, A., Darimont, R. and Massonet, P.,

Goal-Directed Elaboration of Requirements for a Meeting
Scheduler: Problems and Lessons Learnt. In 2w Int.
Symposium on Requirements Engineering (RE’95), York,
UK, March 1995. pp. 194-203.

[Larm01] Larman Craig. APPLYING UML AND PATTERN An

[Leit97]

[Lete04]

[Louc98]

[Louc95]

introduction to Object-Oriented Analysis and Design and
the Unified Process. 2nd Edition. Prentice Hall PTR.
Upper Saddle River, NJ, USA 2001.

Leite, J.C.S.P. Rossi, G. Balaguer F. Maiorana V.,
Enhancing a requirements baseline with scenario,
Proceedings of the Third IEEE International Symposium
on Requirements Engineering RE97, IEEE Computer
Society Press, (1997), pp. 44-53.

Letier E. and A. van Lamsweerde. Reasoning about
Partial Goal Satisfaction for Requirements and Design
Engineering. Proceedings of FSE’04, 12th ACM
International Symp. on the Foundations of Software
Engineering, Newport Beach (CA), Nov. 2004, pp. 53-62.

Loucopoulos P., Kavakli V., Prekas N., Dimitromanolaki
l., Yilmazturk C., Rolland C., Grosz G., Nurcan S., Beis
D. and Vgontzas G., The ELEKTRA project: Enterprise
Knowledge Modelling for change in the distribution unit of
Public Power Corporation. In 2nd IMACS International,
Conference on Circuits, Systems and Computers (IMACS-
CSC'98). Athens, Greece 1998. pp. 352-357.

Loucupoulos, P. & E. Kavakli. Enterprise Modelling and
Teleological Approach to Requirements Engineering,
International Journal of Cooperative Information Systems,
4(1), March 1995. pp. 45-79.

307

BIBLIOGRAPHY

[Luba93] M. Lubars, C. Potts and Richter. A review of the state of

the practice in requirements modelling. In proceeding of
IEEE International Symposium on requirements
Engineering RE’93, pp. 2-14, San Diego California,
January 1993. IEEE Computer Society Press.

[Magn00] Magnus Penker, Hans-Erik Eriksson. Business Modeling

With UML: Business Patterns at Work. OMG Press John
Wiley & Sons, ISBN: 0-471-29551. USA 2000.

[Maid04] Maiden, N., Jones, S., Manning, S., Greenwood, J. &

Renou, L. (2004). Model-Driven Requirements
Engineering: Synchronising Models in an Air Traffic
Management Case Study. In proceeding of the 16th
International Conference on Advanced Information
Systems Engineering (CAISE'04) Riga, Latvia 2004. pp.
368-383.

[MartO4a] Martinez A., Pastor O., and Estrada H. A pattern language

to join early and late requirements. In proceeding of the
VIl Workshop on Requirements Engineering (WER 04),
Tandil Argentina 2004. ISBN: 950-658-147-9. pp 51-64.

[Mart04b] Martinez A., Pastor O., and Estrada H. Isolating and

[Mart03]

[Mart98]

specifying the relevant information of an organizational
model: a process oriented toward information system
generation. In International Conference on Computational
Science ans its Aplications (ICSSA 2004). Perugia, Italy
Springer LNCS 3046, pp. 783-790.

Martinez A., Castro J., Pastor O., Estrada H. Closing the
gap between Organizational Modeling and Information
System Modeling, in VI Workshop on Requirements
Engineering (WER 2003). Piracicaba SP, Brasil, 2003. pp
93-108.

Martin Robert, Dirk Riehle, Frank Buschmann, and John
Vlissides (eds). Patterns Languages of Program Design 3,
Addison-Wesley, 1998.

308

BIBLIOGRAPHY

[McDe94] McDermid John. Software Engineer’s Reference Book.
Butterworth-Heinemann Ltd; New Ed edition. USA 1994.

[Mesz98] Meszaros G. and J. Doble, A Pattern Language for Pattern
Writing, pages 529-574. Pattern Languages of Program
Design 3, Addison Wesley, Robert Martin, D. Riehle and
F. Buschmann ISBN 0-201-310112, USA, 1998.

[Moli03] Molina P. J., User Interface Specification: From
Requirements to Code Generation”, PhD. Thesis,
Department of Information Systems and Computation,
Valencia University of Technology, 2003 (in Spanish).

[Mylo01] Mylopoulos, J., Kolp, M. and Castro, J., UML for Agent-
Oriented Software Development: The Tropos Proposal,
Proceeding of UML 2001.

[Mylo99] Mylopoulos, J., Chung, L., and Yu, E. From Object-
Oriented to Goal-Oriented Requirements Analysis.
Communications of the ACM, 42(1), January 1999. pp.
31-37.

[Nurc98] Nurcan S., Grosz G., and Souveyet C. Describing business
processes with a guided use case approach. In
Proceedings of the 1998 Conference on Advanced
Information Systems Engineering, volume 1413 of Lecture
Notes in Computer Science, pages 339-362, Berlin, 1998.

[Oliv07] OlivaNova Model Execution System. CARE
Technologies. Retrieve November 3, 2005, from:
http://www.care-t.com.

[Oliv03] Olivé Antoni, Derivation Rules in Object-Oriented
Conceptual Modeling Languages. The 15th Conference on
Advanced Information Systems Engineering (CAISE '03),
Klagenfurt/Velden, Austria 2003, pp. 404-420.

[OMGO01] OMG. Model Driven Architecture (MDA) document
number ormsc/2001-07-01, 2001.

309

BIBLIOGRAPHY

[Orti01]

[Past02]

[Past01]

[Past99]

[Past98]

[Past97]

[Past96]

Ortin M. J., Garcia M. J., Moros B., Nicol&s J. EI modelo
de Negocios como base del Modelos de Requisitos:
utilizando UML. Jornadas de Ingenieria de Requisitos
Aplicada, Sevilla, Junio, 2001.

Pastor O., Martinez A., Estrada H. Generacion de
Especificaciones de Requisitos de Software a partir de
Modelos de Negocios. Gerencia Tecnoldgica e
Informatica, Num. 1, Vol. 1. 2002. ISSN 657-82364. Pp.
53-65.

Pastor O., Gémez J., Insfran E. And Pelechado V., The
OO-Method approach for Information Systems Modeling:
from Object-Oriented Conceptual Modeling to Automated
Programming. Information System, Elsevier, 200. 26(7):
507-534.

Pastor O., Insfran E., Pelechano V., OO-Method: an
software production environment combining conventional
and formal methods. In proceeding of the 9th Conference
on Advanced Information System Engineering (CAISE
99), Barcelona, Espafia, 1999.

Pastor O., Pelechano V., Insfran E., and Gémez J., From
Object-Oriented Conceptual Modeling to Automated
Programming in Java. 17th Int. Conference on Conceptual
Modeling (ER"98), Singapore, 1998.

Pastor O., Insfran E., Pelechano V., Romero J. and
Merseguer J. OO-Method: An OO Software Production
Environment Combining Conventional and Formal
Methods. In proceding of the 9th Conference on Advanced
Information Systems Engineering (CAISE'97). Barcelona,
Spain 1997.

Pastor O., Pelechano V., Bonet B., Ramos I. An OO,
Methodological Approach for Making Automated
Prototyping Feasible. Proceedings of DEXA96, Springer-
Verlag, 1996.

310

BIBLIOGRAPHY

[Past95] Pastor O., Ramos I., OASIS 2 (2.2): A Class-Definition
Language to Model Information Systems Using an Object-
Oriented Approach, 3" Edition, Servicio de Publicaciones,
Technical University of Valencia, Spain, 1995.

[Pele01] Pelechado V., Tratamiento de Relaciones Taxondmicas en
entornos de produccion Automatica de software. Una
aproximacion basada en patrones. PhD thesis, Department
of Information Systems and Computation, Valencia
University of Technology. December 2003.

[Pott94] Potts, C., K. Takahashi and Antdon A. I|. Inquiry-Based
Requirements Analysis. IEEE Software, March 1994. pp.
21-32.

[Pres03] Pressman Roger S., Software Engineering: A
Practitioner's Approach. McGraw-Hill, fifth edition,
December 2003.

[Rati02] Rational Software, Business Modeling with the UML and
Rational suite AnalystStudio, Rational software
Corporation. From web site:

http://www.cs.unibo.it/people/faculty/cianca/wwwpages/la
bspo/BusinessModeling.pdf. September 2002.

[REO2] RE’02, IEEE International Requirements Engineering
Conference, http://www.re02.org/

[Rieh96] Riehle D. Zllighoven H. Understanding and Using Patterns
in Software development. Theory and practice of object
Systems, 1996. 2(1):3-13.

[Robe99] Robertson S. And Robertson J., Mastering the
Requirements Process, Addison Wesley, 1999.

[Robi04] Robinson N. William, Elfson Greg. Goal Directed Analysis
with Use Cases. In Journal of Object Technology, 2004.
5(3): 125-142.

311

BIBLIOGRAPHY

[Roll99a] Rolland R., Souveyet, C., Plihon, V., Method
Enhancement with Scenario Based Techniques. In
proceedings of the 11th International Conference on
Advanced Information System Engineering (CAISE’99),
Germany, 1999, pp 14-18.

[Roll99b] Rolland, C., and N. Prakash. From Conceptual modelling
to requirements engineering. Technical report series 99-
111, CREWS, 1999.

[Roll98c] Rolland, C., Souveyet, C. and Ben Achour, C., Guiding
goal modeling using scenarios. IEEE Trans. Software
Engineering, December 1998. 24(12): 1055-1071.

[Ross77] Ross D.T. and Schoman K.E. Structured Analysis for
Requirements Definition. IEEE Transaction on Software
Engineering, 1997. 3(1): 6-15.

[Rumb98a] Rumbaugh J., Blaha M., Premerlani W., F. Eddy, W.
Lorensen, Object Oriented Modeling and Design. Prentice
Hall. ISBN: 84-7829-037-0. Spain 1998.

[Rumb98b] Rumbaugh J., Jacobson 1., and Booch G. The Unified
Modeling Language Reference Manual. Addison-Wesley,
1998.

[Rumb91] Rumbaugh J., Blaha M., Premerlani W., Eddy F., and
Lorensen W. Object-Oriented Modeling and Design.
Prentice-Hall, Englewood Cliffs, New Jersey, 1991.

[Sanc03] Sanchez D. J. Validacion de requisitos de usuario mediante
técnicas de transformacién de modelos y prototipacion
automdtica de interfaces de usuario. PhD Thesis,
Department of Information Systems and Computation,
Valencia University of Technology, February 2003.

[SakaB80] Sakai Hirotaka. Entity-Relationship approach to the
Conceptual Schema Design. ACM SIGMON Conference.
Santa Monica, California 1980. pp 1-8.

312

BIBLIOGRAPHY

[Samp05] Sampaio A., Rashid A., Rayson P. Early-AIM: An
approach for Identifying Aspects in Requitements. The
13th IEEE International Requirements Engineering
Conference (RE'05), September 2005, Paris France,
pp.487-488.

[Sann02] Sannicold F., Perini A., Giunchiglia F. The Tropos
Modeling Language. A user guide. Technical Report
#DIT-02-0061, University of Trento, 2002.

[Sant02] Santander V. F. A., Castro J.: Deriving Use Cases from
Organizational Modeling. 10th Anniversary IEEE Joint
International Conference on Requirements Engineering
(RE 2002), Essen, Germany. September 2002. pp. 32-42.

[Sant01] Santander V., Jaelson B. C., Developing uses cases from
organizational modelling. Proceedings of the IV
Workshop on Requirements Engineering (WER 2001),
Buenos Aires Argentina, November 2001.

[Schm95] Schmidt D., Using design patterns to develop reusable
object-oriented communication software. Special issue on
object-oriented experiences and future trends, 38(10),
ACM Press New York, NY USA, October 1995, pp. 65-
74.

[Seli03] Selic B., The pragmatics of Model-Driven Development,
IEEE Software, Vol. 20, No. 5, pp. 19-25, 2003.

[Serd91] Serdanas A. and Serdanas C. and Gouveia. OBLOG Object-
Oriented Logic: An informal introduction. Technical
Report, INESC, Lisbon (1991).

[Shar02] Sharma R. Microsoft SQL Server 2000: A Guide to
Enhancements and New Features. Pearson Education;
Pap/Cdr edition March 2002.

[Sich02] Sichman J. S. and Conte R. Multi-agent dependence by
dependence graphs. In Proceeding of the Autonomous
Agents and Multi-Agent Systems (AAMAS2002).
Boulogna, Italy, 2002. ACM. pp 483-490.

313

BIBLIOGRAPHY

[Some05] Stéphane S. Somé: Use Cases based Requirements
Validation with Scenarios. The 13th IEEE International
Requirements Engineering Conference (RE'05), September
2005, Paris France, pp. 465-466.

[Stee96] Steeg Martin. The Conceptual Database Design Optimizer
CoDO- Concepts, Implementation, Application. In
proceedings of the 15" International Conference on
Conceptual Modeling (ER 1996). Vol. 1157, Cottbus,
Germany, USA, October 1996. Pp. 105-120.

[SuttO4] Sutton M. Stanley Jr. and Rouvellou Isabelle. Chapter 21:
Concern Modeling for Aspect-Oriented Software
Development. Editors Robert E. Filman, Tzilla Elrad,
Siobhdn Clarke and Mehmet Aksit. Aspect-Oriented
Software Development. Addison Wesley Profesional,
October 06, 2004.

[Thay02] Thayer Richard H., Dorfman Merlin, Dixie Garr, Software
Engineering. Volume 1, the Development Proces. IEEE
Computer Society Press. Wiley-IEEE Computer Society
Press Wiley Publisher. March 2002.

[UMLO7] OMG’s Issue Reporting Procedure. Unified Modeling
Language: Superstructure, version 2.1.1. February 2007.
http://www.omg.org/docs/formal/07-02-03.pdf

[UML99] UML Specification.
http://www.rational.com/uml/index.jtmpl. We have
referenced V1.3 Alpha R5, March 1999 in this paper. pp.
2.113- 2.123.

[Urloe] Appleton Brad. Patterns and Software: Essential Concepts
and Terminology.

http://www.cmcrossroads.com/bradapp/docs/patterns-
intro.html. Last access May 2006.

[WMod07] WIKIPEDIA The Free encyclopedia. Website:
http://en.wikipedia.org/wiki/Modularity %28disambiguati
on%29 Last access August 2007.

314

BIBLIOGRAPHY

[WOpt07] WIKIPEDIA The Free encyclopedia. Website:
http://en.wikipedia.org/wiki/Optimization. Last _access

August 2007.

[Yu00] Yu, E., Liu, L. Modelling Trust in the i* Strategic Actors
Framework. Proceeding of the 3rd Workshop on
Deception, Fraud and Trust in Agent Societies at
Agents2000, Barcelona, Spain, 2000, pp. 175-194.

[Yu98] Yu, 1998. Why Agent-Oriented Requirements Engineering.
In proceeding of the 4th International Workshop on
requirements Engineering: Foundations of Software
Quality, Pisa, Italy E. Dubois, A.L. Opdahl, K. Polh, eds
Presses Universitaires de Namur (1998) 15-22.

[Yu97] Yu Eric, Towards Modelling and Reasoning support for
Early-Phase Requirements Engineering. Proceedings of
the 3rd IEEE International Symposium on Requirements
Engineering (RE'97) pp. 226-235 .IEEE Computer Society
Washington, DC, USA 97.

[Yu95] Yu Eric, Modelling Strategic Relationships for Process
Reengineering, PhD Thesis, University of Toronto,
Toronto, Canada, 1995.

[Yu94] Yu S. K. Eric, Mylopoulos John. Toward Modelling
Strategic ActorRelationship forinformation System
Development —with Examples from Business Process
Reengineering. 4™ Workshop on Information Technologies
and Systems (WITS 94), Vancuver Canada, December
1994.

[Zave97] Zave P. Classification of Research Efforts in Requirements
Engineering. ACM Comput. Surv. (1997). 29(4): 315-321.

315

316

List of figures

FIGURE 1.1 SUMMARY OF PROCESS DEVELOPED IN THIS THESIS ...ccccevvunnee.. 13

FIGURE 2.1 STEPS TO INTEGRATE I*ORGANIZATIONAL MODEL AND THE UML

USE CASE MODELS [SANTOL] ..oooviiveieiivieieie e 21
FIGURE 2.2 TRACEABILITY RELATIONSHIPS AMONG AN ORGANIZATIONAL
MODEL AND A REQUIREMENTS MODEL......ccoiiveeeiiieeeeitreeeiirieeesnneeesnreeens 24

FIGURE 2.3 PROCESS DIAGRAM WHICH ENABLES TO OBTAIN THE USE CASES.

FIGURE 2.7 USE CASE META-MODEL ...vvvviiieiiiiiiieieee e siteteee e s s eevieeeee e s svaneeas
FIGURE 2.8 BUSINESS PROCESS META-MODEL ...vccciivviiiiivieeirieeesiveeesennieessnees
FIGURE 2.9 THE SUB-MODELS COMPRISING THE ENTERPRISE MODEL ...
FIGURE 2.10 EXAMPLE OF THE INITIAL CONCEPTUAL MODEL......ccveeeiinnnnee..
FIGURE 2.11 GBRAM MODELING ACTIVITIES ..vvviiiiveiicirieesiriee e sree s serveeesanees

BUSINESS ... tttteiieeiiitttttie e e e etbbete s e s s s sbbareeeseseababeeesesssbbssesesssabbreessesasanes 54
FIGURE 3.2 THE EARLY REQUIREMENTS PHASE PROCESSEScccvvviiirvieeinnne. 55
FIGURE 3.3 GRAPHIC NOTATIONS OF THE BASIC CONCEPTS.....cccvvveeeeeiireeenn. 62
FIGURE 3.4 GRAPHIC NOTATIONS OF THE DEPENDENCY RELATIONSHIPS......63
FIGURE 3.5 GRAPHIC NOTATIONS OF THE INTENTIONAL RELATIONS 63
FIGURE 3.6 GOAL ANALYSIS SCHEMA ...vvviiiiiiiiiieiee e e siirtieee e s ssirreese s svsnenas 66
FIGURE 3.7 REFINEMENT LINKS....uvtiiiitiieiiiieeiitieeeeree e sireessibreesssvesssssssessnes 69
FIGURE 3.8 PARTIAL VIEW OF THE ACTOR DIAGRAM FOR THE CAR RENTAL

CASE STUDY wvtiiiittrieiittieesetiesesbtt e s satte s sbbes s sabaessabaesssbeeessabaessbbeesssraeesans 70
FIGURE 3.9 PARTIAL VIEW OF THE ACTOR DIAGRAM FOR THE CAR RENTAL

(07X =R U0) TP 72
FIGURE 3.10 QUALITY FACTOR CONTRIBUTIONSceivierieerieesreeneneseneenenenns 74
FIGURE 3.11 ANALYZING POINTS OF VIEW OF THE INVOLVED ACTORS.......... 78

FIGURE 3.12 PARTIAL VIEW OF THE ORGANIZATIONAL MODEL WITH THE
SELECTED RELEVANT PLANS ...ccttiitiiiiiiiiiieiieeeeeee e eanens 80

LIST OF FIGURES

FIGURE 4.1 MDA SCHEMAciiiiiiieiitiee ettt ettt e s eabae e nns 86
FIGURE 4.2 STRUCTURE OF INTERNAL AND EXTERNAL PLAN.......ccvveeiiinnrnen. 91
FIGURE 4.3 EXAMPLE OF AN ATOMIC PLAN AND A COMPOSITE GOAL 91
FIGURE 4.4 EXAMPLE OF A PLAN WITH AN ASSOCIATED DEPENDENCY 92
FIGURE 4.5 SET OF PATTERNS OF THE FELRE PATTERN LANGUAGE 94
FIGURE 4.6 EXAMPLE OF INORDER TRAVERSING0cccoiivieeiitreeeireeeeinneeesnnes 96
FIGURE 4.7 IDENTIFICATION OF PATTERNS IN AN ORGANIZATIONAL MODEL 97
FIGURE 4.8 EXAMPLE OF THE ATOMIC PLAN......0eeiiiteteiitreeeiirreesireessnrneeennns 100
FIGURE 4.9 AN EXAMPLE OF AN ATOMIC PLAN IN THE CAR RENTAL CASE
LU0) 2T 100
FIGURE 4.10 SCENARIOS OF AN ATOMIC PLAN INTO AN ORGANIZATIONAL
1Y L]] =1 RPN 102
FIGURE 4.11 AN EXAMPLE WHEN THE EMPLOYEE ACTOR ACTS AS PROVIDER
OF INFORMATION) ...c.tintetestenietesiet e en e 104
FIGURE 4.12 AN EXAMPLE WHEN THE EMPLOYEE ACTOR ACTS AS REQUESTER
OF INFORMATION) ...c.ttntetesteneetesie et sr e er e en e 104
FIGURE 4.13 AN EXAMPLE WHEN THE EMPLOYEE ACTOR DOES NOT HAVE
ANY INTERACTION WITH THE DELEGATED PLANcovvviiiiiieccireeeeennie, 105
FIGURE 4.14 AN EXAMPLE WHEN OTHER ACTORS HAVE INTERACTION WITH
THE DELEGATED PLAN L.tiiittieiitieeiitiee e sttt s stee e s iate s s sbaeesssbesssebaeeesnnas 106
FIGURE 4.15 EXAMPLE OF A COMPOSITE PLAN ...eciiiveiiiitreeeirneeeireeesnnneeennns 106
FIGURE 4.16 AN EXAMPLE OF A COMPOSITE GOAL IN THE CAR RENTAL CASE
STUDY uttttiiittieeiittee s itreesetbe s e s bae e s bt e e e s bbee s sabbeesabbeeesabaeesstbaeesbbeessareeean 107
FIGURE 4.17 SCENARIOS OF A COMPOSITE ELEMENT INTO AN
ORGANIZATIONAL MODEL....ccvviiiitiieeiiiiesiiriessetbesesineessssseessseeessaneees 109
FIGURE 4.18 EXAMPLE OF THE DEPENDER ACTOR PLAN AND THE DEPENDEE
ACTOR PLAN TO BE AUTOMATED ..uvvviiiiiiiiiiiieieesiinirreeeeeessinsneeeeessennns 111
FIGURE 4.19 AN EXAMPLE OF THE DEPENDER-DEPENDEE ELEMENT
DELEGATED PATTERN IN THE CAR RENTAL CASE STUDYcoovvvveveeeennne 112
FIGURE 4.20 SCENARIOS OF THE DEPENDER- DEPENDEE ELEMENT
DELEGATION PATTERN.....ccitiiiiiiiiii it e ee e s eee e aaibaaaebbebbbeesbrensesnneees 114
FIGURE 4.21 BEFORE AND AFTER DELEGATING THE PLANS OF THE
DEPENDER/DEPENDEE ACTORS TO THE SSA.....oviiciecee et 115
FIGURE 4.22 ORGANIZATIONAL MODEL AFTER APPLYING STEP 2.1 (THE O-
DER ACTOR ACTS AS PROVIDER OF INFORMATION)cvcvivriveiinsrnanens 116
FIGURE 4.23 ORGANIZATIONAL MODEL AFTER APPLYING STEP 2.2 (THE O-
DEE ACTOR ACTS AS PROVIDER OF INFORMATION).....cccvevverieirrervearnes 116
FIGURE 4.24 ORGANIZATIONAL MODEL AFTER APPLYING STEP 2.3 (BOTH
ACTORS INTERACT WITH THE SSA)...cctiiieiieeieciesiresie e 117

318

LIST OF FIGURES

FIGURE 4.25 ORGANIZATIONAL MODEL BEFORE AND AFTER APPLYING THE
STEP 1 OF THE SECOND ALTERNATIVE ...uvvviiiiiiiiiiiieeeessritiee e e snananeees 118

FIGURE 4.26 ORGANIZATIONAL MODEL AFTER APPLYING STEP 2 OF THE
SECOND ALTERNATIVE ...uvviiiiieieiitreeeiiree s sireeesetbeessnneessnsaeesnneessaneeenn 119

FIGURE 4.27 ORGANIZATIONAL MODEL BEFORE AND AFTER TO APPLY THE
STEP 1 OF THE THIRD ALTERNATIVEvvieiirieeiitieeecrreesirreeesireeessnree e 120

FIGURE 4.28 ORGANIZATIONAL MODEL AFTER APPLYING STEPS FROM THE
THIRD ALTERNATIVE OF THE DEPENDER-DEPENDEE ELEMENT

DELEGATION PATTERN......citiiiiiiiiiiiiiie et eeesee s aiibaaaabbb s bbeesbreesesnneees 121
FIGURE 4.29 ORGANIZATIONAL MODEL AFTER APPLYING STEPS OF THE

PATTERN ...cutttieitttee ittt e sitreeeetbee e s iabeeestbeessbaeessabseesaabaeesbbesesbeeessareeean 122
FIGURE 4.30 EXAMPLE OF SECOND ALTERNATIVE.... ..123
FIGURE 4.31 EXAMPLE OF SECOND ALTERNATIVES IN THE CAR RENTAL CASE

311015 2 124

FIGURE 4.32 EXAMPLE OF A DEPENDER ACTOR PLAN TO BE AUTOMATED ..124
FIGURE 4.33 AN EXAMPLE OF THE DEPENDER ELEMENT DELEGATION

PATTERN IN THE CAR RENTAL CASE STUDY ..vvviiieeiiiiiieeeeesinirneeeeenns 125
FIGURE 4.34 SCENARIOS OF THE DEPENDER ELEMENT DELEGATION PATTERN
.. 127
FIGURE 4.35 ORGANIZATIONAL MODEL BEFORE APPLYING STEP 2.1 (THE O-
DEE ACTOR ACTS AS PROVIDER OF INFORMATION).....ccvvrvneraeerernennenns 128
FIGURE 4.36 ORGANIZATIONAL MODEL AFTER APPLYING STEP 2.2 (THE O-
DER ACTOR ACTS AS PROVIDER OF INFORMATION)ccvvivrerierrennenaenns 129
FIGURE 4.37 TWO EXAMPLES WHERE THE OBJECT DEPENDUM IS A PLAN OF
THE DEPENDER ELEMENT DELEGATION PATTERNcocvviiiiiieeiireeeeinnes 130
FIGURE 4.38 THE O-DEE ACTOR PLAYS THE ROLE OF PROVIDER OF
INFORMATIONoitttiiteeeieittreee e s s etbbeeseessssabbeseesesesabbaessesssnbaresesssasnns 131
FIGURE 4.39 THE O-DER ACTOR PLAYS THE ROLE OF PROVIDER OF
INFORMATION ...ttt ietieeieeee e et bbb as e s besesssaseseeeeseeeeeeeeseeaaseaaeeeas 131
FIGURE 4.40 ORGANIZATIONAL MODEL AFTER APPLYING ALL STEPS OF THE
PATTERN ...titiiiiiiiiiiee et ee et ettt ettt ettt et e et et s et e s s e e s s s aba b bbb bbb ersbbeaarsnreees 132
FIGURE 4.41 EXAMPLE OF THE DEPENDER ACTOR PLAN TO BE AUTOMATED
.. 132
FIGURE 4.42 EXAMPLE OF THE DEPENDEE ELEMENT DELEGATION PATTERN IN
THE CAR RENTAL CASE STUDY uviiiiiiieeiiieieeitieesiiree s stee e s siree s ssrae s snnnas 133
FIGURE 4.43 SCENARIOS OF THE DEPENDEE ELEMENT DELEGATION PATTERN
.. 135

FIGURE 4.44 ORGANIZATIONAL MODEL AFTER APPLYING STEP 2.1 (THE O-
DER ACTOR ACTS AS REQUESTER OF INFORMATION)ucevvveieiireienne.
FIGURE 4.45 ORGANIZATIONAL MODEL AFTER APPLYING STEP 2.2.

319

LIST OF FIGURES

FIGURE 4.46 AN EXAMPLE OF THE PATTERN WHEN THE DEPENDUM OBJECT IS

A PLAN . ettt s e e e e e s e bbb r e e e e s ar e e e e e aabaes 137
FIGURE 4.47 AN EXAMPLE OF THE ORGANIZATIONAL MODEL AFTER
APPLYING STEP 3 OF THIS PATTERNcciiviieirieeiitreeeereeeeenreeeeereeeeennnes 138
FIGURE 4.48 ORGANIZATIONAL MODEL AFTER APPLYING ALL THE STEPS OF
THE PATTERN. 11etiitttieiteee ittt e s steeesetveessiteesesbaeessareessbeeessnbessssbneeesanns 139
FIGURE 4.49 PARTIAL VIEW OF THE ORGANIZATIONAL MODEL, WHICH
INCLUDES THE SOFTWARE SYSTEM ACTOR.....uvvtiiitieeeireeeeinreeesirreeeenns 141
FIGURE 5.1 PROCESSES OF THE LATE REQUIREMENTS PHASE.........ccoviveeenne 147
FIGURE 5.2 SCHEMA OF THE MONITORING PLANS IN THE ORGANIZATIONAL

FIGURE 5.4 THE CONCERNED OBJECT MODEL (ACTOR DIAGRAM)....
FIGURE 5.5 CONCERNED OBJECT MODEL (GOAL DIAGRAM)
FIGURE 5.6 THE SCHEMA OF THE GENERATION PROCESS OF THE CONCERNED
[0]=0] =log 5511V (0] 0] = EE 157
FIGURE 5.7 THE EXTENDED ACTOR DIAGRAM CONTROL FLOW CHART 159
FIGURE 5.8 EXTENDED GOAL DIAGRAM CONTROL FLOW CHART
FIGURE 5.9 EXAMPLE FOR EXTENDING A RESOURCE DEPENDENCY
FIGURE 5.10 EXAMPLE FOR EXTENDING A COMPOSITE PLANccvvveiivieeenns
FIGURE 5.11 EXAMPLE FOR EXTENDING A GOAL IN A MEANS-END LINK.....163
FIGURE 5.12 EXAMPLE OF TWO CONCERNED OBJECTS...uvvveieeeiiiirrrieeeesiinnns 164

FIGURE 6.1 THE ONME CONCEPTUAL MODEL GENERATION APPROACH.....171
FIGURE 6.2 THE ONME AS A MDD APPROACHcccciiiiiiiiie e ciitriee e
FIGURE 6.3 CLASS DIAGRAM FOR THE LIBRARY SYSTEMccvvveiivireiiiieneinns
FIGURE 6.4 STATE TRANSITION DIAGRAM FOR THE BOOK CLASS.........ccuve.
FIGURE 6.5 STATE TRANSITION DIAGRAM FOR THE READER CLASS .
FIGURE 6.6 PATTERN LANGUAGE FOR PRESENTATION MODEL (SOURCE

[IMOLIOS]) woveeeeiiie ettt 181
FIGURE 6.7 OVERVIEW OF THE METHOD TO LINK BUSINESS AND SYSTEM

5= = [l 07 1 (0] N L TR 183
FIGURE 6.8 THE SCHEMA OF THE GENERATION PROCESS OF THE ONME

CONCEPTUAL MODEL .1viiivviiiiiteeesitreeesitreessireeesetbesssbnessssseeessssesssnseeean 186
FIGURE 6.9 LIFETIME OF THE CUSTOMER CONCERNED OBJECTcccivvverinns 188
FIGURE 6.10 ATTRIBUTES IN TWO DIFFERENT CONCERNED OBJECTS.......... 189
FIGURE 6.11 AN EXAMPLE OF APPLYING AN ALGORITHM TO RECONCILE

CONCERNED OBJECT BY THE OPTIMIZATION CRITERIONcccvveiiuvenen. 192

320

LIST OF FIGURES

FIGURE 6.12 CONCERNED OBJECT DIVIDED INTO ANOTHER CONCERNED

(0] 23] =0 E TR 196
FIGURE 6.13 EXAMPLE OF CLASSES GENERATED FOR CAR RENTAL CASE
STUDY uttitiiittieeiittee s ibe e e setbe e e s be e e s atb e e e s baee s sabaeesatbeeesbaeessabaeesbbeessabeeean 200
FIGURE 6.14 EXAMPLE OF ATTRIBUTES GENERATED FOR THE CLASS
CUSTOMER ..ttt ettieecttee st e et e s satae st e e s s bae e s saba e e s eabeeesbbeeeenbaeessareeean 201
FIGURE 6.15 EXAMPLE OF AN EVENT GENERATED FOR THE CLASS CUSTOMER
.. 202
FIGURE 6.16 EXAMPLE OF AN ASSOCIATED RELATIONSHIP......cccvvvvreeeriinnns 203
FIGURE 6.17 EXAMPLE OF AN INHERITANCE RELATIONSHIPccvvvveeeiiiinnnne 205
FIGURE 6.18 EXAMPLE OF AN INHERITANCE RELATIONSHIPccvveeiirveeenns 205
FIGURE 6.19 PARTIAL VIEW OF THE CONCERNED OBJECT MODEL OF THE CAR
RENTAL CASE STUDY ..coutiieiitieeiitreeesreeeesteeesstbesssbaseessnsessssssessassesssnns 207

FIGURE 6.20 CONCEPTUAL MODEL FOR THE OPTIMIZATION CRITERION.....217
FIGURE 6.21 CONCEPTUAL MODEL FOR THE MODULARITY CRITERION 218

FIGURE 7.1 OVERVIEW OF THE REQUIREMENTS ENGINEERING GENERATION

FIGURE 7.2 GRAPHICAL REPRESENTATION OF FUNCTIONAL GROUP
FIGURE 7.3 CREATION OF THE FUNCTIONAL GROUPS IN THE EXTENDED

ACTOR DIAGRAM L.vviiiittiie ittt ettt sttt e e s sabee s s ebae e e neas 232
FIGURE 7.4 CUSTOMER MANAGEMENT FUNCTIONAL GROUPvvvvveeirnnnee 232
FIGURE 7.5 USE CASES CREATED BY DEFAULT ..vvvviiieiiiiiiiee e e eciirrrieee s seannes 233
FIGURE 7.6 EXAMPLE OF USE CASES CREATED BY DEFAULT FOR THE

CUSTOMER MANAGEMENT FUNCTIONAL GROUP.cccvvveeeeiiiirereeeenns 233
FIGURE 7.7 EXAMPLE OF A USE CASE GENERATED FROM AN INTERNAL PLAN.

.. 235
FIGURE 7.8 EXAMPLE OF A USE CASE GENERATED BY A MONITORING PLAN

.. 236
FIGURE 7.9 EXAMPLE FOR DETERMINING A FUNCTIONAL GROUP FOR A USE

CASE 1t iuteei ettt e ettt e s st e e e st e e e s b e e e e ebb e e e e bb e e e et b e e et b e e e e bbe e e aaba e e s abre e e narreean 237
FIGURE 7.10 NOTATION OF AN ACTOR IN UML ...ccooiiiiiiiiiiece e 238
FIGURE 7.11 EXAMPLE FOR DISCOVERING AN ACTOR OF A USE CASE......... 239
FIGURE 7.12 EXAMPLE OF THE INCLUDE RELATIONSHIP.....ccvveivivieeiirvenenns 240
FIGURE 7.13 EXAMPLE OF THE «INCLUDE» RELATIONSHIP IN THE CAR RENTAL

CASE STUDY 240
FIGURE 7.14 EXAMPLE OF THE EXTEND RELATIONSHIP241
FIGURE 7.15 EXAMPLE OF THE «EXTEND» RELATIONSHIP IN THE CAR RENTAL

(0751 =51 1[0 0 28 242
FIGURE 7.16 EXAMPLE OF GENERALIZATION RELATIONSHIPSvvvvveeeiiinnnes 243

321

LIST OF FIGURES

FIGURE 7.17 RESOURCE RELATIONSHIP FOR OBTAINING SOME STEPS FOR THE
CREATE CUSTOMER SCENARIO ...vvviiiieiiiiriiee e seirree e e s ssirbees e e s snsvaeeeas 246
FIGURE 7.18 USE CASES OF THE CAR RENTAL CASE STUDY ...vvvivvieeiirieneinns 249

1Yo 0] SO 256
FIGURE 8.2 INSERTION OF THE SSA INTO THE ORGANIZATIONAL MODEL ...258
FIGURE 8.3 PARTIAL VIEW OF THE USE CASE MODEL.....c.vvveveiiiiiiiiieeeeiiinnns 259
FIGURE 8.4 CONCEPTUAL SCHEMA OF THE CONFERENCE REVIEW SYSTEM

(0751 =3 11U 0) 28 263
FIGURE 8.5 STRATEGIC RATIONALE MODEL OF THE GOLF TOURNAMENT

MANAGEMENT CASE STUDY w.vviiiitrieeireieeirieesitreesstreeessneesssrsessassesssnns 267
FIGURE 8.6 ORGANIZATIONAL MODEL GENERATED BY THE APPLICATION OF

THE PATTERN LANGUAGE ...veciivieeiitiee e ettt st siree e stae e sbee e bae e snees 269
FIGURE 8.7 ANOTHER ORGANIZATIONAL MODEL GENERATED BY THE

APPLICATION OF THE PATTERN LANGUAGEcooivieiitiee it 270
FIGURE 8.8 EXAMPLE OF FUNCTIONAL GROUPS DISCOVERED IN THE GOLF

TOURNAMENT MANAGEMENT CASE STUDY ..occoiiivriiieeeieiirieeeeessennnnens 271
FIGURE 8.9 FUNCTIONAL GROUPS AND THE USE CASES DISCOVERED IN THE

GOLF TOURNAMENT MANAGEMENT CASE STUDY ...cooovvvreieieeiiireneneenns 272
FIGURE 8.10 PARTIAL VIEW OF THE CONCEPTUAL MODEL OF THE GOLF

TOURNAMENT MANAGEMENT CASE STUDY ..oocevievvieeeeeeeirrieeeeessenvnneens 273
FIGURE 8.11 ACTOR DIAGRAM OF THE CAR RENTAL CASE STUDY 279
FIGURE 8.12 PARTIAL VIEW OF THE GOAL DIAGRAM FOR THE CAR RENTAL

(07N =R U5) 2T 280

FIGURE 8.13 CONCEPTUAL MODEL WITH THE OPTIMIZATION CRITERIA281
FIGURE 8.14 CONCEPTUAL MODEL WITH THE MODULARITY CRITERIA......282
FIGURE 8.15 PARTIAL VIEW OF THE REQUIREMENTS MODEL OF THE CAR

322

Last of tables

TABLE 2.1 OVERVIEW OF METHODS GENERATING A REQUIREMENTS MODEL

TABLE 3.1 MATRIX OF CONTRIBUTIONSuuviiiieiiiitiirreeessiisrereeesssesssneeseessinnns
TABLE 3.2 EXAMPLE OF THE MATRIX OF CONTRIBUTIONS

TABLE 5.1 DIMENSIONS TO CHARACTERIZE MONITORING PLANScc...... 151
TABLE 5.2 SCENARIO OF CONCERNED OBJECTSvvvieiitiieiirieeiiireeesrenee e 157
TABLE 5.3 TABLE OF SCENARIO CONCERNED OBJECTS.....ccovveeeeeiiiireeeeeenns 164
TABLE 6.1 FUNCTIONAL MODEL EXAMPLEveviiiieeeiiteeecsreeesireeesereeeeenes 179
TABLE 6.2 SCENARIO OF CONCERNED OBJECTS (COBIS)oovvvvariiiriicnenene 187
TABLE 6.3 COMPLETE CONCERNED OBJECTS TABLE (COBJ_OPTIM).......... 191
TABLE 6.4 THE COMPLETE CONCERNED OBJECTS TABLE FOR THE OBJECT
(G101 0] Y =1 O 193
TABLE 6.5 TABLE OF SCENARIOS OF FIGURE 6.19208
TABLE 6.6 APPROPRIATE CONCERNED OBJECTS BY OPTIMIZATION CRITERIA
FOR THE CAR RENTAL CASE STUDY ... uvttiiieiiiiiiiiieeessiinreeesesssisrsnesessnns 215
TABLE 6.7 APPROPRIATE CONCERNED OBJECTS BY MODULARITY CRITERIA
FOR THE CAR RENTAL CASE STUDYuvttiiieiiiiiiriieeessiinreessessssrsnesessnns 216

TABLE 7.1 USE CASE DESCRIPTION STRUCTUREeeeiiitiieiivieeiitieeesree e
TABLE 7.2 EXAMPLE OF THE USE CASE DESCRIPTION STRUCTURE

TABLE 8.1 SPECIFICATION OF THE USE CASE SEND REVIEWccveveviveveennee. 260
TABLE 8.2 SPECIFICATION OF THE RESOURCE NOTIFICATION AND PAPER IN
OASIS LANGUAGE ...ttt ittt ettt sibren e sibbe e eabare s 262

324

Glossary

Actor

Atomic
Elements

Belief

Capabilities

Composite
Elements

Concerns

Contribution

An entity that has strategic goals and
intentionality within the system or the
organizational setting. An actor represents a
physical or a software agent as well as a role or
position.

Those elements that do not need to be
decomposed into other sub-elements.

The actor’s knowledge of the world.

The ability of an actor of defining, choosing and
executing a plan for the fulfillment of a goal,
given certain world conditions and in presence of
a specific event.

Those elements whose execution is carried out
by decomposing it into other sub-elements.

A concern expresses a specific interest in some
topic pertaining to a particular system of interest
(or other subject matter).

It represents a relationship between goals or
plans representing how and how much goals or
plans can contribute, positively or negatively, in
the fulfillment of the goal.

GLOSSARY

Decomposition

Dependency

External
Elements

Goal

Internal
Elements

Information
system

Model
Transformation

It represents a relationship between goals or
plans representing AND/OR decomposition of
root goal/plan into sub-goals/subplans.

It represents a relation between two actors, which
indicates that one actor depends, for some
reason, on the other in order to attain some goal,
execute some plan, or deliver a resource. The
former actor is called the depender, while the
latter is called the dependee. The object around
which the dependency is centered is called
dependum. Dependum can be either goal, or
resource, or task.

Those elements that are represented graphically
in a dependency relationship as dependum.

It represents actors' strategic interests. There are
distinguished hard goals from soft goals, the
second having no clear-cut definition and/or
criteria for deciding whether they are satisfied or
not.

Are those elements that are defined inside the
boundary of an organizational actor.

A software system used to support the activities
in a business.

The process of converting one model to another
model or the same system.

326

Monitoring

Monitoring
System

Pattern

Plan

Requirement

GLOSSARY

An on-going process of reviewing programs’s
activities to determine whether set standards or
requirements are being met.

An on-going system to collect data on a
programs activities and outputs, designed to
provide feedback on whether the program is
fulfilling its functions, addressing the targeted
population, and/or producing those Extra
services intended.

The description of a general solution to a
common problem or issue from which a detailed
solution to a specific problem may be
determined. Software development patterns
come in many flavors, including but not limited
to analysis patterns, design patterns and process
patterns.

It represents, at an abstract level, a way of doing
something. The execution of plan can be a means
for satisfying a goal or a soft goal.

A requirement species how a goal should be
accomplished by a proposed system
Requirements. It also represents the capabilities
that a system must provide in order to satisfy the
goals of stakeholders. An example of an
operation requirement for the goal Corporate
profits maximized is Customer calls should be
handled in less than minutes with the theory that
you can improve the cost-benet to the
corporation.

327

GLOSSARY

Functional
requirement

Nonfunctional
requirement

Resource

Stakeholder

Use Case (in a
information
system)

Use-Case Model

It describes the behavioral aspects of a system

It describes the non behavioral aspects of a
system capturing the properties and constraints
under which a system must operate.

A physical or an informational entity.

A Stakeholder is anyone who claims an interest
in a given enterprise or systems Stakeholders are
those individuals who can share information
regarding the proposed system its
implementation or the problem domain.

A behaviorally related sequence of transactions
performed by an actor in a dialogue with the
system to provide some measurable value to the
actor.

A set of use case, actor and their relations.

328

List of abbreviations and acronyms

CARE
CASE
FELRE
KAQOS

GBRAM
GDRE
MAL
MS

NFR
OASIS

OOMETHOD
OMT
ONME
(6]0)

RE
RETO
SE
SSA
UML
UPVv
YSM

Computer Aided Requirements Engineering
Computer Aided Software Engineering
From Early-Late Requirements

Knowledge Acquisition in an automated
Specification

Goal-Based Requirements Analysis Method
Goal-Directed Requirements Engineering
Modal Actions Logic

Mission Statement

Non-Functional Requirement

Open and Active Specifications of Information
Systems

Object Oriented Methodology

Object Modeling Technique

OLIVA NOVA Model Execution

Object Oriented

Requirements Engineering

Requirements Engineering TOol

Software Engineering

Software System Actor

Unified Modeling Language

Universidad Politécnica de Valencia
Yourdon System Model

