Conceptual Schemas Generation from
Organizational Models 1n an
Automatic Software Production
Process

By Alicia Martinez Rebollar

PhD Thesis

Presented to the Department of Information Systems and
Computation of the Valencia University of Technology, Spain, and
to the Department of Information and Communication Technology

of the University of Trento, Italy in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy in Computer
Science

September 2008

The research reported in this thesis has been financially supported by
the SUPERA project in Mexico, the Valencia University of
Technology, Spain, the enterprise CARE Technologies S.A., and the
University of Trento, Italy.

© Alicia Martinez Rebollar

Printed in Spain
Valencia

Thesis Advisors:
Dr. Oscar Pastor Lopez, Valencia University of Technology, Spain
Dr. Paolo Giorgini, University of Trento, Italy

Thesis Committee:

Dr. John Mylopoulos, University of Trento, Italy

Dr. Xavier Franch, University of Catalonia, Spain

Dr. Jaelson Castro, University of Pernambuco, Brazil

Dr. Juan Sanchez, Valencia University of Technology, Spain

Dr. Vicente Pelechano, Valencia University of Technology, Spain

Abstract

At the present time, software engineering has proposed many
techniques to improve the software development process, but the
final goal has still not been satisfied. In most cases, the final software
product does not satisfy the real needs of the final customers of the
business where the system will be operated.

One of the main issues of current research works is the lack of a
systematic approach to map each modeling concept of the problem
domain (organizational models), into the corresponding conceptual
elements of the solution space (object-oriented conceptual models).
The main objective of this thesis is to provide a methodological
approach that enables the generation of conceptual and requirements
models from organizational descriptions. We use three different, but
complementary disciplines (organizational modeling, software
requirements and conceptual modeling) in order to achieve this
objective.

The thesis describes a requirements elicitation process that enables
analysts to create a business model that represents the current
situation of the enterprise. We consider that this model, which
reflects how the enterprise currently implements its business
processes, is the correct source to determine the expected
functionality of the system-to-be. A process to identify the elements
that are relevant to be automated from the business model is also
proposed in this work. As a result of this process, an intermediate
model is generated in order to represents the software system
requirements.

Finally, we present a set of systematic guidelines to generate an
object-oriented conceptual schema from the intermediate model. We
also explore the generation of a late requirements specification from
the intermediate model as an alternative solution for the thesis
objectives. A specific object-oriented conceptual modeling case tool
(OO-Method) is used to detail the software requirements of the
system-to-be. The OO-Method case tool has also been used to deal
with the aspects that are associated to the generation of object-
oriented conceptual schemas.

The main contribution of the thesis is to make the model
transformation process systematic by proposing a model-driven
based approach that uses rules, algorithms and patterns to derive both
an object-oriented conceptual model and a requirements model from
the organizational context.

Vi

Resumen

Actualmente, la ingenieria de software ha propuesto multiples
técnicas para mejorar el desarrollo de software, sin embargo, la meta
final no ha sido satisfecha. En muchos casos, el producto software no
satisface las necesidades reales de los clientes finales del negocio
donde el sistema operara.

Uno de los problemas principales de los trabajos actuales es la
carencia de un enfoque sistematico para mapear cada concepto de
modelado del dominio del problema (modelos organizacionales), en
sus correspondientes elementos conceptuales en el espacio de la
solucién (modelos conceptuales orientados a objetos).

El principal objetivo de esta tesis es proveer un enfoque
metodoldgico que permita generar modelos conceptuales y modelos
de requisitos a partir de descripciones organizacionales. Se propone
el uso de tres disciplinas, distintas pero complementarias (modelado
organizacional, requisitos de software y modelado conceptual) para
lograr este objetivo.

La tesis describe un proceso de elicitacion de requisitos que permite
al usuario crear un modelo de negocios que representa la situacion
actual del negocio (requisitos tempranos). Nosotros consideramos
que este modelo, el cual refleja la forma en la que se implementan
actualmente los procesos de negocio, es la fuente correcta para
determinar la funcionalidad esperada del sistema a desarrollar. Se
propone también un proceso para identificar los elementos que son
relevantes para ser automatizados a partir del modelo de negocio.
Como resultado de este proceso se genera un modelo intermedio que
representa los requisitos del sistema de software.

Finalmente, presentamos un conjunto de guias sistematicas para
generar un esquema conceptual orientado a objetos a partir del
modelo intermedio. Nosotros también exploramos, como solucién
alternativa, la generacién de una especificacién de requisitos tardios
a partir del modelo intermedio.

En esta tesis, una herramienta CASE para modelado conceptual
orientado a objetos (OO-Method) ha sido utilizada para detallar los
requisitos del sistema a desarrollar. Esta herramienta ha sido también

vii

utilizada para tratar los aspectos relativos a la generacion de
esquemas conceptuales orientados a objetos.

La principal contribucion de la tesis es hacer el proceso de
transformacion sistematico proponiendo un enfoque basado en
modelos, el cual usa reglas, algoritmos y patrones para derivar el
modelo conceptual y de requisitos a partir del modelo
organizacional.

viii

Sommario

Nella attualita, I' ingegneria del software ha proposto molte tecniche
per migliorare il processo di sviluppo di software, ma l'obiettivo
finale non & ancora stato soddisfatto. Nella maggior parte dei casi, il
prodotto di software definitivo non soddisfa le reali esigenze dei
clienti finali delle imprese in cui il sistema sara gestito.

Uno dei principali problemi degli attuali lavori di ricerca & la
mancanza di un approccio sistematico per mappare ogni concetto di
modellazione al problema di dominio (modelli organizzativi), nei
elementi concettuale corrispondenti dellao spazio di soluzione
(modelli concettuali object-oriented).

L'obiettivo principale di questa tesi € di fornire un approccio
metodologico che consente la generazione di requisiti concettuali e
modelli organizzativi da descrizioni. Usiamo tre discipline diverse,
ma complementari (modellazione organizzativa, requisiti software e
modellazione concettuale), al fine di raggiungere questo obiettivo.
Questa tesi descrive un processo di elicitazione di requisiti che
consente al utente di creare un modello di negozio che rappresenta la
situazione attuale. Riteniamo che questo modello, che riflette su
come l'organizazzione attualmente implementa i suoi processi di
negozio, & la sorgente corretta per determinare la funzionalita
richiesta del sistema. Si propone un processo per identificare gli
elementi che sono pertinenti per essere automatizzati da il modello di
negozio. Come risultato di questo processo, un modello intermedio €
generato che rappresenta i requisiti del sistema di software.

Infine, vi presentiamo una serie di linee guida sistematiche per
generare un schema concettuale object-oriented dal modello
intermedio. Abbiamo anche esplorato la generazione di una
specifiche di esigenze tardive del modello intermedio come una
soluzione alternativa per gli obiettivi di questa tesi .

Uno strumento CASE per la modellazione concettuale orientata ad
oggetti viene usata per dettagliare i requisiti del sistema a sviluppare.
Questo strumento € stato utilizzato anche per affrontare gli aspetti
che sono associati alla generazione di schemi concettuali orientati ad
oggetti.

Il principale contributo della tesi & quello di rendere il modello di
processo di trasformazione sistematica, proponendo un approccio
basato sui modelli, che utilizza regole, modelli e algoritmi per
derivare sia un modello concettuale e di un modello di requisiti dal
contesto organizzativo.

Resum

Actualment, la enginyeria del programari ha proposat multiples
teécniques per millorar el desenvolupament de programari, no obstant
aixo, la meta final no ha estat satisfeta. En molts casos, el producte
programari no satisfa les necessitats reals del clients finals del negoci
on el sistema ha d’operar.

Un dels problemes fonamentals dels treballs actuals és la manca d’un
enfocament sistematic per fer correspondre cada concepte de
modelitzacié del domini del problema (models organitzacionals), en
els elements conceptuals en I’espai de la solucié (models conceptuals
orientats a objectes).

L’objectiu principal d’aquesta tesi es promoure un enfocament
metodologic que permeta generar models conceptuals i models de
requisits a partir de descripcions organitzacionals. Es proposa I’Us de
tres disciplines, distintes perd complementaries (modelat
organitzacional, requisits de programari i modelitzacié conceptual),
per assolir aquest objectiu.

Aquesta tesi descriu un procés d’elicitacié de requisits que permet a
Iusuari crear un model de negocis que representa la situacié actual
del negoci (requisits primerencs). Nosaltres creiem que aquest
model, que reflecteix la forma en la que se implementen avui els
processos de negoci, és la font adequada per determinar la
funcionalitat esperada del sistema a desenvolupar. A més, es proposa
un procés per identificar els elements que sén rellevants per a ser
automatitzats a partir del model de negoci. Com resultat d’aquest
procés es genera un model intermedi que representa els requisits del
sistema de programari.

Per Ultim, presentem un conjunt de guies sistematiques per a generar
un esquema conceptual orientat a objectes a partir del model
intermedi. Com a soluci6 alternativa també explorem la generacid
d’una especificacid de requisits tardans a partir del model intermedi.
Per a detallar els requisits del sistema a desenvolupar la tesi empra
una eina CASE per la modelitzacié conceptual orientada a objectes
(O0O-Method). Aquesta eina ha estat també utilitzada per a tractar els

Xi

aspectes relatius a la generacio d'esquemes conceptuals orientats a
objectes.

La principal contribucid de la tesi és fer el procés de transformacid
sistematic proposant un enfocament basat en models, el qual empra
regles, algoritmes i patrons per derivar el model conceptual i de
requisits a partir del model organitzacional.

Xii

Acknowledgments

In January 2001, Hugo and | began this adventure. We never
imagined all the hard and beautiful moments that we were about to
live. Really I am very lucky, because | have known many great and
wonderful people. Today they are my friends. Besides, | have had
the opportunity to work in well-known research groups. This has
given an addition value to this research work.

I would like to thank many people, because this thesis could not have
been completed without their valuable support. First of all, | would
like to thank my advisor Oscar Pastor, for his great interest in, and
support of, the work that led to this thesis. He has taught me,
primarily by his own example, how to conduct high-quality research
at an international level. This work would not have been possible
without his human, technical and financial support, but mainly
I would like thank him for his friendship along these years. |
would also like to thank my advisors John Mylopoulos and Paolo
Giorgini for providing a great feedback on my work during my
research stay in the University of Trento. A special thank is also
extended to Jaelson Castro for his contributions, advice and
friendship.

My gratitude goes also to all committee members: John Mylopoulos,
Jaelson Castro, Xavi Franch, Juan Diaz, Vicente Pelechano as well
as to all my colleagues of the OO-Method Research Group: Nelly,
Isabel, Manoli, Joan, Jorge, Pedro, Marta, Javier, Gonzalo and
Victoria.

I must thank the one person without whom none of this would have
happened: my husband and colleague Hugo Estrada, He was who
motivated me to begin this adventure. He is my everlasting source of
strength, encouragement, love and happiness. Thank you, because
you are part of my life. You have given me Denisse and Iker. | must
also to thank them, because they have given me: strength, patience,
love and fondness. Besides, they help me to think that life cannot be
only work. Thank you my loves. You are all that | need to be happy.

Xiii

Last but not least, | have to thank my mother Teresa for her support
during these years of study. Also | would like to thank my brothers
who let me monopolize our mother in the last years.

Thank you all.
Alicia Martinez Rebollar

Xiv

Conceptual Schema Generation from
Organizational Models 1n an Automatic
Software Production Process

Contents
1. INTRODUCTION ..ottt ettt 1
00 A |V o i Y7 10] R 2
1.2 PROBLEM STATEMENT ...eiiiiutiieiitieeesitteeestreessstesssteeeessnseessareesansneaeanns 5
1.2.1 Requirements MOdelcccoceveveierieieieceeee e 7
1.2.2 Conceptual modeling.........cccvueiireriiniiicecrece s 8
1.2.3 Proposed SOIULIONcocviieiiiii e 9
1.3 RESEARCH GOALS ...eciitteieiiteeeitieesetteeestaeesstbeeesiateessataeesetbeeesnraeeenns 11
1.4 RESEARCH ENVIRONMENT ...iciiiiieiitieeeiiieeestreeesitreessnsressssvesssnenennns 12
1.5 RESEARCH DESIGN ..ueciuvieiiiieieeitieesteesreestreesteesareesteesteesnneesrassnsessnns 12
1.6 THESIS OUTLINEtttiiitieieeitreeeitteesitreeesbeeeestbeeessnreessateeesesbeeessranennns 15
2. RELATED WORKS ..ottt 17
2.1 INTRODUCTION ..iioiiiieiiiiieeetieeesttee e e site e e st e e s enve e s esbaeeesteeessaaeaesreeeas 17
2.2 METHODS FOR REQUIREMENTS MODEL GENERATIONccccovveninenns 19
2.2.1 The Santander proposal (2002).........cc.cccervverinerineiinreinnenens 20
2.2.2 The Ortin proposal (2001)cccccvvvveiiiiieiieiesesiesesee e 23
2.2.3 Loucopoulos proposal (1995)cccevvreireineiinreineennenes 26
2.2.4 The Dijkman proposal (2002)..........ccceveiivereieeiesiieniesiennens 30
2.2.5 EKD proposal (1995)......cccccciveieiiinieiienniesesenie e 32
2.3 METHODS FOR CONCEPTUAL MODELS GENERATION.........cccvveernrenn. 35
2.3.1 The Alencar proposal (2003)ccccovevvrverireneseseree e 36
2.3.2 The Ortin proposal (2001)ccccvervrvrivrierirreneseeree e 39
2.4 CURRENT METHODS FOR GOAL-BASED REQUIREMENTS ANALYSIS.40
2.4.1 The GBRAM proposal (1996).........ccccouvivevrivnrrinrnresierienenns 41
2.4.2 KAOS proposal (1993)ccccoveirrireineineisree e 43
2.4.3 Tropos proposal (2005)cccccceverreieriereerieieree e 45

XV

2.5 PATTERN LANGUAGE PROPOSALS.....ccvtteiitieeiireeeentreeesireeesssreessnreeeas 46

2.6 SUMMARY Lotiiiiiiiiitiiie ettt e e s sttt e e s s sabb e e s s s s e sabtae e e e s s saabbaeeeseseanes 48
PART | THE EARLY REQUIREMENTS.......ccooiii e 51
3. THE EARLY REQUIREMENTS PHASE........ccccooo i 53

3.1 INTRODUCTION ...ovieiiiieiieitieeiteeesteestteesteeasbeessbeesteesnaesstseeseesnneesseeens 53

3.2 THE EARLY REQUIREMENTS PHASEveeiiitiieiiieeeireeeeireeesirreeesreeens 56

3.3 THE FOUNDATIONS OF THE EARLY REQUIREMENTS PHASE 57

3.3.1 Goal MOUEIING ..o 57
3.3.2 Organizational Modelingccccovvviniiniennieinesesene 59
3.3.3 Tropos FramEWOIKccecveveerieieieseeise s se e s se e 60
3.4 GOAL-BASED REQUIREMENTS ELICITATION PROCESS........ccccvveennee. 64
3.4.1 Goal refineMENt PrOCESSvcveveerrereiirieee e 67
3.4.2 Analysis of contributions in the quality factors...........c......... 72
3.4.3 Analysis of conflicts among organizational goals 74
3.4.4 Points of view of the involved actorscccceeeveeviiicveeenenne 76
3.4.5 Delegation of plans to the software system actor 80

3.5 SUMMARY Lottt sb e a e 81
4. JOINING EARLY AND LATE REQUIREMENTS........ccoovevvinnee. 83

4.1 INTRODUCTION .oioitiiiteeitieeiteeeteesteeesteessteesaeeestesssseesanaessaessseessnssssens 84

4.2 THE MODEL DRIVEN ARCHITECTURE ..eccieiiiiiiieeeeeeerreee e e svvvieee e 85

4.3 PATTERN LANGUAGES........cctteiitieitteeiteesteestee e steesteesane e e sreesnnesneas 87

4.3.1 Structure of the pattern languagecccceevvveivvcenereieiennn, 88
4.4 PATTERNS IN THE ORGANIZATIONAL MODEL ...cccccovvvreieeeeesiivieeeeenn 89
441 USEd CONCEPLS ...ovirieriereeieereeie e etrsiesiestesee e e e ene s 90
4.42 The FELRE pattern languageccccoovvrernerneinecneene 92
4.4.3 Applying pattern [anguage.........ccccocevveiieniiieiienieseee e 94
4.4.4 Catalog Of PAtternsccccoveveeiieieiesier s 98

A5 SUMMARY ..ttt bre et be e e s e e s eabbaae s 139
PART Il LATE REQUIREMENTS ..o 143
5. EXTENDING THE ORGANIZATIONAL MODELS.................... 145

5.1 INTRODUCTION ..ttttiiieiiiiiireieeeesiirsreeeesssstsreseeesssssssesssessssrssesessnns 146

5.2 THE LATE REQUIREMENTS PHASEvceivieiirreiteesnieesineeseeeseeesnneenes 146

5.3 WHAT IS MONITORING? ...vvviiiiiiiiittieie et serrtee e e e ssreeeea e 147

XVi

5.4 THE MONITORING PLANS INSERTION PROCESS.......cccverieeireerineannes 148

5.4.1 Monitoring plans and monitoring data..........cc.ccceevvevereinnns 149
5.5 EXTENDING THE ORGANIZATIONAL MODELS WITH THE
IDENTIFICATION OF CONCERNED OBJECTS ...cciuveeteeeeeesieeesseesneeesneeansnens 152
5.5.1 Concepts and Models..........ccccevevirereieieieieeee e 152
5.6 THE GENERATION PROCESS OF THE CONCERNED OBJECTS MODEL .157
B5.7 SUMMARY c.ooiiiiiiie ettt ettt e e etee et e e s rte e e etae e s ebae e e etae e e neas 165
6. LINKING LATE REQUIREMENTS WITH THE ONME
CONCEPTUAL MODELoooiiiiieieccee et 167
6.1 INTRODUCTIONveeiiiieiieeieesiieesieeesteessteessneesaeessseessneessessnseessnnenses 168
6.2 SOME CONSIDERATIONS ABOUT THE ONME CONCEPTUAL MODEL
.. 169
6.3 THE ONME CONCEPTUAL MODEL GENERATION........ccvvveerirrreennen. 170
6.3.1 The ONME conceptual modelc.ccceevevvieiiniicirceee, 171
6.4 THE GENERATION PROCESS OF THE CONCEPTUAL MODEL.............. 182
6.4.1 Generation of a space of alternatives............c.ccceevervrirernnnn. 186
6.4.2 Rules for generating the conceptual model..............c.c......... 198
6.5 DYNAMIC MODEL GENERATION ...ccoiuirieiiieeiiireeecteeeeereeeesvneeesnnes 219
6.6 FUNCTIONAL MODEL GENERATION ...cccviiiireiiieiieesireesreesreesnne e 219
6.7 SUMMARY ...oiiiiiiiie ettt e see s iteessteeseeasteesnteesneeesaeeanteessneessasanteessaeennes 220
7. LINKING LATE REQUIREMENTS WITH THE ONME REQUIREMENTS MODEL
... 221
7.1 INTRODUCTION ..uetiutieiiiieiieeeieesteeeseeesteesnteesnneesaeesnseessnaessessseessnnennes 222
7.2 FOUNDATIONS OF THE REQUIREMENTS MODEL THE ONME
REQUIREMENTS MODEL ...vviieiiuvieiiitieeiitresssiteesesnte e s sabeessbaesssabessssvassesnees 225
7.2.1 Requirements MOUEIScccvvevereneiereneeesee e 226
7.3 THE GENERATION PROCESS OF THE REQUIREMENTS MODEL 228
7.3.1 Generating functional groupscc.cceevevveverienerereeceeenn 230
7.3.2 Discovering the use case model...........ccccovveviiniiniineenn, 232
7.3.3 BUilding SCENAIIOScccvviiiiiiie e 243
Tid SUMMARY ..ooeiiiiii ettt etee e st e e s ste e e ebae e e sbee e e ebae e e s reas 250
8. CASE STUDIES ...t 253
8.1 INTRODUCTION ..uutviiiieiiiiiitreieeeesiittreeeessesinreseeesssssssesssessssrssssessnns 253
8.2 DESCRIPTION OF THE CASE STUDIES ...ccuvieitieerieesteesireesreesveesane s 254
8.2.1 Technical Meeting Managementc.ccccoeevreiineinrennnens 254
8.2.2 Golf Tournament Management..........cccccoevvereeriereeieeesresnnnns 264
8.2.3 CarRental......ccccoooviiiice e 274

8.3 SUMMARY .oviiiiiiiiicttiie ittt stt ettt st sre e e sba e s ebee e s ebae e e nes 284

9. CONCLUSIONS AND FURTHER RESEARCH........cccccoviniene. 285
0.1 CONCLUSIONSutetieitinieetesiee sttt siee sttt ettt enn e e e b s e 286
9.1.1 The refinement process of the organizational model........... 286
9.1.2 The generation process of the conceptual models 287
9.1.3 The generation process of the requirements model 288
9.1.4 Using organizational model in the software production
PIOCESS ..ottt 288
9.1.5 Summary of contributionscccccevvviviieiiinie e 290
9.2 RELATED PUBLICATIONS......cetiutiiereiieeainieeesesiesnessesnesneseesnesnens 291
9.2.1 International JOUrNalSccccceveeveiiinr i 291
9.2.2 BOOK Chaptersccccvviiieriieieieceeeee e 291
9.2.3 International Conferences and Workshops.............c.ccceueunee. 292
9.3 FUTURE RESEARCH DIRECTIONSuvetiaiiatintiaienieniesiessennesneseennesnens 294
BIBLIOGRAPHY ...ciitiiiiiiesiiteiee sttt sttt ssbe ettt sntee e s 295
LIST OF FIGURESccuvtietieieeieeiceie ettt sttt sne e sne e 317
LIST OF TABLES. ..cttteiteieteestttesteeeteesseeesteesseeessseasseesnsaessenansessnsnsssnnensenan 323
GLOSSARY ...eiutitiieteste sttt st se ettt b sttt b e n e b e bbb nnenne s 325
LIST OF ABBREVIATIONS AND ACRONYMS......ccvmriiimrrenrenienrenrennenrenneseenns 329

Xviii

Chapter 1

Introduction

The main objective of this thesis is to provide a methodological
approach that enables the generation of conceptual and requirements
models from organizational descriptions. We use three different, but
complementary disciplines (organizational modeling, software
requirements and conceptual modeling) in order to achieve this
objective.

The thesis describes a requirements elicitation process that enables
analysts to create a business model that represents the current
situation of the enterprise. We consider that this model, which
reflects how the enterprise currently implements its business
processes, is the correct source to determine the expected
functionality of the system-to-be. A process to identify the elements
that are relevant to be automated from the business model is also

CHAPTER 1 INTRODUCTION

proposed in this work. As a result of this process, an intermediate
model is generated that represents the software system requirements.
Finally, we present a set of systematic guidelines to generate an
object-oriented conceptual schema from the intermediate model. We
also explore the generation of a late requirements specification from
the intermediate model as an alternative solution for the thesis
objectives. A specific object-oriented conceptual modeling case tool
(O0O-Method [Past01]) is used to detail the software requirements of
the system-to-be. The OO-Method case tool has also been used to
deal with the aspects that are associated to the generation of object-
oriented conceptual schemas.

The main aim of the thesis is to make the model transformation
process systematic by proposing a model-driven based approach that
uses rules, algorithms and patterns to derive both an object-oriented
conceptual model and a requirements model from the organizational
context.

Section 1 of this Chapter discusses the purpose of this research work.
Section 2 presents the problem statement that we try to solve and the
proposed solutions. Section 3 presents the research goals. Section 4
presents the context in which the thesis was developed. Section 5
presents the research design. Finally, section 6 outlines the structure
of the thesis.

1.1 Motivation

Building information systems is currently a very difficult task
[Thay02]. Many of the research studies in software engineering have
been done to ensure the correct construction of software products. In
this sense, Software Engineering provides a wide range of techniques
that aim at improving the quality in the software development
process: i.e., software requirements analysis, software design, novel
programming methods, verification and validation tests, software
configuration management, software quality insurance, analysis and
design methods, planning, projects scheduling, programming
languages, etc [Garz02]. All the techniques, methodologies and tools

1.1 MOTIVATION

of this kind have been proposed in order to develop correct and
usable software systems [Pres03].

Software Engineering has proposed many techniques to improve the
software development process, but the final goal has still not been
satisfied. In most cases, the final software product does not satisfy
the real needs of the final customers of the business where the
system will be operated. A good example of this is the great
investment made in the CASE technology in the late 1980s and early
1990s. Many organizations that invested in CASE tools found that
they had no significant effect on the productivity or quality of their
products [Koto98].

The CASE tools changed the process for building software systems,
increasing productivity by reducing the time associated to the
software implementation. However, the current CASE tools do not
address the real problems that these organizations were facing, such
as the requirements engineering problems [Koto98]. Kotonya
attributes some of these problems to [Koto98]:

e Lack of stakeholder involvement: the process does not
identify or take into account the real needs of the stakeholders
that are involved in the system. This problem can be
addressed by including explicit activities concerning
stakeholder identification.

e Business needs are not considered: The requirements
engineering process is seen as a technical procedure rather
than as a business-based process. This can lead to software
requirements that do not satisfy the real needs of the business.

e Lack of requirements management: The process does not
include effective techniques for requirements management.
This means that changes to the requirements may be
introduced ad hoc and that a great deal of time and effort may
be required to understand and incorporate these requirements
changes.

o Lack of defined responsibilities: The different people
involved in the requirements engineering process may not
fully understand their responsibilities. This means that some

CHAPTER 1 INTRODUCTION

tasks may not be carried out at all because everyone assumes
that someone else is responsible for it.

e Stakeholder communication problems: The different
stakeholders in the system (end-users, managers, engineers,
etc.) fail to communicate effectively so that the resulting
requirements document is not understandable (and hence
verifiable) by all the stakeholders. This results leads to the
implementation of incorrect or incomplete requirements,
which may only be discovered after the system has been
implemented.

However, this does not mean that current methodological proposals
do not provide appropriate solutions for developing a software
system, because they have been designed keeping in mind the
specification of the technical properties of the software-to-be. We
consider that the aspect that has been most neglected in the current
CASE tools is that these techniques do not take into account the
sources of the software system functionalities, which is directly
correlated with business objectives and processes.

In this context, we agree with Bubenko, Jacobson and Rational
[Bube94], [Jaco95a], [Rati02] on the importance of understanding
the organization before beginning the construction of a software
system. Emphasis must be placed on the following as a basis for
building the software system: the identification of the environment in
which the software system will work; the roles and responsibilities of
the employees using the system; and the “things” that are handled by
the business.

These authors [Rati02] [Bube94] [Giog05] [Jaco95a] argue that
some of the key questions that need to be considered for the success
of a software system are the following: where the system-to-be will
be used, whom it will be used by, how it needs to be integrated with
existing systems, which tasks it will automate, and under which
circumstances it will be executed.

These kinds of questions can only be answered by conducting an
analysis of the organizational setting. This will allow us to produce
an information system that adds real value to the enterprise where the
system will operate.

1.1 MOTIVATION

Within the scope of works that explore the use of organizational
models in software engineering, we can find business engineering
proposals [Jaco95a], which is a set of techniques to design business
processes according to the specification of the goals of the enterprise.
The business engineering techniques include:

e Procedures for design of the business.

¢ Notations that describe the design.

e Heuristics or pragmatic solutions to find the correct design,
which is measured in terms of the specification of goals.

All mechanisms of this kind enable software analysts to better elicit
the requirements of the system-to-be by showing which aspects
should be automated. Therefore, the requirements that were elicited
will manage the development of information systems that are
correctly adapted to the organizational setting and that offer the
appropriate functionalities to the final users. Although consensus
exists about the relevance of using organizational knowledge as the
correct source for determining software requirements, at the present
time, only a few research efforts are focused on the problem of
systematically reducing the real impedance mismatch between the
software system and its operational environment. This non-
correspondence makes it impossible for the information system to
have the necessary functionality to permit the organizational actors
to perform their organizational tasks. Thus, we consider that the
problem of methodologically joining the business engineering area
with software engineering has not yet been solved.

1.2 Problem statement

In the software engineering context there are interesting proposals
such as [Past01], [Insf03], [Cock01], [Kula03], and [Oliv03] that
methodologically guide the translation of the problem space
(represented as high abstraction models that represent the static and
dynamic system structure) to the solution space (represented as
software representations).

CHAPTER 1 INTRODUCTION

On the other hand, in the business engineering context, only a few
research works have been proposed to solve the problem of obtaining
software specifications from organizational models [Bider02],
[Cast02], [Fuxm03], [Koub00], [Kolp03], [Alen03], [Sant02], and
[Orti01]. These proposals are focused on specifying the basic
primitives that should be taken into account when a business model
is specified. Some of the issues that are addressed by these proposals
are: how to determine the primitives of the business patterns, how to
represent them, and how to be able to insert this business-based
modeling process into a traditional software production process. In
this context, some authors [Yu97] [Louc98] [Cast02] distinguish
between the early requirements phase (business engineering) and the
late requirements phase (software engineering).

The main issue of current research works in this area is the lack of a
systematic approach to map each modeling concept of the problem
domain (organizational models) into the corresponding conceptual
elements of the solution space (object-oriented conceptual models).
The goal of our proposal is to derive the late requirements phase
from the early requirements phase in order to correctly map the
organizational actor needs with the functionalities of the information
system. Thus, software engineering will solve the problems
associated with improving the quality of the generated software,
while business engineering will solve the problems associated with
understanding the environment in which this system will operate,
understanding the roles and responsibilities of the employees who
will use the system, and the "things" that are handled by the business
[Jaco95a].

Our premise is that the solution to systematically joining
organizational modeling with software specifications must include
the following characteristics:

e The method must provide a clear understanding of the
organizational environment where the system will operate. It
must both identify what the users do before using the
software system as well as understand how, by whom, and
under which circumstances the system will be used in the
organization setting.

1.2 PROBLEM STATEMENT

e The method must provide the analyst with techniques to
perform the software development process in a systematic
and precise way, putting emphasis on the specification of the
software system. The method must also provide the analyst
with complete code generation mechanisms.

The main contribution of this thesis is to improve the software
development process by providing a deeper understanding of the
activities and goals of the business. Two well-founded approaches
have been combined to fulfill this objective:

e The OO-Method approach [Past01], which is an automatic
production process that automatically generates complete
object-oriented systems based on the information contained in
the conceptual models. The OO-Method is used to deal with
the specification of requirements and conceptual models.

e The Tropos Framework [Bres04], which is a software
development methodology that is based on intentional
concepts, such as those of actor, goal, (goal, plan, resource,
softgoal) dependency, etc. It uses these concepts as a
foundation to model early/late requirements, architectural
design, and detailed design.

Although the method presented in this thesis has been applied in the
context of a specific software production process (OO-Method), the
solutions could be extensible to other requirements modeling
environments or conceptual modeling environments.

1.2.1 Requirements model

The main goal of requirements modeling techniques is to define the
functionality of a software system [Kula00]. One of the most popular
techniques for requirements engineering is use case modeling, which
describes the functionality of an information system from the point
of view of the system users [Cock01], [Sanc03], [Cons99]. Other
proposals, [Insf02a], [Robe99], deal with requirements modeling
using other design techniques, such as sequence diagrams, state
transition diagrams, or requirements specification templates. The
main idea in requirements modeling is to obtain complete processes

CHAPTER 1 INTRODUCTION

of requirements in order to obtain the expected functionality of the
information system-to-be.

The main drawback of the current requirements techniques is that
they only respond “what” actions the software system must execute.
However, these techniques cannot give an answer to "why" the
software system must be built.

McDermind [McDe94] indicates that when the functional
specification of the software system is the focal point of the
requirements analysis, requirements engineers tend to establish the
scope of the software system before having a clear understanding of
the user’s real needs. This is why many of the systems developed
from a requirements model that focuses only on the functionality of
the software system do not comply with their correct role within the
organization. Therefore, in a software production process that does
not have the organizational processes modeling as the first stage, any
effort to generate a prototype of an information system will not be
able to assure the utility of the software system in the context of the
organizational tasks.

Therefore, one of the purposes of this proposal is to use
organizational models as the starting point to obtain a requirements
model of the information system. To do this, we propose systematic
guidelines to help analysts to detect the relevant organizational plans
to be automated, and to use this information to generate a use-cases-
based requirements model.

1.2.2 Conceptual modeling

The traditional way of engineering information systems is through
conceptual modeling, which produces a specification of the system
to be developed. This specification focuses on what the system
should do, that is, on its functionality. Such a specification acts as a
prescription for system construction [Roll99b].

In current conceptual modeling approaches, the generated models are
represented from the analyst’s viewpoint. This can be a drawback
because understanding and recording the effect of business changes
on requirements has not yet been solved. Requirements also change
even as the system is being developed. [Luba93].

1.2 PROBLEM STATEMENT

Conceptual modeling approaches are currently focused on specifying
software functionality aspects, determining what the software should
do, and establishing the justifications and restrictions of the software
system-to-be. Rolland denominates these activities as the definition
of the desired system [Roll99b].

The need to take into account a large number of semantic details in
the construction of an information system has led to great diversity in
conceptual modeling techniques. One of the most well-founded
conceptual modeling techniques is OO-Method [Past96], [Past97],
[Pele01]. This is an automatic production process method based on a
formal object language called OASIS. This software production
environment allows applications to be built in automatic way from
conceptual models.

However, we consider that in order to produce software systems that
satisfy the user’s needs, the conceptual modeling process must be
enriched by proposing techniques for understanding organizational
processes.

One of the main purposes of this work is to provide systematic
guidelines that allow us to obtain a conceptual model for the
software system from organizational descriptions. The generated
conceptual model must be the input of the OO-Method software
production process, which will generate the information system in an
automatic way

1.2.3 Proposed solution

As stated above, several research efforts have been made to
accurately represent an organizational model (this stage is known as
the early requirements phase) [Cast02] [Kolp03] [Bube94] [Cesa02].
In these works, conceptual primitives represent organizational goals,
organizational actors, and dependencies among these actors. There
are also several research works that focus on the development of
requirements models (late requirements) to represent the expected
functionality of the information system [Kolp03] [Cock01] [Kula00]
[Roll99b].

CHAPTER 1 INTRODUCTION

We consider that the problem of linking organizational models with
requirements models in a methodological way has not yet been
solved satisfactorily. One of the main reasons for this is the different
nature of their specifications. In the early requirements phase, the
modeling concepts are associated to the organizational context, while
in the late requirements phase, the modeling concepts are associated
to the software system to be developed. Therefore, there is a
significant conceptual distance between the abstraction levels of the
two specifications.

The lack of systematic methods to generate the expected
functionality of the software system from the relevant tasks of the
organizational model has led to severe limitations in the usefulness
of these works in real software development environments.

We propose a methodological approach to reduce the abstraction
level of a “pure” organizational model so that it is closer to the
requirements model. The reduction process generates a new
intermediate organizational model that is correctly adapted in order
to systematically generate the requirements model and the
conceptual model of the system-to-be. A set of rules for deriving the
software specification from the new organizational model is also
proposed.

The complete translation process is based on a set of
transformational steps that are implemented in a model-driven based
approach:

e A goal analysis method is proposed to elicit the current
situation of the enterprise. As a result of this step, a “pure”
organizational model that reflects the current enterprise
situation is generated.

e A goal-based method is proposed to determine which
alternatives best satisfy the enterprise goal using a software
system.

e A methodological guideline has been developed to reduce the
abstraction level between the organizational modeling phase
and the system design phase (requirements model and
conceptual model). The reduction process is implemented by
using a pattern language called FELRE (From Early

10

1.3

1.2 PROBLEM STATEMENT

Requirements to Late Requirements). As a result of this step,
an intermediate organizational model (that extends the pure
organizational model with monitoring plans and concerned
objects) that represents the relevant aspects to be automated is
generated. This is done to create a model that is closer to the
system-to-be.

A methodological guideline has been developed to establish
the correspondences between an intermediate model and a
requirements model. As a result of this step a use-case-based
specification is created.

Finally, a methodological guide has been developed to
establish to correspondences between an intermediate model
and a conceptual model. An object-oriented model is created
as a result of the application of this step.

Research goals

This thesis has three main research goals:

a)

To reduce the abstraction level of a “pure” organizational
model so that it is closer to the requirements model.

b) To propose a methodological guide that allows a

c)

requirements model to be obtained from an organizational
model.

To propose a methodological guide that allows a conceptual
model to be obtained from an organizational model.

The first research goal has been satisfied by dealing with the
following sub-goals:

A goal-based requirements elicitation process, which
provides a deep understanding of the organizational
environment in order to identify the relevant tasks that should
be automated according to their relevance to satisfy the
organizational goals.

A systematic pattern-based process to reduce the abstraction
level of a model, by obtaining an intermediate model that is
closer to the software system-to-be.

11

CHAPTER 1 INTRODUCTION

The second and third research goals have been satisfied by dealing
with the following sub-goals:
e Extending organization model with monitoring plans and
concerned objects in order to create a model that is closer to
the system-to-be.

e Developing a methodological guideline that establishes the
correspondence between the functionalities that best satisfy
the organizational goals and the requirements model.

e Developing a methodological guideline that establishes the
correspondence between the functionalities that best satisfy
the organizational goals and an object-oriented model.

One of the main advantages of our approach is that it deals not only
with what or the how a piece of software is developed, but also why.

1.4 Research environment

This thesis was developed in the context of two well-known research
groups: the Object-Oriented Methods for Software Development
Group (OO-Method Group) of the Valencia University of
Technology (UPV — Universidad Politécnica de Valencia) in close
collaboration with the company CARE Technologies S. A., and the
Tropos group (Requirements-Driven Development for Agent
Software) of the University of Trento, Italy (UNITN).

The work presented here is the result of the efforts of researchers at
the OO-Method Group. The results obtained are currently being
applied in case studies in both academic and real projects of the Care
Technology Company.

There are currently large investments being made to develop tools to
incorporate the technology in commercial software development
products through R&D contracts between UPV and CARE
Technologies.

1.5 Research design

This thesis presents six processes, which are summarized in Figure
1.1. The first five processes occur in two phases: the early and late

12

1.5 RESEARCH DESIGN

requirements phases. The last process is related to the validation of
the proposed method by developing case studies. The description of
each process is briefly explained below.

Process 1.
Identification of the
tasks to be automated

Set of automation
patterns

A

Process 2.
Insertion of software
system actor in the
organizational model

|

aseyd sjuswalinbay Ape3

Insertion of monitoring
plans and concerned
objects

Rules and
algorithms

Process 4.
Generation of
conceptual models

\
Process 3.
Extending

organizational model

Process 5.

=

& Generation of a Rules and

3 requirements model algorithms
v

Process 6.
Validation of proposed
/ method by case studies

Figure 1.1 Summary of process developed in this thesis
Process 1. Identification of the tasks to be automated.

The starting point of the proposed method is to understand the
organizational processes before building an information system.
Thus, we started in the early requirements phase, which deals
with the analysis of the operational environment where the
software system will operate [Yu97]. In this process, a goal-
based requirements elicitation process is proposed, which allows
us to identify the relevant tasks that must be automated in order
to achieve the organizational goal. Chapter 3 describes this
process.

13

CHAPTER 1 INTRODUCTION

Process 2. Insertion of the software system actor in the organiza-
tional model.

The strategy of the second process is to insert the software
system as an organizational actor into each organizational model.
The objective of this process is to consider all the possibilities
that exist to delegate tasks and goals from the stakeholders to the
software system.

As a result, the system-to-be and its components are represented
as a new actor who is responsible for the fulfillment of relevant
tasks. We use transformational rules, which are defined by a set
of patterns in a pattern language to carry out the equivalence
between the organizational and late requirements models.
Chapter 4 describes the process.

Process 3. Extending organizational model.

In the third process, the extensions carried out in the
organizational models (insertion of monitoring plans and
identification of the concerned object) are done to analyze the
impact of the system-to-be on the goals of the business. Chapter
5 describes the process.

Process 4. Generation of conceptual models.

In this process, we present the rules and algorithms to establish
the correspondence between the elements of the organizational
model and the conceptual models of the system-to-be. Chapter 6
describes this process.

Process 5. Generation of a requirements model.

In this process, we present the rules and algorithms to establish
the correspondence between the elements of the organizational
model and the use case model as well as their corresponding
scenarios. Chapter 7 describes this process.

Process 6. Validation of method using case studies.

The last process is related to the validation of the proposed
method to obtain the requirements model and the conceptual

14

1.5 RESEARCH DESIGN

model. Therefore, three case studies were carried out to evaluate
our proposal. Chapter 8 briefly details the case studies.

1.6 Thesis outline

The remainder of this thesis is organized in the following chapters:

Chapter 2. Related works

This Chapter provides a review of the state-of-the-art of some of the
relevant topics developed in this thesis. Requirements model
generators, conceptual model generators, goal-based requirements
analysis methods, and pattern languages proposals. Our intention is
to discuss the strengths and weaknesses of each proposal.

Chapter 3. The early requirements

This Chapter presents the goal-based requirements elicitation process
that is proposed in this thesis. We detail the process proposed with a
set of steps that allow us to find the best way to develop
organizational tasks in order to achieve organizational goals. We also
briefly describe the basic concepts of the Tropos framework.

Chapter 4. Joining early and late requirements

This Chapter describes the method that is proposed to reduce the
abstraction level between the organizational modeling phase and the
system design phase. This process is guided by a set of patterns that
allows the software system to be inserted into the organizational
model as an organizational actor.

Chapter 5 Extending organizational models

This Chapter presents the extension carried out in the organizational
model. Therefore, the insertion of monitoring plans and the
identification of new elements (called concerned objects) in the
organizational model are carried out. The objective of this process is
to determine which tasks best fulfill the goals of the business in order
to build an information system.

Chapter 6 Linking late requirements with the ONME conceptual
model

This Chapter describes a method for generating the OO-Method
conceptual schema model from the organizational model. It also

15

introduces the OO-Method approach, describing its four
complementary views: Object, Dynamic, Functional and
Presentation Models. Then, a brief introduction of the OASIS formal
specification language is also explained.

Chapter 7 Linking late requirements with the ONME
requirements model

This Chapter describes a method for generating the requirements
model from the organizational model. This process is conducted
using a set of algorithms and rules. This Chapter also describes the
concepts of the RETO* methodology used in the OO-Method, which
is the target of our proposal.

Chapter 8 Cases studies

This Chapter describes the case studies that were carried out as
validation of our proposed method.

Chapter 9 Conclusions and further research

This Chapter summarizes the contributions of this thesis, including
current and future work and the publications associated with them.

! Requirements Engineering TOol

16

Chapter 2

Related works

This Chapter provides a review of the state-of-the-art of some of the
relevant topics in this thesis: requirements model generators,
conceptual model generators, goal-based requirements analysis
methods, and pattern languages proposals. The objective of this
analysis is to adequately contextualize our research work by defining
the strengths and weaknesses of the methods analyzed as well as
highlighting our contribution with the existing proposals.

2.1 Introduction

Nowadays, several research groups work in developing requirements
engineering methods that make feasible the development of
information systems which precisely comply with the users needs.

CHAPTER 2. RELATED WORKS

Some of these works are focused on late requirements, which
concern the definition of requirements for the system-to-be.
Therefore, these proposals consider activities such as requirements
analysis [InsfO2b] or conceptual modeling [Past99] [Booc99].
Several attempts have been done to produce software specifications
from previous stages of organizational modeling. Some of these
techniques focus on using requirements as an intermediate model
between the organizational model and the software conceptual model
[Ort01] [Sant01]. In this approach, the conceptual model, that
represent the dynamic and static structure of the system, is viewed as
a natural result of the requirements modeling activity that determines
the expected functionality of the software system. The advantage of
this approach is that it is possible to carry out previous analysis with
the requirements specification to include, for instance, non-
functional requirements before thinking in generating a conceptual
model. Nevertheless, one of the main disadvantages of this approach
is the definition of a large number of modeling stages (organizational
modeling, requirements model generation, conceptual model
generation, implementation generation), which make the software
development process costly in time and effort.

Another works focus on generating conceptual models directly from
organizational models without going through a requirements model
[Alen00]. The main advantage of this approach is the few modeling
stages that are needed to derivate a software product. The main
disadvantage of this approach is the lack of the appropriate basis to
determine the organizational activities that are relevant to be
automated by the information system to be developed.

Some of the most relevant works in goal modeling are analyzed that
focused on obtaining software requirements from organizational
goals. Some relevant works in pattern language technology, which
plays a very important role in this thesis, has also been analyzed in
this Chapter.

18

2.2 METHODS FOR REQUIREMENTS MODEL

2.2 Methods for requirements model
generation

This section discusses five methods that generate requirements
models from organizational settings: Santander proposal [Sant02],
Ortin proposal [Orti01], Loucopoulos proposal [Louc95], Dijkman
proposal [Dijk02] and EKD* proposal [Bube98]. The main objective
of this analysis is to determine the role of these current methods in
the early requirements phase.

Table 2.1 shows an overview of these five methods that considers the
following aspects: the inputs of the analyzed methods, theirs role in
the development process, the proposed methodology, the
methodology used to create the requirements model, and the output
of the method. It is important to point out that this is not an
exhaustive analysis and it only pretends to highlight some
similarities and differences between the methods.

1 EKD Enterprise Knowledge Development

19

CHAPTER 2. RELATED WORKS

Table 2.1 Overview of methods generating a requirements model

Loucopoulos

Santander Ortin Proposal proposal Dijkman proposal| EKD proposal
roposal (2002 2001] 2002 1995
proposal (2002) (2002) (1005) (2002) (1995)
Business models UML Diagrams (Role |Business goals Business process Analysis and

Input of the | (early requirements | diagram, sequence (activity diagram) understanding of
method phase) diagram and process the enterprise
diagram)
X i* framework UML diagrams Teleological Views UML diagrams EKD Notation
Notation

Rolein the
development
process

It uses guidelines to
find use cases of the
software system to-
be; it also requires
the experience of the
requirement
engineers.

It uses role diagram
and sequence
diagram to find use
cases of the software
system to-be.

It uses models to
show scenarios with
the different situations
that satisfy the vision
and criteria for
changing the
business.

It uses a procedure
to transform
business process
models into UML
use case diagrams.

It uses multiple and
complementary
views for modeling
process in an
enterprise.

This method is

cases.

This method is

software system to-

This method is

tasks and to detail

This method is

business process in

Computer aided

focused on analyzing |focused on focused on capturing | focused on creating |documentation of
business goals in determining the reason that exists | meta-models for knowledge
Methodological order to obtain use [functionalities of the | behind the business | both use cases and | about enterprises

approach be. how a certain activity |order to compare
has been assigned to |them and detect
an organizational differences and
actor. similarities.
Method to | Guidelines and Some steps are Three complementary |A table of mapping | Analysis of the
define heuristics are provided views to carry on the | of primitives is information of the
requirements provided analysis are required. |provided and a set |proposed models
model of steps is proposed

Output of the
method

Use case models and
scenarios
represented in UML

Use case models and
scenarios
represented in UML

A requirement model
for the system-to-be

Use case model
represented in UML

A set of high level
requirements for
the information
system to- be

A Drief description of each proposal is presented below. The
description makes emphasis on the advantages and disadvantages of
each method.

2.2.1 The Santander proposal (2002)

The main objective of the Santander proposal [Sant02] is to generate
scenarios and use cases represented with the UML for the software
system from organizational models represented with the i*
framework.

The author argues that the i* framework provides an early
understanding of the organizational relationship in the business
domain, which is needed to develop a software system that complies
with the users needs. This is because the organizational modeling

20

2.2 METHODS FOR REQUIREMENTS MODEL

process requires an integrated view of the functional and non-
functional aspects, which are needed to support the alternative
selection of early requirements.

Santander proposes a set of heuristics that helps the requirements
engineer to determine the existence of potential use cases from the
organizational model specification.

The use case model was adopted by Santander as a first step to
describe the functional requirements of the software system. Usually,
the UML wuse cases are developed without considering the
organizational requirements. In Santander works, it was argued that
use cases developed from the organizational model permit the
requirements engineer to establish relationships between the
functional requirements of the system and the organizational goals
previously defined in the organizational model.

The steps to integrate an i* organizational model and a UML use
case model according to Santander proposal are shown in Figure 2.1,

Guidelines are applied in

each integration process

step under a goal-oriented
analysis.

[Goal-Oriented Analysis]

2. Discovering 3. Discovering and
use cases for describing scena-
the actors. rios of use cases.

]

1. Discovering
actors.

Organizational
models developed
through i*
framework.

Use Cases
Diagrams and
textual
description of
scenarios

Figure 2.1 Steps to integrate i*organizational model and the UML use case models
[Sant01]

1* Step: Discovering actors. The inputs of this modeling stage are
the strategic dependency model (SD) and the strategic rationale
model (SR), which reflect the business behavior. This step analyzes
the relevance of each organizational actor according to the

21

CHAPTER 2. RELATED WORKS

informational system-to-be. The author proposed some guidelines to
support the process to discover the actors.

Guideline G’1: all actors in i* must be analyzed for a possible
mapping into actors of the use case models;

Guideline G’2: if the actor in i* model is external to the intended
computational system, then it is a candidate to be transformed into a
use case actor;

Guideline G’3: if the actor has some kind of dependency with the
actor who represents the system to be developed, then it is a
candidate to be transformed into a use case actor;

Guideline G’4: 1S-A relationships in i* model are mapped as
generalizations links in the UML use case diagrams;

2nd Step: Discovering use cases. An analysis of each actor is
carried out in order to determine its role in the dependency
relationships. The role of each actor is also analyzed in order to
select those actors who play the role of dependee in the dependency
relationship®. The analysis of dependencies is carried out as follows:
Guideline G’5: for each actor in the model, we must analyze all the
dependencies of the analyzed actor with the actor that represents the
system to be developed. The objective of this guideline is to discover
the use cases from the actors.

Guideline G’6: for each actor in the model, we must analyze all the
dependencies of the actor that represents the system-to-be with the
organizational actors. The objective of this guideline is to discover
new use cases from relationships of this kind.

Guideline G’7: classify each use case according to its objective type
(contextual objective, user objective, sub-function objective).

3rd. Step: Discovering and describing the main and alternative
flows of the use cases: The primary and secondary scenarios are
described in this phase, as well as the relationship between use cases.
This information is taken from the strategic rationale model. As a
result of this step, the use case diagram and the textual scenario
description for each use case is generated. The guidelines to support
this step are the following:

1 This concepts are detailed in Chapter 3 of this thesis (subsection 3.3.2.1)

22

2.2 METHODS FOR REQUIREMENTS MODEL

Guideline G’8: analyze each actor and its relationships in the
strategic rationale model in order to extract information that
generates the description of the main and alternative flows.
Guideline G’9: each use case must be analyzed to check for the
possibility to refine it and generate new use cases.

Guideline G’10: create the use case diagram using the discovered
use cases and actor.

The main contribution of this method is the set of heuristics
proposed, which helps the requirements engineers to develop the
UML use cases based on the organizational models. This method
also represents the software system as an actor in the organizational
models in order to determine the activities of the organizational
model needed to be automated.

One of the main issues of the Santander proposal is that the
heuristics presented are not enough to obtain use cases in a
systematic manner. For example, the heuristic presented in second
step, which has the objective of discovering the potential use cases,
does not clearly suggest how to obtain them. Sometimes, the uses
case will be the resultant product of an analysis of task and resources
dependencies, sometimes, the use cases need to be obtained directly
from goal dependencies, or even from resources dependencies. A
similar problem occurs with the use cases scenarios determination,
since it is necessary to analyze the four organizational models
(dependency and strategic rationale with or without the software
system actor) to obtain the scenarios.

The proposed heuristics are just guidelines to support the integration
of i* with use cases modeling techniques. It is pointed out that for
the application of these heuristics; great experience is required from
the requirements analysts.

2.2.2 The Ortin proposal (2001)

The work proposed by Ortin [OrtiO1l] presents a strategy to
systematically obtain use cases models and conceptual models from
a organizational model specification.

Figure 2.2 shows a schema of this proposal, which is based on UML
activity diagrams.

23

CHAPTER 2. RELATED WORKS

1 Role diagram Sequence Diagram bm =22 Process diagram 42 !
i boL
ol e - e RPPR— B s 1 1, " . T
Business mode | | ' ot
- L. i ' [
i v rF :
1 . L] 1]
' N Requirements K ! Glossary
v 7} analysis J |-
[¥ -]
£ - i ‘I
| ; 4a
Y — e R
v P . o
| Ty =T] " L
—O¢TT oneT
¢ i
s R OHT 4
~ e =t
Use case Diagram Conceptual model

ofthesystem

Figure 2.2 Traceability relationships among an organizational model and a
requirements model

The authors argue that the organizational model can be the most
important basis to the requirements specifications of an information
system, which pretends providing support to the enterprise activities.
Therefore, use case modeling and conceptual modeling are carried
out at the same time in this proposal, making it easier the
identification and specification of the suitable use cases, according to
the suggested by Korson [Kors99].

The organizational modeling activity is implemented using the
traditional UML diagrams: business use cases diagram, roles
diagram, sequence diagram and process diagram, as well as a
glossary which contains the business rules. The initial use case
collection and the preliminary conceptual model are obtained from
these UML models.

24

2.2 METHODS FOR REQUIREMENTS MODEL

In the Ortin proposal, it is necessary to generate a use cases system
for each activity diagram in order to generate the use cases model for
the information system.

In the example shown in Figure 2.3, the following business activities
were considered as potential use cases: fill order, send order, notify
accepted order, notify rejected order, analyze viability, order
fabrication, and organize production. It is necessary to point out that
some of the use cases will not be obtained from the process diagram,
but they will be detected by describing the identified use cases and
by acquiring a great knowledge about the requirements that should
be supported by the information system.

A specific template must be used to describe the detected use cases.
Once the use cases have been detailed, these are connected with the
specification in the glossary in order to make the correspondence
between business use cases and system use cases.

The main contribution of the Ortin method is the systematic
transition from the business modeling to the requirements modeling
phase and the conceptual modeling phase.

25

CHAPTER 2. RELATED WORKS

:Customer :Commercial :BossTechnician :BossProduction

:catalogue

Fill order

-
=== p:Order g
[evaluated]

| |

I

I

1| Special

1 |_product

| TEMplate of I
Production

AN v
Notify accepted Order fabrication =y{p:Order of work| [=1
order
- [pending] '
| (—i
Organize prodt

p:Order
acepted]

p:Order

_-
- N
[rejected] e
1

End OK

Figure 2.3 Process diagram which enables to obtain the use cases.

One of the main issues of this proposal is that it is focused on the
information system generation, and most of the key aspects of the
business modeling have been neglected, such as the relationships of
tasks with organizational goals, the intentionality behind the tasks,
the description of types of dependencies which join the actor, the
strength of this dependency and the task decomposition.

We argue that most of the issues of this proposal have the source in
the weakness of UML to express the complex behaviors that exist in
enterprises [Cesa02] [Alen03].

2.2.3 Loucopoulos proposal (1995)

This proposal is based on the explicit modeling of the organizational
objectives, the social roles and the operations from the Teleological
point of view. One of the main premises of this proposal is that an
organizational model is relevant if it allows us to provide
explanations about the behavior of the enterprise. Teleological

26

2.2 METHODS FOR REQUIREMENTS MODEL

proposal establishes the analysis of goals and the analysis of
organizational dependencies as the first step for and in-depth
understanding of the enterprise. This approach, which has been
called teleological, is useful for capturing the reasons that exist
behind the business task and also for explaining how a certain
activity has been assigned to a specific organizational actor.

The teleological technique is composed of five basic elements: goals,
roles, actors, processes and resources. The goals are the core of the
modeling process because they provide clear explanations about the
current and future configuration of the enterprise. The concept of
actor considers people as organizational units and as basis constructs.
Processes are the mechanisms that permit changes of states in the
organizational system. Finally, resources are the informational or
physical means that are produced as result of the business processes.
Teleological approach includes three complementary views for
representing an organizational model: the teleological, social, and
process views. Each phase is described below:

Teleological view (Figure 2.4): The goals of the stakeholders are
represented in this view.

The goals imply intentions and also represent solutions to the
problems of the enterprise.

The constraints, which are operational goals, must be formulated in
terms of precise properties and actions

Social view: the organizational actors and their interactions are
detailed in this view (Figure 2.5). The actor is a key modeling factor
since the actor is the entity responsible for executing the
organizational activities. An actor can be and individual (person, a
software system, etc) or an organizational unit (department, division,
section, etc). The roles are a set of processes that are assigned to a
specific agent. This assignation is dependent on their goals and
capabilities. An actor can play several roles at the same time.

27

CHAPTER 2. RELATED WORKS

constraints
affects o~ CONSTRAINT

constramed_by

. . ON
is_affected by
[E——
N GOAL
composes 1s_decomposed_by
5 oN
0N

Figure 2.4 The teleological view of the enterprise modeling

INDIVIDUAL a=YpackToH _ IN ORGAI\"IS:-‘J[ON;\L
=

is_responsible_for
1N

is_assigned to
1N

is_dependent upon

DEPENDENCY|

FUNCTIONAL
DEPENDENCY

STRUCTURAL
DEPENDENCY

Figure 2.5 Meta-model of the social view

Process view: this provides a general view of the current process in
the enterprise (Figure 2.6). This view also considers the resources
that are relevant for the execution of the processes. The process view
permits the representation of triggers that correspond to changes in
the business. The events represent the dynamic dependencies among
the processes. The events can be generated by processes or by

temporal conditions.

28

2.2 METHODS FOR REQUIREMENTS MODEL

EVENT

generated_by triggers
0N IN
[| N

generare| triggered_by
N 1IN

carried_out_in

of
LN

LOCATION

0N of
IN

MATERIAL

RESOURCE

decomposed_into
0N

INFORMATIO!

Figure 2.6 Meta-model of the process view

composed_mto
1N

Some of the advantages of this proposal are:

The views of the teleological model can be very useful for
constructing an initial set of requirements for either the business
model as for the software system.

The proposal considers a well-defined graphical notation for each
business view. The views consider only a small number of modeling
elements.

The technique enables us to define functional and structural
dependencies. This characteristic is useful for determining when the
tasks of a certain actor influence the execution of tasks of other
organizational actors.

However some disadvantages of this proposal are:

Two kinds of analyses must be carried out. The first is the
determination of the high-level objectives of the enterprise and their
refinement until the operational activities are elicited (prescriptive
analysis). The second analysis concerns the details of the operations
of the current business processes (descriptive analysis). However, no
details are given in order to reconcile the two specifications when
there is no precise match between them.

There is only a brief explanation about goal decomposition. No
details are given about conflicting or redundant goals. Also, there is

29

CHAPTER 2. RELATED WORKS

no formal description of the elicited goals, which makes it difficult to
validate the goal model.

Only a brief explanation of the traceability among the different views
of the proposal is given.

There is not an explicit association between the goal model and the
process model. This makes it difficult to identify the processes that
give support to a specific enterprise goal.

The complete explanation of the business model implies the analysis
of the three models. Therefore, it is not possible to have a unique
global view of the current business process, which can be very useful
for business process reengineering.

2.2.4 The Dykman proposal (2002)

Dijkman et al [Dijk02] propose a technique to derive functional
requirements, specified with use case diagrams, from existing
business process models.

The authors argue that, due to the existing similarities between the
definitions of business process and use cases, a business processes
can also be described by using use case models [Nurc98] [Jaco99]
[Jaco94] [OMGO1]. To validate this assumption, Dijkman proposes
the creation of meta-models for both use cases models and business
process model in order to compare them and detect differences and
similarities.

The comparative analysis between both meta-models results in a
mapping which is the basis for the transformation procedure of
business process models into use case diagrams.

The meta-model of a use case diagram is shown in Figure 2.7. It is a
simplified version of the meta-model that can be found in the UML
specification [OMGO1].

30

2.2 METHODS FOR REQUIREMENTS MODEL

succeeds

precedes IO.." 0.. "I
Actor Generalisation Interaction
n oy - 1 *
1| actor generalization| = +|specialization tateraction 1.
* child|1 1]parent 7
Association . Use Case base include Include
usecas T -
* 1 1 *
1 addition
extension] 1 1] base
point | * extend | + :.c
Extensionpoint Exiend
1 *
point

Figure 2.7 Use case meta-model

The business process meta-model is shown in Figure 2.8. It has been
constructed by generalizing the meta-models of 18 business tools
analyzed in [Domm99].

The basic steps to define the mapping between business processes
and the use case models are the following:

First, an initial mapping between concepts and relations of both,
business and uses case specifications must be performed. The initial
mapping is based on the definitions of the concepts and relations. A
summary of the mapping correspondences for business process

modeling concepts and use case modeling concepts is shown in
Table 2.2.

Task

Role responsible Model Element A

1 = \\\

source| 1 1] destination
* &
Guard Transition Branch
0.1 1
guard

Figure 2.8 Business process meta-model

31

CHAPTER 2. RELATED WORKS

Then, a formal specification is proposed in order to verify the
correctness of the initial mapping among models. The formal
specification of the mappings specifies the extension of the concepts
and relations. Thus, the validations of the mapping consists of a Z
specification of the mapping itself, and a Z specification that we
derived from the meta-models on the modeling techniques.
Nevertheless, the Dijkman approach has as a limitation: it does not
provide absolute proof that the procedure is correct. The reason for
this is that the formal specification of the procedure that is used as
proof merely allows us to validate the procedure. It cannot provide a
formal proof of the correctness of the procedure [Dijk02].

Table 2.2 Mapping from business process to use case concepts

Business Process Concept

Use Case Concept

Role Actor

Step Use Case

Association between Role and Association between Actor and Use
Step Case

Task Interaction

Task in a Step

Interaction in a Use Case

Transition between Tasks in the
same Step

Ordering between Interactions in the
same Use Case

Guard on Transition

Constraint on Interaction

Alternative Path through a Branch

Alternative Path Description
of a Use Case, or Extending Use Case

2.2.5 EKD proposal (1995)

EKD [Kiri94] [Bube94]is an approach that provides a systematic and
controlled way of analyzing, understanding, developing and
documenting an enterprise and its components, by using Enterprise
Modeling.

32

2.2 METHODS FOR REQUIREMENTS MODEL

The Enterprise Model contains six interrelated sub-models (Figure
2.9). Each of them represents some aspect of the enterprise. The
types of sub-models and issues are:

Goal Model (GM) focuses on describing the goals of the enterprise.
This model permits the identification of relevant properties of the
goals such as criticism, priority, relationships, and relevance.
Business Rules Model (BRM) is used to represent the set of
restrictions that affect the satisfaction of a specific goal of the goal
model.

Concept Model (CM) is used to strictly define the "things" and
"phenomena” one is talking about in the other models. It represents
enterprise entities, attributes, and relationships. Entities are used to
define stricter expressions in the Goals Model as well as the content
of information sets in the Business Processes Model.

Business Process Model (BPM) is used to define enterprise
processes, the way they interact and the way they handle information
as well as material.

uses.]
refers_to Goals Model

—

motivates,
requires motivates, defines,

1'equire s affects, 15_responsible_for

i defined_by
|

Concepts Business Rules defines, Actors and

uses,
Model refers to | Model —is_respon— Resources Model
- sible_for

, . .
triggers defi
performs, ehnes
supports 1s_responsible_for
I

Business Process
Model

uses,
produces

T
motivates,

l requires

——refers_to—j Technical Components and
Requirements Model

Figure 2.9 The sub-models comprising the enterprise model

33

CHAPTER 2. RELATED WORKS

Actors and Resource Model (ARM) is used to describe how
different actors and resources are related to each other and how they
are related to components of the Goals Model, and to components of
the Business Processes Model.

The Technical Components and Requirements Model (TCRM)
becomes relevant when the purpose of EKD is to aid defining
requirements for the development of an information system.

The focus on EKD modeling is placed on the definition of the
technical system that is needed to support the goals, processes, and
actors of the enterprise. Initially, a starting set of high level
requirements for the information system as a whole are elicited.
Later, based on this information, the analyst must structure the
information system in a number of subsystems, or technical
components. TCRM is an initial attempt to define the overall
structure and properties of the information system to support the
business activities, as defined in the BPM.

When the objective is to develop an information system to support
the processes, there is a need to deal with technical information
system requirements, initially in a less formal way. Therefore, the
EKD approach includes a simple sub-model to describe, and to relate
to each other, initial, and unclear information system requirements.
This sub-model resembles goals and information system models as a
whole. Initially one needs to develop a set of high level requirements
or goals, for the information system as a whole. Based on these, it is
necessary to structure the information system in a number of
subsystems or technical components.

For each subsystem, a set of goals (which are more specific) and
requirements are defined. These goals and requirements have to be
derived from, and be consistent with, the earlier sub-models
discussed above. The Technical Components and Requirements
Model is an initial attempt to define the overall structure and
properties of the information system to support the business
activities, as defined in the Business Processes Model.

Some of the advantages of this proposal are:

The EKD approach, which is based on multiple and complementary
views, approaches the modeling process in an incremental way.

34

2.2 METHODS FOR REQUIREMENTS MODEL

There are well-defined graphical notations for each one of the views
that makes up the business model.

However, some disadvantages of this proposal can be summarized
as:

The semantics of the organizational model must be represented using
a large number of models, which makes the practical application of
this proposal difficult.

There is not a well-defined method that allows us to derive the
general goals of the enterprise from the operational goals of the
stakeholders. Only a description of each sub-model is presented in
the proposal.

It is not possible to establish the required efforts to produce an
automatic transformational process between the business model and
the requirements model since neither the method nor the heuristic are
described in the proposal to map these models.

2.3 Methods for conceptual models
generation

Table 2.3 shows an overview of two methods [Ort01] [Alen00] that
generates object-oriented conceptual models from organizational
models. The table considers the following aspects: the inputs of the
proposed methods, their role in the development process, the
methodology proposed, the methodology to generate the
requirements model, and the outputs of the method. This is not an
exhaustive analysis and it only pretends to highlight some
similarities and differences between the methods.

35

CHAPTER 2. RELATED WORKS

Table 2.3 Overview of methods to generate a Conceptual Model

Alencar proposal (2003) Ortin Proposal (2001)

Input of the method |organizational models (the [The UML Diagrams (process
early requirements phase) diagram)

Notation The i* framework UML diagrams

Role in the Guidelines are used forthe [Role and sequence

development proposed method to find a diagrams are used for the

process business class diagram proposed method to find the
use case model for the
software system.

Methodological This method focused on obtain [This method focused on the

approach a business conceptual model [functionality of the software
system

Method to define |some heuristics are provided [Some steps are provided
requirements model

Output of the Conceptual model represented |Conceptual model
method in UML represented in UML

Following, a brief description of these proposals is presented where
we have put emphasis on the advantages and disadvantages of each
method.

2.3.1 The Alencar proposal (2003)

In Alencar proposal [Alen03], a transformational process to derive
late requirements specifications specified in pUML (precise Unified
Modeling Language) from late requirements model represented in i*
framework is proposed. The object constraint language (OCL) is
used to cover the lack of pUML to represent invariant specification
restrictions, preconditions etc., which are necessary to correctly
represent the behavior of the information system in the conceptual
model specification.

36

2.3 METHODS FOR CONCEPTUAL MODELS GENERATION

According to Alencar, the UML is suitable to capture requirements
in the late requirements phase (software product specification)
although it is generally focused on the complexity, consistency and
automatic verification of the functional requirements [Booc99].
However the UML is badly-equipped to capture the requirements in
an early phase (model organizational specification). Thus, it does not
provide answers to the following questions: How does the software
system help to accomplish the organizational goal? Why is the
system necessary? Which alternatives were considered and how the
stockholders interests are oriented to? In Alencar works, the i*
framework was chosen because it permits to answer those questions,
also it permits to represent alternative solutions and it also offers
modeling concepts such as goals and soft goals [Mylo99].

The guidelines proposed by the author for the generation of class
diagrams were originally proposed in [Alenc99] [Cast01]. Later on,
these guidelines were extended to support the structuring elements of
i* [Alenc03].

Bellow, a short description of the guidelines is presented:

Guideline G1: Related with the mapping of i* actors.

Guideline G1.1: i* actors (agents, roles or positions) can be mapped
to UML classes;

Guideline G1.2: i* relationship IS-PART-OF between actors can be
mapped as a class aggregation in UML;

Guideline G1.3: i* relationship IS-A between actors can be mapped
to class generalization /specialization in UML;

Guideline G1.4: i* relationship OCCUPIES between an agent and a
position can be mapped as a class association in UML named
OCCUPIES;

Guideline G1.5: The i* relationship COVERS between a position
and a role can be mapped as a respective class association in UML
named COVERS;

Guideline G1.6: The i* relationship PLAYS between an agent and a
role can be mapped as a respective class association in UML named
PLAYS;

Guideline G2: Related with the mapping of i* tasks.

37

CHAPTER 2. RELATED WORKS

Guideline G2.1: A task defined in SD (Strategic Dependency) model
can be mapped as an operation in the interface that is done by the
class that represents the dependee. The name of the newly created
interface is constituted by the names of the classes that represent the
dependee and the depender.

Guideline line G2.2: A task defined in the SR (Strategic Rationale)
model can be mapped as an operation with private visibility in the
class that represents the actor which the task belongs to;

Guideline G3: The i* resources can be mapped to UML classes.

A resource can be mapped as a class in UML if this dependence has
the characteristics of an object, or as an attribute with private (SR
model) or public (SD model) visibility.

Guideline G4/G5: Related with the mapping of i* goals/softgoals.
Goals can be mapped as boolean (goals) or numeric (softgoals)
attributes with private (SR model) or public (SD model) visibility.
An association is created between the depender class and the
dependee class.

Guideline G6: Related with the mapping of i* relationship task
decomposition, this are represented by pre and post conditions
(expressed in OCL) of the corresponding UML operation.

Guideline G7: Related with the mapping of i* means-end
relationship. This is used to generate disjunctions (expressed in
OCL) of all possible means achieving the end.

The result of the early requirements phase is a class diagram (in
which the classes have attributes and methods). It is important to
point out that not all the concepts captured in early phase have a
correspondence with modeling concepts in the conceptual model of
the software system. In this sense, some elements of the
organizational model do not have a counterpart in the software
system model. This is because some of the organizational activities
that must be performed manually do not need to be represented in the
software system model. On the other hand, many elements
represented in a software model concerns technical details that are
out of the scope of an organizational model.

In this proposal, guidelines that contribute to the formalization
process of requirements expressed through the technique i* with

38

2.3 METHODS FOR CONCEPTUAL MODELS GENERATION

MAL language (Modal Actions Logic) are presented. These
guidelines allow relationships to be established between the
fragments of the formal specification in MAL and other
organizational goals described in the i* models.

The main contribution of this method is that it provides guidelines to
obtain a classes diagram from the elements of the organizational
model specified in i*. This framework allows expressing the reasons
(“why™) of the processes (motivations, intentions and reasoning) [Yu
98] that exist behind the activities in a organizational model.
Furthermore, in this study guidelines are provided for the
formalization of requirements in MAL language.

However, in this proposal, only the correspondence between the
elements of the organizational model and the conceptual model are
analyzed (class diagrams). As a result, when using the guidelines
demonstrated in this study, what is constructed is the conceptual
model of the organizational model, and not the conceptual model of
the information system. If this conceptual model is implemented the
information system is not generated, but what is generated is a
software system that allows animating the organizational model.

In order to derive the conceptual model (of the information system)
from the organizational model, it is necessary to implement a
previous stage in which the activities of each actor, that need to be
automated, must be determined.

A great deal of experience is needed from the analyst’s side to carry
out the correspondence in the models.

2.3.2 The Ortin proposal (2001)

This proposal presents a method to obtain conceptual models from
business models represented using the UML activity diagrams.

The initial conceptual model generated is obtained by exploring the
specification of the business the use case model, which represents the
domain data.

In Figure 2.3 a process diagram is shown, where the information
objects are represented as rectangles. These information objects may
be considered as concepts (in design stage these objects will produce
classes, as long as the software system requires to give support to

39

CHAPTER 2. RELATED WORKS

such concepts). Figure 2.10 shows the initial model that can be
obtained from the process diagram shown in Figure 2.3. Finally, this
initial model can be refined in order to obtain attributes, relationships
with other classes and restrictions of each object.

Special product
Product 1 has 1 | Template of fabrication
Product in Catalogue 1r 1
0t Is base of 0.
|+
' Order 1 generate 0.'| Orderofwork

Catalogue Customer

Figure 2.10 Example of the initial conceptual model

One of the main contributions of this model (as mentioned in section
2.1.2) is the generation of requirements and conceptual models. This
generation is carried out in parallel, which makes easier the
identification and specification of the most appropriate use cases.
However, one of the main weaknesses is the lack of guidelines to
map business and conceptual models; therefore this process is
responsibility of the analysts.

2.4 Current Methods for Goal-based

requirements analysis

Requirements Engineering (RE) has been described as “the branch of
systems engineering concerned with the real-world goals for,
functions of, and constraints on software-intensive systems. It is also
concerned with how these factors are taken into account during the
implementation and maintenance of the system, from software
specifications and architectures up to final test cases” [RE02]. Thus,
requirements engineering already assumes the view that “real-world

40

2.4 CURRENT METHODS FOR GOAL-BASED REQUIREMENTS ANALYSIS

goals, functions and constraints” are the source of the requirements
for software systems. Goal-Directed Requirements Engineering
(GDRE) is a branch of RE, which is concerned with the definition of
methods for defining the complete requirements for a software
system starting from goals stated by stakeholders.

GDRE methods generally define a Goal to be a [Mylo01] “condition
or state of affairs in the world that the stakeholders would like to
achieve.” Several GDRE methods have been developed in the last
years. Examples of such methods are KAOS (Knowledge
Acquisition in an automated Specification) Lams95] [Lams00],
Goal-Based Requirements Analysis Method GBRAM [Anto97]
[Anto98], ESPRIT CREWS [Roll98a] [Roll99c], and NFR [Mylo99]
[Chun00].

More recently, the Tropos framework has been proposed as a basis
for UML extensions for agent-oriented software development
[Mylo01] [Gior02].

2.4.1 The GBRAM proposal (1996)

In GBRAM (Goal-Based Requirements Analysis Method), several
principles are assumed for identifying and refining goals into
operational requirements. First, the process of acquiring
requirements involves an integrative approach, focusing on both
abstract goals and concrete behaviors that stakeholders expect the
system to exhibit.

GBRAM assumes that goals have not been previously documented
or explicitly elicited from stakeholders and that analysts must work
from various sources of available information, each with its own
scope of knowledge, to determine the goals of the desired system. It
also supports the elaboration of goals to represent the desired system.
A detailed presentation of how to apply the method from the initial
identification of goals to the translation of those goals into
operational requirements is available in [Anto97]. Following, we
provide a brief overview of the method, differentiating between the
goal analysis and goal refinement activities. Goal analysis concerns
with the exploration of available information sources for goal
identification followed by the organization and classification of

41

CHAPTER 2. RELATED WORKS

goals. Goal refinement concerns with the evolution of goals from the
stage they are first identified, to the stage where they are translated
into operational requirements for the system specification. The goal
analysis activities may be summarized as follows:

e Exploration activities entail the examination of the inputs.

o Identification activities entail extracting goals and their
responsible agents from the available documentation.

e Organization activities involve the classification of goals and
the organization of those goals according to goal dependency
relations.

The goal refinement activities may be summarized as follows:

o Refinementactivities entail the actual pruning of the goal set.

o ‘Elaborate’ refers to the process of analyzing the goal set by
considering possible goal obstacles and constructing scenarios
to uncover hidden goals and requirements.

e ‘Operationalize’ refers to translating goals into operational
requirements for the final requirements specification.

Figure 2.11 shows the activities which an analyst is involved with
when applying the GBRAM.

inputs T e 081 Analysis

) ‘\\}.:..:_........
) e Explore)———
Interview Facts f Policies / AN S ~
: — e

T

: / [i \\\
[Tanserips /| _f‘f /\Ifle;l Ify/ ‘\

[o)
Mission Statement r\,
| \ Ji
: P
i | .
——(Elaboratt) = / i
Output % P =< N ;
T {Qpﬂaliunalizg 2 _
Goal Refinement

Figure 2.11 GBRAM modeling activities

42

2.4 CURRENT METHODS FOR GOAL-BASED REQUIREMENTS ANALYSIS

One of the main contributions of this work is the definition of a clear
method to elicit the abstract goals in order to define a set of
operational goals which will lead to the requirements for the
information system. This approach makes possible the definition of
the reason of the existence of each one of the business activities.
Also GBRAM offers appropriate mechanisms to detect redundant
goals, and also for consolidating equivalent goals.

The goal restrictions are used as “finishing” mechanisms. This is
useful for the analyst to determine when the goal refinement process
must finish. This proposal considers the definition of pre and post
conditions needed for goal fulfillment.

On the other hand, some disadvantages in this proposal are: this
proposal has not considered the interaction between goals and
quantitative non-functional requirements, such as performance and
reliability. In this case, improvement and maintenance goals do not
become operational directly as achievement goals. There is no a
formalization of the elicited goals. Therefore, the description of the
goals is made in natural language. This is a disadvantage because
natural language cannot be used to perform formal verifications or
reasoning about the elicited goals.

This approach does not propose a graphical notation for the proposed
goal category. Therefore, the only unique material available to
analysts is the natural language goal definition. The modeling
process of GBRAM ends when the operational goals have been
elicited. Therefore, this technique does not offer mechanisms to
define a business model that explicitly associates the business
process model with the elicited goal model.

2.4.2 KAOS proposal (1993)

KAOS is a formal approach for analyzing goals and producing
requirements based on pre-stated goals. There is abundant KAOS
literature, e.g., [Dard93], [Lams95], [Lams98], [Dari96], [Lams00],
[Lams01]. KAOS approach is mainly oriented towards ensure that
high-level goals identified by stakeholders, fulfill system
requirements. The method is composed of the following components:

43

CHAPTER 2. RELATED WORKS

KAOS is a specification language based on concepts such as: Object
action, agent, goal, constraint, etc. This language uses real-time
temporal logic to represent constraints on past and future states.
KAOQOS proposes an elaboration method for transforming stakeholder
goals into requirements for the software system. This method
includes classical questions, such as how and why, to refine and
abstract goals in the goal-reduction graph: the identification of pre,
post and trigger conditions of goals, the identification of agents to
which goals are to be ascribed, identification and resolution of
conflicts, etc.
Following, the main steps for the method for requirements elicitation
are presented:
Step 1. Identifying goals from initial documents.
Step 2. Formalizing goals and identifying objects.
Step 3. Eliciting new goals through WHY questions.
Step 4. Eliciting new goals through HOW questions.
Step 5. Deriving agent interfaces.
Step 6. Identifying operations.
Step 7. Operationalizing goals.
Step 8. Anticipating obstacles.
Step 9. Handling conflicts
A meta-level knowledge base is used for guiding decisions during
the elaboration process. This meta-level knowledge base contains:

e A classification of goals

e Rules to ensure the consistency and completeness of

requirements.
e Tactics and heuristics for driving the elaboration and selecting
among alternative goals

Some advantages of the KAOS approach are:
KAQOS classifies goals into: achieve, cease, maintain, avoid and
optimize goals. Achieve and cease goals are said to generate
behaviors. Maintain and avoid goals are said to restrict behaviors.
Optimize goals are said to compare behaviors [Dard93]. This
classification enables the analyst to capture the complex
organizational setting.

44

2.4 CURRENT METHODS FOR GOAL-BASED REQUIREMENTS ANALYSIS

A specific method to face each modeling stage is presented in
KAOS. This constitutes one of the main kindnesses of this technique;
since precise guidelines are provided to build the modeling diagrams,
and all the elements of the KAOS meta-model have formalization in
temporary logic.

On the other hand, the disadvantages of KAQS, from our point of
view, can be summarized as: the KAOS literature does not explain
the need to classify goals in this way. KAOS uses domain knowledge
that is considered as objective knowledge, to reduce goals into sub-
goals [Dard93], [Dari96]. Also, KAOS does not encourage the
challenging of goals given, expressed by stakeholders, with the
exception of conflict resolution [Lams98]. KAOS provides tools for
transforming stakeholders’ goals into requirements, but without
making sure that these are the right goals to define the requirements
on.

2.4.3 Tropos proposal (2005)

Tropos presents a formal framework for reasoning with goal models.
In particular, the Giorgini research works [Gior05] introduce a
qualitative and an axiomatic numerical for goal modeling primitives.
Also, label propagation algorithms are shown to be sound and
complete according to their respective axioms.

The work of Giorgini has been done in the context of the Tropos
methodology, which adopted the i* modeling framework [Yu95].
The i* framework views organizational models as networks of social
actors that have freedom of action, and depend on each other to
achieve their objectives and goals, carry out their tasks, and obtain
needed resources.

Tropos approach is a modeling framework for goals which includes
AND/OR relationships among goals, but also allow more qualitative
goal relationships, as well as contradictory situations [Bohe96]
[Lams98]. The analysis of contradictory situations is carried out by
introducing goal relationships labeled “+” and “-”, that models
respectively, a situation where a goal contributes positively or
negatively towards the satisfaction of another goal.

45

CHAPTER 2. RELATED WORKS

The main advantage of this approach is the use of quantification to
evaluate the degree of goal accomplishment. This characteristic
enables the analysts to evaluate different alternatives to satisfy the
enterprise goals with the highest probability of success.

Also, this approach offers a well-founded set of axioms for defining
goal relationships. This proposal also provides axioms to lead the
qualitative and quantitative reasoning with goal models.
Additionally, the proposed approach introduces a well-defined goal
relationship to indicate positive and negative contributions of the
satisfaction of a goal into the satisfactions of other goals in the
model.

On the other hand, the main issue of Giorgini works is the lack of
mechanisms to associate the goal structure generated by the
application of his technique with the strategic models of the Tropos
framework. This is a consequence of the modeling strategy of this
approach, where the focus is placed on the analysis of the goals in
the abstract, without considering the specific actors that are
responsible for the elicited goals. Therefore, for novel analyst in
Tropos it could be complicated to take design decisions to assign a
certain goal to a specific actor in the enterprise.

2.5 Pattern language proposals

One of sources for the pattern approach has been given by
Christopher Alexander in the book “The timeliness Way of Building”
[Alex79] about the urban and building construction. This book
offered the particular vision of the author about the recurrent
problems that used to exist in the architecture of towns and cities,
and, in general, in any kind of building. Alexander described these
problems and their solutions using the term “pattern”.

Each pattern describes a recurrent problem that occurs in a specific
environment. The pattern describes the context where the problem
could be found and also offers a solution for the presented problem.
The pattern describes the environment of the solution to the problem,
in such a way that this solution can be used more than a million of
times without doing it the same way twice [Alex77].

46

2.5 PATTERN LANGUAGE PROPOSALS

After examining the Alexander works, several research groups
observed the same situation in software development, where there
is clear evidence of the patterns in all design levels, from high level
architectures to detailed design problems. Although the pattern
approaches were defined, mainly, in low abstractions levels
(implementation and design) at the present time, their evolution has
extended to almost all areas related to software development. Getting
into more specific aspects, the patterns are generally classified based
on its abstraction level [Garz02].

Bushmann et al (1998) define three levels of abstraction in defining
patterns:

e An Architecture Pattern expresses a fundamental structural
organization or schema for software systems. It provides a set
of predefined subsystems, specifies their responsibilities, and
includes rules and guidelines for organizing the relationships
between them. [Busc98].

o A Design Pattern provides a scheme for refining the
subsystems or components of a software system, or the
relationships between them. It describes a commonly recurring
structure of communicating components that solves a general
design problem within a particular context [Gamm95]).

e An Idiom is a low-level pattern specific to a programming
language. An idiom describes how to implement particular
aspects of components or the relationships between them using
the features of the given language [Copl91].

Although this classification is the best known in computer science
field, it represents only a subset of the possible types of patterns. For
example, in [Rieh96] one division of conceptual and analysis
patterns, is done. In [Fowl97] design and implementation patterns are
also analyzed. Other kinds of patterns are those used in the agent-
oriented approaches, which have been used to design multiple
aspects of a system.

Some examples of agent-based methodologies that include the use of
patterns are Tropos [Gior05], Kendall’s methodology and PASSI.
Kolp et al. present a set of patterns in [Kolp01] as part of the Tropos

47

CHAPTER 2. RELATED WORKS

methodology, which uses patterns (called styles) to describe the
general architecture of a system under construction.

Kendall [Kend99] also includes a catalogue of patterns as a part of a
technique to analyze and design agent-based systems. The patterns in
that catalogue are more general than those presented in our work,
since they include, not only interactions, but also the roles
themselves (it should be noted that the concept of role there, comes
from role theory and it is not identical to the concept used here).
Cossentino et al. present in [Coss02] the design of a particular type
of agent pattern immersed in the PASSI methodology. They define a
pattern consisting of a model and an implementation code. The
model includes two parts: structure and behavior. Structural patterns
are classified into: action patterns, which represent the functionality
of the system; behavior patterns, which can be viewed as a collection
of actions; component patterns, which encompass the structure of an
agent and its tasks; and service patterns, which describe the
collaboration between two or more agents. Implementation code is
available for two agent platforms, named, JADE and FIPA-OS.

2.6 Summary

In this Chapter, several proposals in research fields close to the
research work developed in this thesis have been presented.

In software requirements area, five proposals have been analyzed,
which consider early requirements phase as a source to obtain late
requirements [Sant02] [Orti01] [Louc95] [Dijk02] [Bube98]. The
main characteristic of these techniques is the analysis and
understanding of the business processes before considering the
construction of an information system that automates certain
business processes. Unfortunately, the majority of these works
focuses only on the definition of notations to represent early and late
requirements, but only limited research efforts have been made to
provide systematic approaches to generate requirements models form
business models.

Two proposals were analyzed in the field of conceptual modeling
[Alen03] [Orti01], which have the objective of obtaining conceptual

48

2.6 SUMMARIZE

models from the understanding of the organization context. At the
present time, there are only few research works focused on providing
a methodological solution to the problem of appropriately translate
the business model elements into the conceptual schema elements, of
the information system. We argue that this is a fundamental activity
in the software development process. It is necessary, for the
translation between models to be carried out in a methodological
process, to assure its application in real software development
environments.

The methodological approach presented in this thesis puts emphasis
on the use of business models as a starting point of the process to
obtain a conceptual schema from the information system and a
requirements model, for the software system-to-be. This proposal
allows representing the different alternatives to satisfy the business
goals, as well as the analysis of the impact that the automation of
plans will have on the quality factors expected by the enterprise’.
This is the reason why a study of the current methods for goal-based
requirements analysis was performed, where some of the more
relevant proposals in this area are briefly described.

On the other hand, pattern languages have an important role in the
research carried out in this thesis. This is because it allows us to
guide the delegation of plans to be automated towards a new
organizational model, which includes, in an explicit way, the
information system as an actor of the organizational model.
Therefore, two fundamental processes make up the process to obtain
the requirements model and the conceptual model: goal analysis and
implementation of automation patterns. The goal analysis has the
objective of identifying the plans that need to be automated. This
process is based on the determination of the tasks that allow better
satisfy the organizational goals.

Finally, heuristics and algorithms are provided to carry out the
translation of the organizational model into the conceptual and
requirements models.

! The quality factors are the aspects of quality that the enterprise wants to enhance
with a software system.

49

CHAPTER 3 EARLY REQUIREMENTS

50

Part I
The Early Requirements

51

52

Chapter 3

The early requirements phase

This Chapter describes the goal-based requirements elicitation
process proposed in this thesis. The objective of this process is to
find the best way to develop business tasks in order to achieve
organizational goals. The early requirements phase represents our
starting point towards the construction of a software system that
automates certain organizational processes.

The Chapter also introduces the basic concepts of the Tropos
framework that are used in this proposal.

3.1 Introduction

The early requirements analysis [FuxmO01] [Yu97] is one of the most
important and difficult phases of the software development process.

CHAPTER 3 EARLY REQUIREMENTS

In this phase, the requirements engineer attempts to understand the
organizational context, the goals and social dependencies of its
stakeholders in order to have the appropriate information to develop
the information system-to-be. This phase demands critical
interactions with the users; a misunderstanding at this point may lead
to expensive errors during later development stages. Not
surprisingly, several approaches have been devoted to developing
languages and analysis techniques for early requirements analysis
(e.g., [Dard93] [Yu97] [Anto96] [Gior05] [Lams01]).

Several research works focus on analyzing the early requirements
phase as a source for obtaining software requirements [Cast02]
[Maid04] [Bres04] [Jaco95a] [Bube95] [Bide02] [Magn00]. The
main feature of these techniques is the analysis and understanding of
the organizational processes before building an information system.
In these approaches, it is important to determine: a) the role of the
software system in the organizational context, b) the users of the
software-to-be, and c) the impact of the system in the performance of
the organizational processes (Figure 3.1).

This knowledge will help to build a software system that works
harmoniously with the organizational processes. We considered that
it is not possible to develop a software system that provides real
value to the enterprise without the understanding of the context
where the system will operate. Goals play a very important role in
this phase; goals have been recognized as a basic tool in
requirements engineering [Lams01]. For this reason, they have been
used in the early requirements phase, and to obtain the functional
[Anto97] and the non-functional requirements [Chun00] for a
software system.

How to do it?
Who does it2

Its environment %

Figure 3.1 The organizational model shows the environment of the business

54

3.1 INTRODUCTION

We ague that, a reason for using goals in the early requirements
phase is that they allow the visualization of states that an enterprise
expects to achieve. Goals also provide the purpose and reasoning that
will justify each one of the requirements of the information system.
The objective of the proposed method is to provide a methodological
approach for deriving the software functionality from organizational
models. Figure 3.2 shows a general schema of the early requirements
phase, which will be explained in this Chapter and Chapter 4. The
inputs of our proposal are the goals that the business needs to
achieve by implementing a software system. These goals are defined
in the actor diagram of the Tropos framework. As result of the
method, the software system is included as a organizational actor in
the organizational model. In this Chapter, a goal analysis is carried
out to determine the set of alternative tasks that better satisfy the
business objectives.

One contribution of this thesis is to make the model transformation
process systematic by proposing rules to identify the relevant tasks®
to be automated from the high-level goals of the stakeholders
(represented as actors). The proposed approach also allows us to
identify the best way to delegate the relevant tasks to the software
system actor. The generation process of the late requirements is
explained in Chapter 4.

Goal-based Relevant The generation New organi-
Actor _ requirements —» tasks to be — Process of the —p 2ational model
Diagram elicitation o late with the software
process requirements system actor

Legend

/ Input Process Deliverables

Figure 3.2 The early requirements phase processes

® The word “relevant” has been used in this thesis to indicate those elements whose
automatic execution satisfies business goals in the most appropriate way.

55

CHAPTER 3 EARLY REQUIREMENTS

3.2 'The early requirements phase

In [Yu97], a distinction is made between early and late requirements
phases. The early requirements emphasize an understanding of the
whys of the business, while late requirements emphasize what the
system should do and how do it [Yu94]. Thus, the early requirements
phase consists of analyzing and identifying the stakeholders and their
intentions. Stakeholders are modeled as social actors who depend on
each other for goals to be achieved, plans to be performed, and
resources to be furnished. Intentions are modeled as goals which are
decomposed into finer goals through a goal-oriented analysis. These
finer goals can eventually support evaluations of alternatives
[Bres04].

In recent years, there is an increasing number of works devoted to
obtain requirements specifications from the understanding of a
business setting. The reason of this increasing interest is based on the
following reasons [Yu97]:

e System development involves many assumptions about the
embedding environment and task domain. As discovered in
empirical studies (e.g., [Curt88]), a poor understanding of the
domain is a primary cause of project failure. To have a deep
understanding about a domain, there must be a clear
understanding of interest priorities, and abilities of various
actors and players, in addition to a good grasp of the domain
concepts and facts.

e Users need to help coming up with initial requirements, in the
first place. As technical systems increase in diversity and
complexity, the number of technical alternatives and
organizational configurations constitute a vast range of
options. A systematic framework is needed to help developers
understand what users want and to help users understand what
technical systems can do. Many systems that are technically
sound have failed to address real needs (e.g., [Grun99]).

e Software systems are increasingly expected to contribute to the
redesigning of organizational processes. Instead of automating
well-established organizational processes, systems are now

56

3.2 THE EARLY REQUIREMENTS PHASE

viewed as “enablers” for innovative organizational solutions
(e.g., [Hamm93]). More than ever before, requirements
engineers need to relate systems to business and organizational
objectives.

e Having well-organized bodies of organizational and strategic
knowledge would allow such knowledge to be shared across
domains at this high level, deepening the understanding about
relationships among domains. This would also facilitate the
sharing and reuse of software (and other types of knowledge)
across these domains.

e As more systems in organizations interconnect and
interoperate, it is increasingly important to understand how
systems cooperate (with each other and with human agents), to
contribute to organizational goals. The early requirements
models that deal with organizational goals and stakeholder
interests cut across multiple systems and can provide a view of
the cooperation among systems within an organizational
context.

Now that the importance of the early requirements has been
explained, below, we present the foundations of the early
requirements phase in detail.

3.3 The foundations of the early requirements
phase

This section presents the main concepts that are used in the early
requirements phase: Goal modeling and organizational modeling.
Both approaches have been combined to create a goal-based
requirements elicitation process. The differences of our proposal
from other proposals are presented in this section.

3.3.1 Goal modeling

The need to model why a system should be developed has been
recognized since the early days of requirements engineering
[Ross77]. However, most requirements modeling notations and

S7

CHAPTER 3 EARLY REQUIREMENTS

techniques focus only on the late phase of the requirements
engineering process.

Methods supporting analysis of this kind include semi-formal
methods (e.g. structured methods [Ross77], object-oriented methods
[Rumb91], [Rumb98b] [Past01]) and formal methods (e.g. model
checking [Alpu05] [Clar96]), there are also other methods that focus
on scenarios [Leit97] [Some05] and aspects [Arau03] [Samp05],
[Grun99], etc.

Goal modeling is intended to address the early-phase of requirements
engineering, in which stakeholders and goals are explored and
alternative system proposals that satisfy the goals are investigated
[Lete04].

Nowadays, several research efforts use goal mechanisms during the
requirements elicitation process. One of the most relevant works in
this field is the KAOS approach [Lete04] [Lams01] [Dard03]. KAOS
provides formal rules for deriving requirements from goal
descriptions. It is based on theories of formal specification languages
to analyze functional and non-functional requirements. However, the
use of this approach is restricted to analysts that are used to deal with
formal methods as a current concept in their modeling activities.
KAOS also provides support for finding alternatives to satisfy the
organizational goals. Another goal-oriented method is GBRAM
(Goal-Based Requirements Analysis Method) [Pott94] [Anto97],
which is focused on the generation of operational requirements from
high-level goals. However, this method does not establish a clear
distinction between the information used in the early and late
requirements phase [Yu97].

As a consequence of this problem, GBRAM does not have a clear
representation of the complete process for software development.
Another important research work on goal modeling is the NFR
Framework proposed in [Chun00]. This approach focuses on
analyzing the impact of non-functional requirements in the software
development process.

The main difference among the current goal-based approaches and
the proposed approach is the use of a systematic method that guides
the analyst in the construction of an information system. This

58

3.3 THE FOUNDATIONS OF THE EARLY REQUIREMENTS PHASE

proposed method puts emphasis on the early and late requirements
phases.

Some goal concepts found in the literature and some advantages of
using goal modeling are the following:

e Goals are objectives that the system must achieve. The word
“system”, here, refers to the software-to-be together with its
environments [Fick92] [Zave97].

e Goals are targets that provide a framework for the desired
system [Anto96].

e A goal is a desired property of the environment [Robi04].

In many goal-oriented works, the importance of the goals in software
development is emphasized [Anto97] [Dard03]. Some of the
advantages are the following

e Goals make the relationships between the operations of the
business and the high-level goals outlined by the
administrators explicit.

e Goals provide a precise judgment to determine the relevancy
of requirements. A requirement is pertinent regarding a group
of goals, if its specification is used to satisfy at least to one of
the goals.

e Goals can be used to determine the organizational process
necessary to satisfy each goal.

e Goal refinement provides a natural mechanism to structure
complex requirements documents and to increase their
legibility.

e Goals can be used as a complete and effective way to
determine the specification of requirements. The specification
is complete regarding a group of goals if all the goals in the
group can be satisfied with determined requirements.

e Goals can be used to identify and solve conflicts among
different points of view about the way of satisfying a goal.

3.3.2 Orgamzational modehng

Organizational modeling is a set of techniques used to represent and
structure the knowledge of an enterprise [Bube94]. Organizational
analysis allows us to precisely determine the following aspects: The

59

CHAPTER 3 EARLY REQUIREMENTS

operations that satisfy each one of the goals, the network of
dependencies among actors, the sequence in which the tasks of each
organizational process should be executed, the dependency type, the
tasks to be automated, etc. This information is fundamental for the
generation of a requirements model that gives real support to
organizational tasks.

There is a lot of research being done in this field [Yu95] [Bube95]
[Cesa02], [Louc95] [Cast02]. We have chosen the Tropos
methodology to represent the organizational environment because it
supports the early requirements and allows us to analyze the
processes that involve multiple participants (both humans and
software systems) and the intentions that these processes are
supposed to fulfill. The methodology is defined in terms of the
concepts of agent, goal, and related abstract notions. These notions
are used to support all software development phases, from early
requirements analysis to implementation. The following sub-section
describes this framework in detail.

3.3.3 Tropos Framework

This thesis is conducted within the context of the Tropos
methodology, which adopts the concepts of the i* modeling
framework [Yu95], whose aim is to construct and validate a software
development methodology for agent-based software systems. One of
the main advantages of this methodology is that it allows us to
capture not only what or how, but also why a piece of software is
developed. Tropos, in return, provides a more refined analysis of the
system dependencies and a well defined mechanism to deal with
functional and non-functional requirements.

The main difference in the early requirements analysis carried out in
the Tropos framework and our proposal is that the Tropos
methodology focuses on the representation of the future state of the
business, starting with the high-level goals of business, and
determining the group of alternatives to fulfill these goals. Our
proposed methodology focuses on eliciting the current state of an
existing business to determine the organizational plans, whose

60

3.3 THE FOUNDATIONS OF THE EARLY REQUIREMENTS PHASE

automatic performance would best satisfy the goals of the business.
These plans can be considered as requirements of the system-to-be.

We have used the Tropos notation to represent and analyze the early
requirements. This framework uses the following graphical
representations to represent the organizational environment [Sann02]

e Actor Diagrams This is a graphical representation where
actors and their goals, and the dependencies among actors, are
shown. This model emphasizes the static aspects of the
enterprise.

e Goal Diagrams This is a graphical representation where the
goals, plans, and dependencies of each actor are analyzed in
depth.

In the following paragraphs, the key concepts and the diagrams used
in our proposal of the Tropos framework are presented. In [Sangt02]
and [Bres04] the Tropos Framework is presented in detail.

Concepts and Notation

Tropos adopts Eric Yu's i* model [Yu95] which offers actors
(agents, roles, or positions), goals, and actor dependencies as
primitive concepts. The five basic concepts in the Tropos Framework
are the following [Sant02]:

Actor. An actor is an entity that has strategic goals and intentionality
within the system or the organizational setting. An actor represents a
physical or a software agent, as well as a role or position. A goal
graph can be associated to an actor by circling the graph with a
dashed line.

Hardgoal/Softgoal. This represents actor strategic interests.
Hardgoals are distinguished from softgoals. There, the second
having no clear-cut definition and/or criteria for deciding whether
they are satisfied or not. The hardgoals are illustrated as a rounded-
cornered rectangle, while softgoal are illustrated as a cloud.

Plan. It represents a way of doing something at an abstract level. The
execution of plan can be a mean to satisfy a goal or a softgoal
(illustrated as a hexagon).

Resource. It represents a physical or an informational entity
(illustrated as a rectangle).

61

CHAPTER 3 EARLY REQUIREMENTS

Figure 3.3 illustrates the graphical notation for these modeling
concepts.

O I3

Actor Hardgoal Softgoal Plan Resource

Figure 3.3 Graphic notations of the basic concepts

Dependency. A relationship between two actors, which indicates
that one actor, depends for some reason, on the other actor, in order
to attain some goal, execute some plan, or deliver a resource. The
former is called the depender, while the latter is called the dependee.
The object around which the dependency centers is called dependum.
In general, by depending on another actor for a dependum, an actor is
able to achieve goals that it would otherwise be unable to achieve on
its own, or not easily, or not as well. At the same time, the depender
becomes vulnerable. If the dependee fails to deliver the dependum,
the depender would be adversely affected in its ability to achieve its
goals.

Goal dependency. It is a relationship in which an actor depends on
another actor to fulfill a goal, without prescribing the way in which it
should be carried out.

Resource dependency. It is a relationship in which an actor depends
on another actor to deliver a resource that can be either material or
informational.

Plan dependency. It is a relationship in which exist a dependency to
carry out of a task, establishing the way in which it should be
performed.

Softgoal dependency. This is similar to the goal dependency, with
the difference that the goal can not bee precisely defined.
Contribution. It is a relationship between goals or plans
representing how goals or plans can contribute (positively or
negatively), in the fulfillment of the goal.

The graphical representation of the Tropos dependencies is
illustrated in Figure 3.4.

62

3.3 THE FOUNDATIONS OF THE EARLY REQUIREMENTS PHASE

Depender ~ Dependee

O—>—(:)—>O Hardgoal Dependency
O"'G"‘O Softgoal Dependency
O—P—D‘F-O Plan Dependency

O+D+O Resource Dependency

Figure 3.4 Graphic notations of the dependency relationships

Decomposition. It is a relationship between goals or plans
representing AND/OR decomposition of root goal/plan into sub-
goals/subplans.

Means-end. It is a link to join plans with goals. Different alternatives
are allowed as means of the relationship. Figure 3.5 shows the
intentional relations.

Iy

Decomposition Decomposition Means-ends Contributions

Figure 3.5 Graphic notations of the intentional relations

Actor Diagram

The main objective of this diagram is to have a static view of the
environment and the system to be developed. This diagram is made
up of the organizational actors, who are associated to other actors by
dependency relationships. The actor diagram can also extend the
basic concepts of the actor through the refinement of the notions of
Role, Position and Agent [Yu00Q], where:

A role is an abstract characterization of the behavior of a social actor
within some specialized context or domain of endeavor.
Dependencies are associated to a role when these dependencies
apply, regardless of who plays the role.

63

CHAPTER 3 EARLY REQUIREMENTS

An agent is an actor with specific physical manifestations, such as a
human. An agent has dependencies that apply regardless of what role
he/she/it happens to be playing. We use the term “agent™ instead of
“person’ for generality, so it can be used to refer to human as well
as artificial (hardware, software, or organizational) agents.

A position is intermediate in abstraction between a role and an
agent. It is a set of roles typically played by one agent. Positions can
cover roles, agents can occupy positions, and agents can also play
roles directly.

Association is a set of roles, positions and agents interconnected by
“plays™, “Occupies’ and ““covers” relationships.

The “INS” construct represents the instance-and-class relation. The
“ISA” construct expresses conceptual generalization/specialization.
These constructs are used to simplify the presentation of strategic
models with roles, positions, and agents. Roles, positions, and agents
can be decomposed into sub-parts.

Goal Diagrams

The goal diagram provides a microscopic view of the application
domain. Its purpose is to determine some strategies to fulfill the
actor’s goals, using three basic reasoning techniques Means-end
analysis, contribution analysis, and AND/OR decomposition.
Specifically, means-end analysis helps in identifying plans, resources
and softgoals, that provide means for achieving a goal. Contribution
analysis identifies goals that can contribute positively or negatively
to the fulfillment of the goal to be analyzed [Bres04].

3.4 Goal-based requirements elicitation
process

This section describes our goal-based requirements elicitation
process. It first gives a brief overview of the method, then describes
the various steps of the method and illustrates its application on a
case study, the Car Rental.

This case study is a real project of the Care Technology Company,
which concerns the organizational modeling for a car rental

64

3.4 GOAL-BASED REQUIREMENTS ELICITATION PROCESS

enterprise in Spain. Chapter 8 contains the complete description for
this case study.

One of the key issues in solving the problem of generating a software
system that fulfills user needs is to provide the analyst with
mechanisms to represent the goals that represent the states that an
enterprise wants to fulfill. In this context, goal modeling plays a
relevant role in the software development process, because it permits
the determination of different alternatives that exist to better satisfy
the goals that fulfill the organizational goals, using a software
system. This process provides a deep understanding of the
organizational tasks and the reasons why tasks are executed.

The importance of the goals becomes evident in requirements
engineering; they provide the motivations and reasoning to justify
each one of the requirements of the information system. However, in
spite of all the advantages that the goals and the multiple works
carried out in this area provide, there are many factors that need to be
improved to assure their practical application. This Chapter presents
our goal-oriented proposal for the elicitation of software
requirements to provide an answer to some problems of the current
goals modeling approaches.

Overview

The goal-based requirements elicitation process consists of deriving
the requirements for a future software system from an organizational
context (Figure 3.6). Therefore, the process starts with the definition
of an organizational model that reflects the current enterprise
situation.

This model must represent the high-level goals and the relevant
actors in the business. A goal analysis phase is carried out to identify
the relevant tasks that fulfill the goals of the enterprise.

65

CHAPTER 3 EARLY REQUIREMENTS

Goal-based requirements elicitation process

Softgoal refinem:m; @

Hardgoal refinement 2 Analysist of contributions
1. Goal refinement process in the quality factors
Actor @ Plan oF1[QF2 Relevant
Diagram A] Manual |+ | + Plans to be
9 Automatic |+
automated
“ 3. Analysis of conflicts
4. Points +0f view of the Sorolianizatens)
. oals
involved actors &

5. Delegation of plans
to the SSA

Figure 3.6 Goal analysis schema

The proposed analysis is composed of five steps that help to choose
the appropriate tasks to-be automated. In the last step (Delegation of
plans to the software system actor), a pattern language is proposed in
order to build an organizational model which includes the software
system to-be. At this point, in the late requirements phase, the system
is described within its operational environments, its functions, and
relevant characteristics. This model is a final result of our proposed
method.
In summary, the steps of the goal-based requirements elicitation
process to identify the plans that must be automated are the
following
o Goal refinement process. The first step consists in carrying
out a goal refinement for each goal of the actors. Thus, this
step is divided into two sub-processes: hardgoal and softgoal
refinement. The quality factors are also identified by the
softgoals of the enterprise.

e Analysis of contribution in the quality factors. The second
step consists of analyzing the plans and goals that best satisfy

66

3.4 GOAL-BASED REQUIREMENTS ELICITATION PROCESS

the quality factors. Therefore, each atomic plan® found in the
organizational model must be divided into two subplans
(execution by a software system or manual execution). The
impact of these subplans with the quality factors is analyzed
in order to determine the plan that better contributes to the
satisfaction of the organizational goals.

e Analysis of contradictions among organizational goals. The
third step consists of identifying the contradictions among the
organizational goals, once the contribution analysis has been
carried out.

e Point of view of the involved actors. The fourth step consists
in resolving the contradictions among the goals. Therefore, an
analysis of the point of view of the actors involved in the
achievement of the goals is carried out. The relevant plans to
be automated must be identified.

e Delegation of plans to the Software System Actor (SSA). The
last step consists of delegating the relevant plans to the
Software System Actor. This step is explained in depth in the
next Chapter.

Finally, the goal-based requirements elicitation process is further
discussed in the next sub-sections.

3.4.1 Goal refinement process

The use of goal analysis mechanisms in software requirements has
been discussed in the literature by several authors [Dard03] [Anto97]
[Pott94] [Chun00] [Lete04] [Robi04].

In this modeling context, the Tropos methodology provides one of
the most well-established founded techniques for goal analysis
[Gior05]. Tropos provides not only informal notations for
representing goals, but it also provides a well-established framework
to permit formal reasoning about the goal models.

1 Atomic plans are those plans that do not need to be divided into other subplans to
be executed.

67

CHAPTER 3 EARLY REQUIREMENTS

The first phase of the elicitation process is the goal refinement
process. The objective of this goal refinement is to decompose each
high-level goal of the enterprise into more specific sub-components,
until the desired level of specific plans for satisfying the goal is
reached.

The steps to carry out the goal refinement in the proposed method
are detailed below, and the Car Rental case study is analyzed, in
order to illustrate the goal refinement process.

Step 1. Build an actor diagram that shows only the general goals and
dependencies among the actors. A general goal reflects the state of
affairs that an actor wants to fulfill.

Step 2. Each general goal of the actor diagram must be refined (in
the boundary of the analyzed actor) using AND/OR decomposition,
means-end, or contribution links in order to determine the low-level
goals that satisfy the objectives of the enterprise.

The goal refinement process ends when the current plans
(represented as hexagons) performed by the organizational actors are
linked with the sub-goals identified in the goal-refinement process.
The links that are used to make the refinement goals are detailed
below:

The AND decomposition links are used to represent the set of sub-
goals (Gy1, Gi1 ...) that satisfy goal G;.

The OR decomposition links are used to represent alternatives that
satisfy goal G;.

The means-end links are used to represent the different means that
exist to fulfill an end (usually a goal). This link allows us to relate a
goal to a set of plans (P11, P12...) that represent the alternatives that
satisfy the goal; however the means can also be sub-goals (G,
Gia...).

The contribution links are used to specify the positive or negative
contributions of a goal, or plan, to a softgoal.

Figure 3.7 shows the links used to perform the goal-refinement
process.

68

3.4 GOAL-BASED REQUIREMENTS ELICITATION PROCESS

Gl Legend

/\ /G?\ AND Decomposition link
611 Gl2
/GE\ T /\ Means-end link

P1
G111 G112 G113

T“" Y oeil Pl Pis /
+
PL P2 P1L Pl TContributionlink

/\ OR Decomposition link

Figure 3.7 Refinement links

Step 3. Each softgoal of the actor diagram must be refined. This
refinement is carried out in the same way as the hardgoal
refinement. However, the refinement of this goal type does not
conclude with the determination of plans that fulfill the goal, but
rather the softgoal refinement process concludes with the
determination of means that satisfy the softgoal.

The softgoals are used to represent the quality factors that the
enterprise wants to fulfill. Quality factors will help the organization
to improve the performance of organizational processes and
management systems. In the literature there are many quality
attribute taxonomies [Boeh96] [Boeh78] [ISO01].

A set of quality factors is detailed below. It is important to point out
that the quality factors analyzed in this modeling phase are directly
concerned with measures for the organizational processes, rather
than measures for the information system to-be.

o Competitiveness This quality factor refers to the characteristics
(profitability, costs, and quality) that permit an enterprise to
compete effectively with other firms.

o Performance This quality factor refers to the response and
processing times of the organizational processes.

e Security This quality factor refers to the ability to prevent
unauthorized access to the information used by the enterprise.

Once the refinement of the general goals has been carried out and
the quality factors required by the company have been identified, the
next step is the contribution analysis between the elicited plans and
the selected quality factors.

69

CHAPTER 3 EARLY REQUIREMENTS

Example

The evaluation of our methodological approach has been done with
several case studies. The Car Rental case study is used in this
Chapter in order to illustrate our proposal.

The first step of the Goal-based requirements elicitation process is
related to the construction of the organizational models, this is
carried out in the goal-refinement process. Figure 3.8 shows a partial
view of the actor diagram. In this model, the general goals
(represented as ovals) of the actors (Customer, Company employee,
Associated branches, Mechanic, Insurance) are shown. Actors who
play a role in the enterprise are also depicted, e.g. the Customer

actor, who wants to rent or buy a car.
Deliver
car quickl
H Car

maintenance

Borrow Notification of
acar condition of car

Branch

Rent cars

! Insurance
management

Employee Y/ Purchase and sales
management Managemem

Legend

O Actor D Hardgoal {:} Softgoal O Roke
> Hardgoal dependency 3> softgoal dependency

Figure 3.8 Partial view of the actor diagram for the Car Rental case study

70

3.4 GOAL-BASED REQUIREMENTS ELICITATION PROCESS

This actor plays several roles in the organizational model: a)
Company, who has an agreement for a lower price; b) Company
Manager, who works for the company, or ¢) Person, who is different
from the last two roles. The arrows indicate the dependency
relationships between actors. For example, the Customer depends on
the Company employee to rent a car.

The construction of the goal diagram is carried out by refining each
general goal. Figure 3.9 presents a partial view of the goal diagram
for the employee actor. In this example, the general goal of the
Employee actor cars reservation management is refined into
alternative sub-goals: 1) Carry out reservations directly in the
branch, and 2) Carry out reservations using alternative ways (such
as internet or phone reservations).

The goal Carry out reservations directly in the branch is refined into
three sub-goals using and decomposition Analyze Customer, Analyze
the car availability, and Formalize reservation. The goal-refinement
process ends when the plans (represented as hexagons) for fulfilling
the goals are identified. Once the refinement of the general goals has
been carried out and the quality factors desired by the company have
been identified and decomposed, the next step in the proposed
method is focused on the analysis of contributions between the
elicited plans and the selected quality factors.

71

CHAPTER 3 EARLY REQUIREMENTS

Carry out reservations . - .-~
using alternative ways
TN S
\\
.
\
\
- \
Make reservations "\ v,
by phone \
\
e \
1
- '
v Have To analyze availa- = ;
\ ar available bility in this branch ormalize
\ Data 0 analyze avalla- the reservation
\ o
| securi bility in other branche: ‘.‘y K
W , ,
N . R - Drawup \ ,”
. peffor- Obtain Register R contract /%”
mance customer info, reservation, egister rent 2/
- payment P

'
'
'
.

Legend
L) ~O, Actor
O\ AND Decomposition link /. OR Decompositionlink ~ —> Means-end link *,___}Boundary actor

Figure 3.9 Partial view of the actor diagram for The Car Rental case study
3.4.2 Analysis of contributions in the quality factors

The second step of the goal-based requirements elicitation process is
the analysis of contributions in the quality factors. Contributions
describe the (positive or negative) influence of a goal or task on the
satisfaction of a quality factor (softgoal).

The softgoal contribution analysis is one of the key factors in the
goal analysis process because it allows us to identify the plans and
goals that better satisfy the quality factors.

The contributions describe the influence of a goal or plan on the
satisfaction of a softgoal. The values of the contributions are positive
contribution (+), negative contribution (-), full satisfaction (++), fully
denied (--) [Gior05].

The analysis of contribution in the quality factors is carried out by a
set of steps, which are detailed as follows:

Step 1. Propagation of the Atomic plans. The first step of this
process consists of propagating each atomic plan in the goal diagram
into two alternative subplans manual execution or automatic
execution. The automatic execution of a plan represents the

72

3.4 GOAL-BASED REQUIREMENTS ELICITATION PROCESS

execution through a software system that automatically performs the
organizational plans.

Step 2. Associating the plans with the quality factors. The second
step consists of associating the plans with the selected quality
factors. Therefore, we must determine the positive or negative
contribution of manual and automatic execution of the plan with the
quality attributes that the business wants to fulfill.

Step 3. Contribution analysis. Finally, the third step consists of
identifying the plans that best fulfill the quality factors. In this phase
the contradictions and conflicts between the plans and goals must be
identified.

Example:

In the Car Rental case study, Figure 3.10 presents a fragment of the
model with the quality factors contributions for the Employee actor.
The plans Search Customer info and Analyze credit card have been
propagated in two subplans in order to represent the manual and
automatic execution of these plans.

For each propagated plan, the contribution links are created to
associate the plans with the quality factors. This is done in order to
identify the influence of the plans with the quality attributes. For
example, the manual execution of the plan ““Analyze credit card” has
a negative contribution on the Performance attribute. We consider
that the selection of the correct plan to be automated is not always a
trivial task. This is because the contribution analysis gives rise to
contradictions among the alternatives to satisfy the quality factors.
The conflicts analysis is explained in the following section.

73

CHAPTER 3 EARLY REQUIREMENTS

_.-=""(Carry out reservations
e Directly in the branch

P Analyze
customer info

N
~
~
~
N
~
N
N

\ ‘
\
\
AY
N -
\
A}
Attracti
improve the /+
eryice

Figure 3.10 Quality factor contributions
3.4.3 Analysis of conflicts among organizational goals

The third step of the elicitation process is the analysis of conflicts
among organizational goals. This analysis is carried out after
associating the plans and the quality factors by the contribution link.
As mentioned above, the selection of the plans to be automated is not
a trivial task. Sometimes, the enterprise employees do not have a
clear idea of the best way to satisfy the organizational goals. This is
because, in most of the cases, the employees do not have a global
view of the enterprise and the goals that the enterprise wants to
fulfill.

The analysis of contributions is useful for representing a global view
of the organization, which allows us to evaluate, the objectives of the
business and how they are achieved.

More specifically, this model is useful for analyzing the different
alternatives for fulfilling the organizational goals through the
automation of the organizational tasks using a software system.

The steps to perform the contradictions analysis are presented below:

74

3.4 GOAL-BASED REQUIREMENTS ELICITATION PROCESS

Step 1 Create a matrix with the Atomic plans and the quality factors.
The plans placed in the matrix are relevant plans, which the analysts
want to analyze.

Table 3.1 shows the matrix of contributions used for analyzing the
conflicts among organizational goals. Columns represent the quality
factors that the business wants to achieve. Rows represent the plans
to-be-analyzed. Each plan is analyzed in two options, the first is the
execution in a manual way, and the second option is the automatic
execution of the plan.

Step 2 Place the value of the contributions in the matrix. The values
(++, --, +, -) of the contributions are those identified in the
contributions links.

Step 3 Compare the contributions to of the quality factor for each
propagated plan.

Table 3.1 Matrix of contributions

Quality | Quality | Quality
Plans factor 1 | factor2 | factorn

Plan 1 executed manually

Plan 1 executed
automatically

Plan n executed manually

Plan n executed
automatically

Example:

In order to resolve the contradictory cases, the kind of contributions
of the propagated plans (manual or automatic options) with the
selected quality factors.

Following with the running example, Table 3.1 shows the matrix that
includes the plans Search Customer info (plan 1) and Analyze credit
card (plan 2). These plans have been analyzed considering the two
alternatives, automatic and manual execution. When the

75

CHAPTER 3 EARLY REQUIREMENTS

contributions plans were analyzed, some contradictions between the
quality factors and plans were detected (Figure 3.10).

The plan Search Customer info (automatic) positively contributes to
the quality factor Performance; however, this plan has a negative
contribution to the quality factor Security. In this last case, the best
option to select is the manual execution of the plan. In order to solve
this conflict, the analyst must determine the priority quality factors
for choosing the plans that need to be automated. Another possible
solution consists of taking into account the point of view of the
actors involved in the plans. This solution is analyzed in the
following step.

Table 3.2 Example of the matrix of contributions

Plans Competit- Performance | Security
veness

Search Customer info (Manual) | - - +

Search Customer info ++ ++

(Automatic)

Analyze credit card (Manual) - - ++

Analyze credit card (Automatic) | + ++

3.4.4 Points of view of the involved actors

The fourth phase of the elicitation process is the analysis of the point
of view of the actor involved. The satisfaction of the goals of specific
actors can be affected not only by the execution of their own plans,
but also by the execution of the plans of other actors.

The Tropos Framework uses the concept of dependency to represent
social and intentional relationships among the actors. A dependency
is a link between two actors, where an actor, for some reason,
depends on another actor to attain goals, execute plans, or deliver a
resource. The former actor is called the depender, while the latter is
called the dependee. The object around which the dependency
relationship centers is called the dependum [Yu95].

76

3.4 GOAL-BASED REQUIREMENTS ELICITATION PROCESS

The dependency relationships allow us to represent the collaboration
among organizational actors. In this proposal, the dependencies are
analyzed to provide useful information to the analysts so that they
can make decisions about the plans that must be automated.

In order to take these decisions, the contributions of the actor’s plans
to the quality factors must be taken into account, as well as the
contributions of the actors associated through dependency
relationships.

As a result of the previous steps (goal refinement process, analysis of
contributions in the quality factors, analysis of conflicts among
organizational goals and points of view of the involved actors), the
plans that better satisfy the quality attributes of the enterprise have
been identified. These relevant plans represent the requirements to be
considered in the construction of the software system.

Next, an example of the points of view of the involved actors step is
presented, where a partial view of the organizational model with the
selected relevant plans to-be-automated is shown.

Example

Figure 3.11 presents an example of the analysis of the points of view
of the involved actors for the Car Rental case study. The objective of
the process shown in this example was to determine the best way to
carry out the payment of a rented car. In this example, the employee
actor is related to the Customer actor by the payment resource
dependency. Therefore, we analyze the contributions of the actor
Customer with a specific quality factor (security). In this case, it is
possible to determine that in both cases (employee actor and
Customer actor) the execution of the payment plan in an automatic
way contributes negatively to the security factor. Therefore, in this
specific case, the best option to be selected is the manual execution
of the plan Register rent payment. Following with the example of the
case study, Table 3.3 shows the matrix of contributions of the
Employee actor detailed in the actor diagram of Figure 3.9.

7

CHAPTER 3 EARLY REQUIREMENTS

"/ Fomalize .
/ he reservatio

Register
reservation

|
|
i
1
|
.
h
I
,
Employee
\
\
\
\
\
.
.
N

Figure 3.11 Analyzing points of view of the involved actors

Payment

This table contains all the plans of the model, which are analyzed in
two alternative solutions: automatic and manual execution. Once the
relevant plans have been represented in the matrix, then we must
analyze each plan to determine its positive or negative contribution
to the quality factors desired by the enterprise.

The matrix that associates relevant plans and contributions with
quality factors is obtained as a final result of the previous steps of
this proposal (analysis of contributions in the quality factors, analysis
of conflicts among organizational goals and analysis of the point of
view of the involved actors).

Using the generated matrix, the plans to be automated can be
determined by comparing the positive contributions of both
solutions, manual and automatic task execution. Table 3.3, shows
the relation among the alternatives to satisfy the organizational plans
and the proposed quality attributes. The table also shows the plans
selected to be automated according to their positive contribution to
the quality factors.

As a result of the previous steps (goal refinement and contribution
analysis) the plans that best satisfy the quality attributes of the
enterprise have been identified. These relevant plans represent the
requirements to be considered in the construction of the software

78

3.4 GOAL-BASED REQUIREMENTS ELICITATION PROCESS

system. Figure 3.12 shows a fragment of the organizational model
where the relevant plans to be automated have been remarked.

Table 3.3-Contributions matrix for The Car Rental case study

Competitive | Perfor .
Plans ness mance Security
Obtain Customer info (Manual)
Obtain Customer info + + +
(Automatic)
Search Customer info (Manual) - +
Search Customer info ++ ++ -
(Automatic)
Analyze credit card (Manual) + - ++
Analyze credit card (Automatic) | + + -
Obtain reservation info - +
(Manual)
Obtain reservation info ++ ++ +
(Automatic)
Search car availability (Manual) - +
Search car availability ++ ++ +
(Automatic)
Register reservation (Manual) - +
Register reservation ++ ++ +
(Automatic)
Register rent payment (Manual) - +
Register rent payment + + -
(Automatic)
Draw up contract (Manual) + + +
Draw up contract (Automatic) + + -
Request car garage - +
(personality)
Request car garage (by phone) | + ++ +

79

*To be
automated

*To be
automated

*To be
automated

*To be
automated

*To be
automated

*To be
automated

CHAPTER 3 EARLY REQUIREMENTS

Cars Reservation
Manaemem

using a\ternanve ways / T
Carry out reservations N
Employee directly i m lhe branch
CMake reserva-) CMake reserva-)
i t .

ions by internet tions by phone

Analyze Analyze the car
availability n \\

the reservation

/
‘l’ v
! To analyze availa- Handover \
\
! Analyze bility in this branch car :
B cuslomer H
| |
|
I

To analyze Formalize
availability in the reservatlon
Car delivery
Obtam ava\\ablhry Register
TR
gustomer mlo
Register ren

/

’

contract ’/

— ar delive!

Obtain resel s

Search the. vation info car garage, -
uswmev info, Search car
Analyze the availability

credit card

Customer Car
info N
Provide Provide

S
J/ Renta car
, o
/
/
, Prowdemamte
"X, personal reservation) nance to cars Have
info info / ‘ car ready
; ! | ¥, /
. \ /
. \ .
e Legend \ K
>>>>> @F'Ianm be automated s, (eachcar's)/ Have a dehver
clean car/

Sal ondmon

Figure 3.12 Partial view of the organizational model with the selected relevant plans
3.4.5 Delegation of plans to the software system actor

The last step in the goal-based requirements elicitation process is the
delegation of plans to the software system actor. One of the key
capabilities of the Tropos framework is the inclusion of the software
system within the organizational context. To do this, the software
system actor is placed as an organizational actor in the goal diagram
of the business. At this point, the plans that better satisfy the quality
attributes of the enterprise have been identified. These relevant plans
represent the requirements to be considered in the construction of the

80

3.4 GOAL-BASED REQUIREMENTS ELICITATION PROCESS

software system. Therefore, the objective of the phase is to delegate
all the relevant plans to the software system actor.

Afterwards, the plans and resources needed to accomplish the goals
are then redirected towards the system actor. Therefore, the
satisfaction of the goals will not be altered; only the actor responsible
for its fulfillment is modified. The internal plans in the software
system actor must be defined in order to satisfy its goals.

As a result of this process, a new organizational model that
represents the relationships among the software system actor and the
organizational actor is generated. The definition of this new model is
carried out in a systematic way through a pattern language, which is
explained in the next Chapter.

3.5 Summary

This Chapter defines a goal-based requirements elicitation process
that allows us to identify the relevant plans to be automated. To do
this, the high-level goals (that fulfill the objectives of the business)
are refined until the level of specific plans for satisfying the goals is
reached. In this process, the following elements are analyzed: a) the
contributions in the quality factors, b) the conflicts among
organizational goals, and c) the point of views of the involved actors.
The next Chapter describes the analysis carried out in the early
requirements phase, where a pattern language is proposed to delegate
the relevant plans, towards a new organizational actor that represent
the software system to-be (this has been explained briefly in section
3.4.5).

81

82

Chapter 4

Joming early and late
requirements

This Chapter describes a method to reduce the abstraction level
between the early requirements and late requirements by creating a
new intermediate organizational model that contains the relevant
information to be automated by the software-to-be. This process is
guided by a pattern language called FELRE (From Early
Requirements to Late Requirements).

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

4.1 Introduction

This Chapter presents the last step of the goal-based requirements
elicitation process proposed in this thesis. In this step, the relevant
organizational plans to be automated, which were identified in
previous goal analysis, are delegated towards a new actor that
represents the software system. The delegation is carried out by a set
of patterns that analyze the several possibilities that exist for
delegating relevant information to the system actor.

A pattern reflects something that has been used in a number of
situations and, thus, has some generality. The description of a pattern
contains a context, which explains the intent of the pattern and
suggests how it must be used. Patterns also express solutions in ways
that allow some variation, depending on the details of a
circumstance. Finally, pattern descriptions can express architectural
considerations, independently of specific languages and design
methodologies.

We have used a set of design patterns in order to transform an
organizational model (which represents the stakeholders and their
associated goal) into the functional and non-functional requirements
for the system-to-be. The process includes heuristics for identifying
relevant tasks to be automated from stake holder’s goals, and also to
identify the best way to delegate the relevant tasks to the system-to-
be. In order to make the process systematic, a set of patterns is
defined which specifies the possibilities that exist to delegate
organizational plans towards the software system actor. Then, the
system-to-be and its components are represented as a system actor,
who will be the responsible actor for fulfilling the assigned relevant
tasks. All the transformational steps proposed in this thesis were
implemented using a model-driven approach. This enables us to
reduce the abstraction level of a “pure” organizational model so that
it is closer to the software requirements model. The proposed method
complies with the MDA approach, implementing the concept of PIM
(platform independent model)-to-PIM transformations.

84

4.1 INTRODUCTION

It is important to point out that we have only used a pattern-based
approach in the phase of the delegation of plans to the software
system actor. This is because we consider that the steps of the
transformational process can be systematically defined; this enables
us to define a set of recurrent solutions for each of the steps of the
transformational process.

Rules and algorithms to guide the transformational process have
been used to perform other transformations between models where
not systematic steps were detected.

The structure of this Chapter is as follows, in the second section, a
brief description of the model driven architecture is presented; next
section shows an introduction of the proposed patterns; and third
section presents the concepts used in the proposed pattern language,
also, the set of patterns and the pattern language are outlined in this
section. Finally, the summary of the Chapter is presented in last
section.

4.2 'The model driven architecture

In recent years, Model Driven Architecture (MDA™)! [OMGO01] has
been proposed to support the development of large software systems
providing an architecture where systems can evolve, and
technologies can be integrated and harmonized.

MDA is an approach to system development, which increases the
power of models in that job. It is model-driven because it provides a
mean for using models to direct the course of understanding, design,
construction, deployment, operation, maintenance and modification.
The MDA separates certain key models of a system, and brings a
consistent structure to these models. Platform Independent Models
(PIMs) which can be transformed into one or more Platform Specific
Models (PSMs). This allows the system to be implemented in
different platforms, while still maintaining the same PIM.

! MDATM is a trademark of the Object Management Group.

85

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

The term Platform-Independent Model is used to refer to a model
that has only the structure and functionality of a system and no
information about implementation details. Platform-Specific Model
is used to refer to models that have information about
implementation details [OMGO01]

The MDA Guide Version 1.0.1 describes several transformation
methods. Here, we limit to describe the model transformation applied
at this stage of the thesis. Figure 4.1 illustrates this type of
transformation, where, an organizational model specified in the
Tropos Framework is created, that represents the initial PIM
(Organizational Model “Pure”) of the proposed method. This model
will use a platform independent modeling language. Then, a pattern
language is used in order to transform the original organizational
model into other organizational model which includes the software
system actor. This model will also have a platform independent
modeling language and it will be the new PIM (New Organizational
Models with the Software System Actor) obtained.

Organizational

PIP;M Models
atform “ "
independent model Pure

The generation process Transformation
of the late requirements
(Pattern language)

-
New Organizational
PIM Models with the
Platform Software System
Independent model Actor
Figure 4.1 MDA schema

86

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

4.3 Pattern languages

Patterns are a well-known and broadly used technique to specify
software design and implementation. Analysis patterns usage is
rapidly growing in the software engineering community. This
approach has recently been applied in the area of information system
engineering, particularly by those advocating object-oriented
development approaches and reuse. They are also used in: software
programming, software design, data modeling, and systems analysis.
Most of the existing work on patterns has been influenced by the
book of Christopher Alexander “The Timeless Way of Building”
[Alex79]. This book describes the importance of patterns in such a
way that the basic principles of patterns are applicable to other fields
as well. According to Alexander, patterns are ““a problem which
occurs over and over again in our environment and then describes
the core of the solution to that problem, in such a way that you can
use this solution a million times over, without ever doing it the same
way twice”. Patterns-based approaches have been established in
software programming, software design, data modeling, and in
systems analysis. Therefore similar definitions of the term “pattern”
found in the literature are:

“A pattern is a description of a common solution to a recurrent
problem, which can be applied to a specific context” [Gamm95].

“... An idea that has been useful in one practical context and will
probably be useful in others” [Fowl97]

“... The static and dynamic structures of solutions that occur
repeatedly when producing applications in a particular context”
[Copl95].

In the area of business development, patterns are relatively new and
untested. In the context of organizational development, Coplien
[Copl95] argues that ““patterns should help us not only to understand
existing organizations but also to build new ones”. However,
patterns rarely stand alone. Each pattern works within a context, and
transforms the system in that context to produce a new system in a
new context.

87

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

Therefore a collection of patterns falls short of being a pattern
language.

On the other hand, a pattern language can be detailed as: a cascade
or hierarchy of parts, linked together by patterns that solve generic
recurring problems associated with the parts. Each pattern has a title
and, collectively, the titles form a language for design[Copl95].

“... A pattern language defines a collection of patterns and the rules
to combine them into an architectural style.

Pattern languages describe software frameworks or families of
related systems” [Copl95].

At the present time, several types of patterns have been defined, such
as. architectural patterns [Busc98] that show the high level
architectures of a software system; design patterns [Mart98]
[Mesz98] that are focused on the programming aspects, or patterns
that are focused on project management [Beed97]; and patterns in
agent methodology [Gior03] [Gonz04] [Gros01]. In these research
works, which reflects the traditional pattern literature, a pattern is
described as a tested solution to a problem.

The proposed patterns in this research work are focused on
discovering the different organizational structures in the business,
when an organizational plan needs to be automated. Thus, the
patterns that we propose are essentially focused on discovering the
different alternatives in which a process can be executed when a
software system is included in the enterprise model. Therefore, a
specific pattern will be used depending on the type of the
organizational element to be automated. We have used methodology
patterns to divide a complex problem into a specific number of
solutions, where each problem is solved by a proposal pattern. In this
way, the set of patterns that identifies the relevant elements to be
automated is handled by a pattern language.

4.3.1 Structure of the pattern language

Several formats to represent patterns in computer science have been
proposed, each one differing from the other by the kind of categories
they emphasize. Among others, there is the Alexandrian form
[Alex77], the GOF (Gang of Four) form [Gamm94]), and the

88

4.3 PATTERN LANGUAGES

Coplien form [Copl95]. See [Schm95] for more examples. All
formats contain the basic categories: Name, problem statement,
context, description of forces, solution, and related patterns.

The basic elements for describing a pattern and its meaning in this
research work are the following:

Name of Pattern: The name that identifies the pattern.

Context: A situation that address a problem. It describes situations
in which the problem occurs.

Problem: The recurring problem that arises in that context. This part
of a pattern description describes the problem that arises repeatedly
in the given context.

Forces: Describe the relevant forces and constraints and how they
interact or conflict with one another, and which goals should be
achieved by implementing the solution [Url06].

Structure: A detailed specification of the structural aspects of the
pattern.

Solution: Shows how to solve the recurring problem, or better, how
to balance the forces associated with it.

Consequences: The benefits that the pattern provides, and any
potential liabilities.

Examples of the use of the pattern.

Related Pattern: Indicate the other patterns that this pattern is
composed of, is a part of, or is associated to.

4.4 Patterns in the organizational model

The pattern-oriented techniques are currently used in the solution of
complex problems or in the description of a problem involving
several steps.

At the present time, the pattern-based approach has been used in
almost all the phases of software development. We propose a set of
organizational patterns which allows us to reduce the abstraction
level of an organizational model, bringing it closer to the
requirements model of a software system. This is done by inserting
the software system actor (SSA) into the original organizational

89

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

model and delegating the responsibilities of the organization actors
to this new actor.

In this way, the proposed patterns allow us to analyze the
organization elements, such as plans, resources and goals, in order to
delegate these organizational behaviors to the new actor that
represents the software system to be developed.

Therefore, we detected several scenarios that could exist when
delegating responsibilities to the SSA. The scenarios have been
grouped into five patterns that compose the proposed pattern
language. It is important to point out that we adopt the definition of
[Copl95] where a pattern language defines a collection of patterns
and the rules to combine them into an architectural style.

Our proposed pattern language has been called FELRE (From Early
Requirements to Late Requirements). The patterns that
systematically guide the analyst to insert the SSA into the
organizational model are the following:

e The atomic plan delegation pattern

e The composite element delegation pattern

e The depender-dependee element delegation pattern
e The depender element delegation pattern

e The dependee element delegation pattern

In this section, the pattern language and the set of the patterns that
conforms the pattern language is explained, and a short taxonomy of
the concepts used in the definition of the pattern language is shown.

4.4.1 Used Concepts

Before introducing the proposed patterns, we introduce some of the

terms that will be used in the description of them. The elements have

been classified according to their location in the organizational

model and their characteristics; this short taxonomy can be

summarized as:

a) Classification according to their location in the organizational
Model:

90

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

e Internal elements: Are those elements that are defined
inside the boundary of an organizational actor. Figure 4.2
shows an example of an internal plan. Each actor can
contain several elements, which, in turn, can be
subdivided into other elements. This subdivision leads a
tree structure. Therefore, the internal elements can be
classified according to their location in the structure
hierarchy: a) the parent node could be a root node or
intermediate node, and b) the child node could be an
intermediate or a leaf node of the tree.

o External elements: Those elements that are represented in
a dependency relationship as dependum. Figure 4.2 shows
an example of an external plan.

———— External
element

l
Internal \ 65

Figure 4.2 Structure of internal and external plan

b) Classification according to their location in the hierarchy
structure of an actor, the elements can be;

e Atomic elements: Those elements that do not need to be
decomposed into other sub-elements (Figure 4.3).

e Composite elements: Those elements whose execution is
carried out by decomposing it into other sub-elements.

Composite element
C) and garent node

Atomic element
and child node

Figure 4.3 Example of an atomic plan and a composite goal

The elements explained above can also be associated to a
dependency relationship; in this case, we have added the prefix with

91

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

dependency to characterize them. Otherwise, the element will have
the prefix without dependency. Examples of plans with or without a
dependency relationship are explained below.

Element with dependency: Elements of this kind can not be directly
performed by the element owner. Thus, other actors are needed in
order to achieve this kind of modeling element. This situation is
represented by associating dependencies to the plan. An example of a
plan associated to a plan dependency is shown in Figure 4.4.
Element without dependencies: Elements of this kind can be
directly performed by its owner. Thus, this element does not have
any dependency relationship associated to it. This indicates that the
achievement of the element does not require the intervention of
another actor.

~Se__-

Plan with a dependency associated
Figure 4.4 Example of a plan with an associated dependency

All this elements will be used in the explanation of the patterns
defined in FELRE pattern language.

4.4.2 The FELRE pattern language

The pattern language proposed in this thesis makes the process of
insertion of the SSA in the organizational model systematic. The
objective of the pattern language is to reduce the abstraction level of
a ““pure” organizational model to one closer to the requirements
model. We follow the strategy of dividing the problem into more
specific scenarios.

The key of the process consists in the delegation of responsibilities to
the SSA. To do this, the dependencies, goals, resources and plans of
the organizational actors must be redirected to the SSA. As a result
of insertion process of the SSA, new dependencies need to be created
in order to permit the SSA to obtain resources from the
organizational actors. New dependencies also need to be created to

92

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

indicate the sending of resources from the SSA to the organizational
actors. The proposed pattern language must consider all the possible
delegations to the SSA.
The inclusion of the software system as an actor in the organizational
model allows us to have a high-level description of the plans that
must be supported by the information system. This high-level
description helps to focus the modeling activity on the relevant
aspects to be automated, thereby, reducing the complexity of the
analysis. Therefore, this model is correctly adapted to start the
process of finding the requirements for the information system.
The systematic delegation of modeling elements to the SSA could
cause changes in the organizational model. For this reason, to carry
out the delegation process in a systematic way, it is necessary to
consider all the possible scenarios in which the relevant elements can
be found into the organization, and also to determine how the
organizational actors interact with the elements to be delegated.
The word “relevant” has been used in this thesis to indicate those
elements whose automatic execution satisfies the organizational
goals in the most appropriate way. Therefore, once the elements to
be delegated to the SSA have been selected, the process will
continue analyzing the following issues: 1) the type of the element to
be delegated, 2) the way in which the element is currently executed
in the organizational context, 3) the way in which the plan or goals
will be executed (in an automatic way) by the information system,
and, 4) the roles that will be played by the original element owner
once the element has been delegated to the SSA. All of these issues
will be solved using the set of patterns that make up the pattern
language.
Figure 4.5 shows the proposed patterns and the relationships among
them, and presents a brief description of each pattern.

e The atomic plan delegation pattern: To be used when an

atomic plan needs to be automated.

e The composite element delegation pattern: To be used when a
composite plan needs to be automated. This pattern could be
associated with the composite element delegation pattern.
This pattern could also be associated with the following

93

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

patterns: The depender-dependee element delegation pattern,
the depender element delegation pattern and dependee
element delegation pattern.

e The depender-dependee element delegation pattern: To be
used when both elements of the depender and dependee
actors of a dependency relationship must be automated.

e The depender element delegation pattern: To be used when
the element of the depender actor of a dependency
relationship must be automated.

e The dependee element delegation pattern: To be used when
the element of the dependee actor of a dependency
relationship must be automated.

The proposed method to apply the pattern language is presented in
detail in the following section.

FELRE Pattern Language

1. The Atomic plan
delegation pattern

2. The Composite element
delegation pattern

3. The Depender-Dependee
element delegation
pattern

4. The Depender element
delegation pattern

5. The Dependee element
delegation pattern

Figure 4.5 Set of patterns of the FELRE pattern language

4.4.3 Applying pattern language

The proposed patterns must be used once the relevant elements to
automate have been identified. To do this, there is a specific method

94

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

to apply the proposed patterns. The application method is composed
of five steps; they must be performed to correctly carry out the
insertion of the SSA in the organizational model.
The steps for inserting the SSA and the elements to be automated to
this actor are the following:
Step 1. Insert the SSA in the organizational model. This step
concerns the insertion of a new actor which represents the software
system-to-be.
Step 2. Analyze the internal elements of each actor. An analysis
of the internal elements must be carried out for each organizational
actor (different to the SSA). Each actor can be composed of several
goals and plans, which, in turn, can be subdivided into goals or
plans. As mentioned above, this leads to a tree structure. Thus, an
algorithm to traverse the goal structure must be used to detect the
elements that must be automated.
Step 2.1 Perform an in-order traversing through the
internal element structures of the each organizational
actor. An in-order traversing has been proposed to analyze
all the elements of the goal and plan structure tree of each
organizational actor of the business. The purpose of
traversing is to select the organizational elements to be
automated using a software system. To perform the in-order
traversing, the left tree must be analyzed first, then the parent
element and, finally, the right tree. An example of the in-
order traversing is shown in Figure 4.6. The tree traversing
starts by analyzing the left node, then the next node to be
analyzed is the parent node and later the next branch of the
tree must be analyzed. Thus, in Figure 4.6, the order of the
analysis in the elements should be: D, B, E, A, C. When an
element to be automated is identified, the traversing in the
tree must be stopped. Then, the appropriate pattern to
perform the delegation must be selected. Once the element
has been delegated to the SSA, the traversing process returns
to the position of the relevant element in order to follow the
delegation process of the elements to the SSA.

95

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

ke

D E

Inorder Traversing: DBEAC

Figure 4.6 Example of inorder traversing

Step 3. Identification of the appropriate pattern. Once a relevant
element has been identified (in the previous step), it is necessary to
identify the pattern type that corresponds to the analyzed element.
The next sub-steps detail this process. For example, in Figure 4.7, the
following elements to be automated have been depicted with a
background of parallel lines, applying the steps mentioned above, if
the actor “A” is analyzed, then the first relevant element found is an
atomic plan (because this is not decomposed into other subplans).
Thus, the pattern to be used to perform the delegation of this element
to the SSA is the atomic plan delegation pattern. Figure 4.7 shows
the appropriate pattern to be used for each element in the model. The
patterns are identified in figure by the pattern number (pattern 1: The
atomic plan delegation pattern, pattern 2: The composite element
delegation pattern, pattern 3: The Depender-Dependee element
delegation pattern, pattern 4: The Depender element delegation
pattern, pattern 5: The Dependee element delegation pattern).

Step 3.1 Analysis of elements not associated to dependency
relationships. When the analyzed element plan is placed in an
end node of the tree, then the pattern used for this element is
the atomic plan delegation pattern (pattern 1). However, when
the element is a plan or a goal which is decomposed into other
subplans needed to execute it, the pattern to be used is the
composite plan delegation pattern. Figure 4.7 shows the actor
“B” as an example of this kind of the pattern (Pattern 2).

96

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

et Pattern 4 Tl il

Pattern1

Elements to be delegated
Figure 4.7 Identification of patterns in an organizational model

Step 3.2 Analysis of elements associated to dependency
relationships. When the dependum object in this relationship
is a plan or a resource, the other element that is joined to the
dependency must be analyzed. If the element needs to be
delegated to the SSA, the pattern used for these elements is the
depender-dependee element delegation pattern (to see Figure
4.7, pattern 3).

However, if only one element of the dependency relationship
must be delegated, the role played by the organizational actor
that contains the element must be analyzed.

If the role of the actor in the dependency is depender, the
pattern used for this element is the depender element
delegation pattern (to see Figure 4.7, pattern 4). Otherwise, the
dependee element delegation pattern must be used to see
Figure 4.7, pattern 4.

97

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

Step 4. Delegate the relevant elements to the SSA. The steps
described in the appropriate pattern must be followed in order to
carry out the delegation of the element (s) to the SSA.

Step 5. Following with the inorder traversing. Once the pattern for
a relevant element has been identified, the analysis in the internal
elements of an actor must continue until all the elements of the actor
had been analyzed. In this case, the analysis will continue with the
next actor represented in the organizational model.

4.4.4 Catalog of Patterns

In this section, each pattern of the pattern language proposed is
explained in depth. All these patterns concern the delegation of plans
from the organizational actors to the SSA,; this delegation process
depends on three issues:

= The type of the plan to be delegated

= How the plan is currently executed in the organizational

context

= How the plan will be executed in an automatic way
The structure used to detail each pattern is the following:
Name: The name of each proposal pattern must represent its
objective and it’s the intended meaning (as much as possible). For
example, in the atomic plan delegation pattern, the name makes
reference to the type of element that is to be delegated to the SSA.
Additionally, the name of each pattern has the word delegation,
which indicates that the objective of the pattern is the delegation of
the element to the SSA.
Context: In this section, the situations in which the problem occurs
are explained. This section details the initial situation in the business
before the pattern is applied to it.
Problem: In this section, the reasons why the pattern is being
developed are presented. We have divided a complex problem
(modeling an organization with the system-to-be, where the
execution of the plans will be modified by a new actor (SSA) in
several sub problems. We lead each specific problem with a specific
pattern and explain the forces that influence the solution of the
problem.

98

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

Structure: In this section, the structural aspects of each pattern are
shown. This section also illustrates the typical scenarios of the
behavior of this pattern in the organizational model. We graphically
illustrate each scenario.

Solution: In this section, the pattern solution is detailed in a set of
steps, which provide a correct implementation of the solution to each
problem.

Example: In order to illustrate each pattern, the Car Rental case
study has been used. This is a real project of the Care Technology
Company, which concerns organizational modeling for a car rental
enterprise in Alicante, Spain. We explain each pattern showing the
initial context in which the problem emerges; we show how the
selected pattern is applied, and, finally, we present the
transformation steps for creating a new context.

Related Pattern: in this section, we indicate the situation where a
pattern is associated to another pattern. A pattern solves a particular
problem, but its applications may address new problems. Some of
these can be solved by other patterns [Busc98].

The proposed patterns are detailed in the next sub-sections. First, a
brief summary to describe the pattern is shown, and second, all the
elements of the pattern are detailed.

4.4.4.1 The atomic plan delegation pattern

This pattern must be used when an atomic plan needs to be delegated
to the SSA in order to automate its execution. The atomic plans are
those plans that do not need to be divided into other subplans to be
executed.

The pattern details the problems that may be found in the delegation
of an atomic plan and also shows the alternative solutions for that
delegation. Figure 4.8 presents an example of this structure.

99

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

Legend ‘,
@ Atomic plan '.\ @

Figure 4.8 Example of the atomic plan

4.4.4.1.1 Context
This pattern concerns the delegation of an atomic plan to the SSA,
which must fulfill the following conditions:

= Itis not decomposed into other subplans and

= Itis not associated to any dependency relationship.
Figure 4.9 illustrates an example of an atomic plan in the Car Rental
case study. Specifically, the figure represents the plan: provide info
of prices of the employee actor. This plan has been selected to be
automated. For this reason; the plan needs to be delegated to the

SSA.

Atomic Plan to
be automated

Figure 4.9 An example of an atomic plan in the Car Rental case study

4.4.4.1.2 Problem

The problem consists of determining the role played by the original
plan owner once the atomic plan has been delegated to the SSA. It is
also necessary to determine the influence of this delegation on the

other organizational actors involved in the business.

100

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

4.4.4.1.3 Forces

There are three forces associated to the solution of this pattern:

= The atomic plan to be automated needs the intervention of the
original owner actor.

= The atomic plan to be automated needs the intervention of the
original owner actor, as well as the intervention of other
organizational actors.

= The atomic plan to be automated doesn’t need the
intervention of any organizational actor.

4.4.4.1.4 Structure

The elements used in this pattern are the following:
= Atomic plan: This is the element that needs to be delegated
to the SSA.
= An organizational actor: This actor, who is the original
atomic plan owner, can play the role of the depender or
dependee actor once the plan has been delegated.
= A parent node: This is the element linked to the atomic plan.
This element can be another plan or a goal.
= A link: This element joins the atomic plan with its parent
node.
Note that, in this kind of pattern, the atomic plan does not have any
dependency relationship.

Scenarios:

There are three possible scenarios in which an atomic plan to be
automated can be found in the organizational context:

Scenario |. This describes the situation where the atomic plan is
associated to its parent plan by an AND decomposition link. Figure
4.10 (a) depicts this situation.

Scenario Il. This describes the situation where the atomic plan is
associated to its parent plan by an OR decomposition link. Figure
4.10 (b) depicts this situation.

Scenario I1l. This describes the situation where the atomic plan is
associated to its parent node (a goal) by a means-end link. Figure
4.10 (c) depicts this situation.

101

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

a) Scenario | b) Scenario Il c) Scenario lll

Legend
@ Atomic plan to be delegated to SSA /@\ AND Decomposition link

/: :K OR Decomposition link /’ \Means-end link

Figure 4.10 Scenarios of an atomic plan into an organizational model

4.4.4.1.5 Solution

The process to delegate an atomic plan to the SSA consists of four
steps:

Step 1. Delegate the analyzed atomic plan to the SSA.

Step 2. Determine the roles that the organizational actor (who was
responsible for this plan) will play after the plan is delegated to the
SSA. These roles and their solutions are described in the following
sub-steps:

Step 2.1 If the original plan owner will play the role of
Provider of information to perform the plan (once the plan has
been delegated), then a resource dependency between the actor
and the SSA must be created, in order to indicate the
introduction of information to the software system from the
organizational actor. The depender of this dependency will be
the SSA and the dependee will be the original plan owner. The
application of the solution implies the analysis of the plan
name; it must be changed so that it is more appropriated, for
the intended semantics.

Step 2.2 If the original plan owner will play the role of
Requester of information (once the plan has been delegated),
then a resource dependency between the actor and SSA must
be created. The depender of this dependency will be the
original plan owner and the dependee will be the SSA.

102

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

This new dependency indicates the delivery of information to
the organizational actor.

Step 2.3 If the original plan owner does not have any
interaction with the SSA to perform the plan, no dependencies
must be created. The selection of this alternative implies the
analysis of the plan name in order to make it appropriate for
the new organizational configuration.
Step 3. Determine the role that the other organizational actors play in
the delegated plan. If they want to obtain or to provide information
for the plan, then, new dependencies among these actors and the SSA
must be created.
Step 4. If more than one dependency relationship is generated during
the delegation of an atomic plan to SSA, then, they must be labeled
with the same number in order to indicate their association.
Step 5. Analyze the context of the atomic plan. In this step, the
atomic plan must be analyzed in the context of its hierarchical
structure, in order to determine if its parent goal must also be
automated. In this specific case, the composite plan delegation
pattern must be used.

4.4.4.1.6 Examples

The application of the steps of the atomic plan delegation pattern is
illustrated with the example shown in Figure 4.9.

The first step in the solution of this pattern consists of delegating the
plan provide info of prices of the employee actor to the Car Rental
actor.

The second step in the solution of this pattern consists of determining
the role played by the employee actor. The different roles that the
employee actor can play are shown below.

The first alternative solution for the second step must be applied
when the organizational actor plays the role of Provider of
information for the plan delegated to the SSA. This decision implies
changing the plan name to make it more appropriate for the new
configuration. The Car Rental case study, the employee actor acts as
Provider of information. Thus, the plan provide info of prices should
be changed Calculate prices (Figure 4.11), because the employee

103

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

actor will provide the information about the prices of a reservation.
In this case, a new resource dependency is created between the

employee actor and the SSA, where the depender actor will be the
Car Rental actor.

Car Rental
Management

1 AY
o \
Reservation ' Calculate '
Employee . T . [
info \ prices !
\

Figure 4.11 An example when the employee actor acts as provider of information)

The second alternative solution for the second step must be applied
when the actor (who was responsible for the delegated plan) plays
the role of Requester of information. For example, if the employee
actor (Figure 4.9) acts as Requester of information, then the
employee actor will handle the software system to obtain the prices
of the reservation. Therefore, a resource dependency (prices and
models info) between the employee and the Car Rental actor must be
created. This new dependency will indicate the delivery of
information of the Car Rental actor to the employee actor. Figure
4.12 depicts this example.

Car Rental
Management
System

1 \
1 L. \
Prices and ! To provide info !
Employee . R |
models Info \ of prices !
\

- -

Figure 4.12 An example when the employee actor acts as requester of information)

104

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

The third alternative solution for the second step must be applied
when the actor (who was responsible for the delegated plan) does not
have any interaction with the SSA.

For example, the plan To provide information of prices (Figure 4.9)
that has been delegated to the Car Rental actor does not require any
interaction with other organizational actors in order to be executed.
Therefore, the original name of the plan (To provide info of prices)
must be modified to represent the fact that this plan will be executed
by the Car Rental actor itself. The new name of this plan is:
Calculate prices as shown in Figure 4.13.

Car Rental
_ -~ Management
System

- -

Figure 4.13 An example when the employee actor does not have any interaction
with the delegated plan

The third step in the solution of this pattern consists of creating new
dependencies among the organizational actors, and the Car Rental
actor must be created if other organizational actors want to obtain or
provide information about the delegated plan. The Figure 4.14
depicts an example, where the associated branches actor provides
info to the Car Rental actor through a resource dependency (Prices
and models info). Thus, only this new dependency is created in this
step.

The fourth step in the solution of this pattern consists of labeling the
dependency relationship generated during the delegation of an
atomic plan to the SSA in order to indicate the association between
them. For example, in Figure 4.14, the two dependencies created in
the delegation process can be labeled with the number 1.

The fifth step in the solution of this pattern consists of analyzing the
context of the original atomic plan (To provide info of prices) in

105

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

Figure 4.9 in the analyzed example, the plan is linked to a goal by a
means-end link; therefore, the composite plan delegation pattern
must be used to analyze this situation. An example of delegating a
composite plan is shown in the following pattern.

Car Rental
Management
System

1 /
Employee Prices and
models info

1

Associated Prices and
Branches models info

Figure 4.14 An example when other actors have interaction with the delegated plan

4.4.4.2 The composite element delegation pattern

This pattern must be used when a composite element needs to be
delegated to the SSA in order to automate its execution. The node
can be a goal or a plan. Figure 4.15 depicts an example of this
structure, where a composite plan is linked to its children nodes by
an OR decomposition link. The pattern details the problems of this
action, and shows the alternative solutions for these problems.

, N
.
p
’

Legend i

1

1

\

@ Composite plan

Figure 4.15 Example of a composite plan

106

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

4.4.4.2.1 Context

This pattern concerns the delegation of a composite element to the
SSA. It can be a plan or a goal, which must fulfill the following
conditions:
= If the composite element is a plan, then it must be
decomposed into other subplans.
= If the composite element is a goal, then it must be composed
only by subplans through a means-end link.
= At least one subplan of the composite element must have
been delegated to the SSA.
Note that, a composite element can have a dependency relationship
associated to it. The diagram in Figure 4.16 illustrates an example of
a composite goal in the Car Rental case study; specifically in analyze
availability in another branch. This goal must be analyzed to be
delegated to the SSA.

Employee
1

. G availability
| i{another branch/

N Legend

K C) The composite goal

] ¢~ ™, Child node which was

4 |Y==7 delegated to the SSA

Obtain
availability
info

N e -

~ -
~o -

Figure 4.16 An example of a composite goal in the Car Rental case study

4.4.4.2.2 Problem

The problem consists of determining when a composite element must
be delegated to the SSA. The way the delegation influences in its
subplans and the organizational actors must also be analyzed.

4.4.4.2.3 Forces

There are three forces associated to the solution of this pattern:
= The composite element has at least one subplan, which must
have been delegated to the SSA.
= The composite element to be delegated needs the intervention
of the same organizational actor.

107

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

= The composite element has a dependency with another
organizational actor.

4.4.4.2.4 Structure

The pattern is composed of the following elements:

= A composite element: this element can be a goal or plan
which requires to be delegated to the SSA.

= Child nodes: these elements must be plans.

= Links: this element joins the composite plan with its child
nodes.

= An organizational actor: is the actor who contains to
original composite element to be delegated. This actor could
have an interaction with the composite element once the
element has been delegated by a dependency relationship.

= A dependency relationship: this element is optional in this
pattern. The type of the dependency of our interest could be:
resource dependency, plan dependency or goal dependency.

Scenarios:

There are three possible scenarios in which a composite element can
be found in the organizational context:

Scenario I. This describes the situation where a composite plan is
associated to its child nodes by an AND decomposition link. Figure
4.17 (a) depicts this situation.

Scenario Il. This describes the situation where a composite plan is
associated to its child nodes by an OR decomposition link. Figure
4.17 (b) depicts this situation.

Scenario I11. This describes the situation where a composite goal is
associated to its child nodes by a means-end link. Figure 4.17 (c)
depicts this situation.

108

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

a) Scenario | b) Scenario Il c) Scenario Ill

Legend
@ Composite plan to be delegated to SSA /@\ AND Decomposition link

Composite goal o be delegatedto SSA /~\ OR Decomposition ink
3 Child node previously delegated to SSA / \ Means-end link

Figure 4.17 Scenarios of a composite element into an organizational model

4.4.4.2.5 Solution

The process of delegating a composite plan to the SSA is influenced
by the previous delegation of at least one child node to the SSA. The
composite goal will only be considered for delegation to the SSA, if
it is linked with its child nodes (plans) by a means-end. This process
is composed of five steps:

Step 1. Analyze the composite element to determine if it can be
delegated to the SSA.

Step 1.1 When the composite element is a plan, its nodes must
be analyzed if at least one child node of the composite plan
was delegated to the SSA. If this condition is satisfied, then
the composite plan must be delegated to the SSA.

Step 1.2 When the composite element is a goal, several
conditions must be taken into account to delegate the goal to
the SSA. 1) The children nodes of the composite goal must be
plans, and they must be linked by means-end links, and 2) At
least one child node of this goal must have been delegated
previously to the SSA. If these two conditions are satisfied,
then the goal can be delegated to the SSA.

Step 2. Delegate the composite element to the SSA if it satisfies the

conditions explained in step 1.2.

109

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

Step 3. Associate the subplans of the composite plan/goal located in
the SSA. The link used to associate these elements must be the same
link that the composite plan/goal had before being delegated to the
SSA.

Step 4. Analyze the influence of this delegation on the organizational
actors. This influence only occurs when the composite element is a
plan.

Step 4.1 If an organizational actor provides information to the
composite plan to execute the plan, a resource dependency
between the actor and the SSA must be created. The depender
of this dependency is the SSA. The new dependency indicates
the reception of information from the organizational actor to
the SSA.

Step 4.2 If an actor requires information from the composite
plan, a resource dependency between the actor and the SSA
must be created. The depender of this dependency is the
organizational actor and the dependee is the SSA. The new
dependency indicates the delivery of information to the
organizational actor from the SSA.

Step 4.3 If the delegation of the composite element does not
affect any actor because there is no direct interaction with the
element, then no dependency relationship between the
organizational actors and the delegated element is created.
Step 5. Determine whether the composite plan/goal to be delegated
to the SSA has a dependency associated to it. In this case, it is
necessary to determine if an associated pattern must be applied. The
patterns that can be applied are: the depender-dependee element
delegation pattern or the depender element delegation pattern.

4.4.4.3 The depender-dependee element delegation
pattern

This pattern must be used when all the elements of a dependency
relationship (depender-dependum-dependee) need to be delegated to
the SSA. In other words, the element of the depender actor as well as

110

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

the element of the dependee actor must be executed in an automatic
way.

The pattern details the problems that may be found in the delegation
of the elements of the depender-dependee actors and shows
alternative solutions. Figure 4.18 depicts an example of this

structure.

Dependee Depender

Legend
@ plan to be automated

Figure 4.18 Example of the depender actor plan and the dependee actor plan to be
automated

4.4.4.3.1 Context

This pattern concerns the automation of the elements of the depender
actor and the dependee actor, where the elements to be delegated are
associated by a dependency relationship. To apply this pattern, the
following conditions must be fulfilled:
= The elements of the organizational actors associated by the
dependency relationships need to be delegated to the SSA;
these elements can be a goal or a plan,
= The dependum object must be a resource or a plan
Figure 4.19 illustrates an example of this pattern, where the plans of
the depender and dependee actors must be delegated to the SSA.
The delegation of these elements focuses on the dependum, which is
a resource (Customer info). Therefore, both, the acquisition as well
as the delivery of this resource, need to be automated.

111

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

il e Lo Employee
h ’
E ’
\l] N {
7 Provide "\ i Customer | 1 /Obtain custo-]
3 info y info W\ merinfo A
4 \ ’

\
~ 4 N ’
~ 4 N -
~ - ~o _-

Dependee Depender

Figure 4.19 An example of the depender-dependee element delegated pattern in
the Car Rental case study

4.4.4.3.2 Problem

The delegation of the elements of the depender and dependee actors
causes several changes in the entire organizational context; mainly,
in the actors involved in the dependency relationship. These changes
are related to the type of elements that compose the dependency.
These changes also depend on the role played by the actors involved
in the dependency relationship analyzed.

4.4.4.83.3 Forces

There are five forces associated to the solution of this pattern:

= The elements of the depender/dependee actors to be
automated are linked to a resource dependency (dependum).

= The elements of the depender/dependee actors to be
automated are linked to a plan dependency (dependum).

= The element of depender actor is a goal, and both the element
of dependee actor and the dependum are plans.

= The plans delegated to the SSA require the intervention of the
original owner actors.

= The plans delegated to the SSA require the intervention of
other organizational actors, not just the original owner actors.

4.4.4.3.4 Structure

The elements used in this pattern are the following:
= Organizational actors: these are the depender actor and the
dependee actor in the analyzed dependency relationship.
= Depender actor element: this is the element that needs to be
delegated to the SSA. The element must be a plan or a goal.

112

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

= Dependee actor element: this is the element that needs to be
delegated to the SSA. The element must be a plan or a goal.

= Dependum: this element represents the context around of the
dependency; it can be a resource or a plan.

= Dependency relationship: this element joins the
depender/dependee actors and the dependum object.

Scenarios:

There are three possible scenarios in which this pattern can be found
in the organizational context:

Scenario I. This describes the situation where both the element of
the depender actor and the element of the dependee actor are plans,
in which case they must be delegated to the SSA, and where the
dependum object is a resource. Therefore, the scenario represents the
need of the business to obtain and to send a resource in an automatic
way. Figure 4.20 (a) depicts this situation.

Scenario 1. This describes the situation where both, the element of
the depender actor and the element of the dependee actor are plans
which must be delegated to the SSA, and where the dependum object
is a plan. Therefore, the scenario represents the need of the business
to automate the depender plan which has been delegated to another
actor. Figure 4.20 (b) depicts this situation.

Scenario I1l. This describes the situation where both, the depender
element is a goal and the dependee element is a plan. These elements
must be delegated to the SSA. The dependum object is a plan.
Therefore, this scenario represents the delegation of a goal to the
SSA, which delegates the execution of a plan to another actor. Figure
4.20(c) depicts this situation.

113

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

M -7 RN
N ,
h ’
1)
\ ! \
\ 4 \
\ ’
N ,
-

Depender Dependee
a) Scenario | Legend
e e Resource dependency:
N\ ’,' dependee —-{__|—«— depender
M Plan dependency;
_) ' > dependee —<—O—<— depender

Elements to be delegated to the SSA

Depender Dependee & Plan
. b) Scenario Il B & Goal
A
\ /’ \\ b
Depender Dependee
¢) Scenario lll

Figure 4.20 Scenarios of the depender- dependee element delegation pattern
4.4.4.3.5 Solution

The delegation of the elements of depender and dependee actors to
the SSA focuses on the following issues: a) the roles played by the
organizational actors, b) the type of the elements involved in the
dependency relationship, and c) the type of the dependum. Therefore,
the alternative solutions are classified depending on the elements to
be delegated.

a) First alternative: Plan-Resource-Plan,

b) Second alternative: Plan-Plan-Plan,

¢) Third alternative: Goal-Plan- Plan
The first element indicates the depender actor; the second element
indicates the dependum, and the third element belongs to the
dependee actor.

a) First Alternative (Plan-Resource-Plan):
The first alternative is used when both, the depender and the
dependee plan must be delegated to the SSA, and the dependum
object is a resource. This indicates the need to automate the

114

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

sending and receiving of the resource. The first alternative of
solution is done in four steps:

Step 1. Delegate both the depender actor plan as well as the
dependee actor plan to the SSA, and place a composite plan,
which joins these plans through an AND in the SSA. Figure
4.21 illustrates the delegation of the plans of both, the
depender and dependee actors, to the SSA. The plans are
placed as child nodes of a composite plan, which must be
created in order to determine the association between the two
plans. The plans and the goal will be joined by an AND link.

b 1
’
’

’
’

’

\

\
N 4

- ~
e N
~. LT TN
N ’ > p/ D
\ ’
\ h -
[} 1 1]
\ [\ '
\ ’
A ’ \\ //
Seo_o-” ~o _-
-~ . ,
~ -7

Dependee epender N

Before the delegation After the delegation

Figure 4.21 Before and after delegating the plans of the depender/dependee
actors to the SSA

Step 2. The original resource dependency between the
organizational actors must be redefined. The depender actor of
the new dependency will be the SSA, and, the plan associated
to the dependency will be the plan that needs the resource to
be performed. The selection of the dependee actor in the
relationship will depend on which actor acts as Provider of
information to perform the plan.

Step 2.1 If the actor who acts as depender in the
dependency relationship analyzed (that we called O-Der)
will play the role of Provider of information to execute
the plan, then the original dependency between the O-Der
actor and original dependee actor (O-Dee) remains the
same and a new dependency between the SSA and O-Der
actor is created (Figure 4.22). These dependencies
indicate that the SSA depends on the organizational actor
to obtain the information required to execute the plan.

115

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

0-Dee 0-Der :
Actor, Actor, Y 3

Figure 4.22 Organizational model after applying step 2.1 (the O-Der actor
acts as provider of information)

Step 2.2 In contrast to step 2.1, if the original dependee
actor (O-Dee) actor will play the role of Provider of
information to execute the plan, then the original resource
dependency is redefined between the SSA and the O-Dee
actor. The SSA will act as depender. Figure 4.23 shows
the resource dependency where the depender actor is the
SSA and the dependee actor is the same of the original
dependency.

Figure 4.23 Organizational model after applying step 2.2 (the O-Dee actor
acts as provider of information)

Step 2.3 If both organizational actors need to interact
with the SSA, the original resource dependency will be
redefined between the actor that acts as Provider and the
SSA. A new dependency must also be created between
the other organizational actors and the SSA. Figure 4.24
shows the alternatives where both organizational actors
need to interact with the SSA. Therefore, the original
resource dependency is redefined between the actors that
act as Provider; in this case, the SSA will act as depender.
When the organizational actor acts as Requester, a new
resource dependency will be placed between the

116

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

organizational actor and the SSA. The dependee actor
will be the SSA.

.
1
1

!

’

W ’
N ’
.

Figure 4.24 Organizational model after applying step 2.3 (both actors
interact with the SSA)

Step 2.4 If no actor has any interaction with the SSA to
execute the delegated plans, no dependencies must be
created. The selection of this alternative implies the
analysis of the plan name in order to make it appropriate
for the new organizational configuration.

Step 3. Analyze the influence of the delegation of the
elements of the depender and dependee actors on the
organizational actors. When other organizational actors must
obtain or provide information from/to the delegated plans, new
dependencies among these actors and the SSA must be
created. If there is an interaction between the organizational
actors (O-Der and O-Dee), a new dependency between the
actors must be created.

Step 4. If more than one dependency relationship is generated
during the delegation of elements of the depender/dependee
actors to the SSA, they must be labeled with the same number,
in order to indicate their association.

b) Second Alternative (Plan-Plan-Plan):
The second alternative is used when both the depender and the
dependee plan must be delegated to the SSA, and the dependum
object is a plan. This indicates the delegation of a plan of the

117

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

depender actor to another actor who will act as dependee. The
automation of these plans will be carried out as follows:

Step 1. Delegate the depender actor plan to the SSA, and
place the dependee actor plan as a subplan. These plans will
be linked by an AND decomposition link. Figure 4.25
illustrates the delegation of the plans of both the depender and
the dependee actors to the SSA. The plan of the depender
actor is placed as parent node of the dependee actor plan.
These plans are joined by an AND decomposition link.

‘m'c}igﬁ

Dependee Depender plan of she’dependee actor

Before the delegation After the delegation

Figure 4.25 Organizational model before and after applying the step 1 of the
second alternative

Step 2. Determine the roles played by the organizational
actors with the delegated plans.

Step 2.1. If an actor plays the role of Provider of
information in some of the delegated plans to the SSA, a
resource dependency between this actor and the SSA
must be created.

The SSA will act as depender in this dependency
relationship. This new dependency indicates the delivery
of information by the SSA.

Step 2.2. If some actor plays the role of Requester of
information in some of the delegated plans to the SSA, a
resource dependency between the actor and SSA must be
created. The SSA will act as dependee in this dependency
relationship. This new dependency indicates the delivery
of information to the organizational actor.

118

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

Step 2.3. If the actor does not have interaction with the
SSA to perform the plans delegated, no dependencies
must be created. The selection of this alternative implies
the analysis of the plan name in order to make it
appropriate for the new organizational configuration.

Figure 4.26 illustrates an example of this alternative, where
actor 1 acts as Provider of information with the delegated plan
to the SSA. A resource dependency is used to model this
option, and the SSA acts as depender in this relationship.
Actor 2 acts as Requester of information so another resource
dependency is placed in the model. The SSA acts as dependee
in the dependency relationship.

Provider

Requester A

Figure 4.26 Organizational model after applying step 2 of the second
alternative

Steps 3 and 4 of the first alternative must be taken into
account in order to carry out all the processes for delegating
the elements of the pattern to the SSA.

¢) Third Alternative (Goal-Plan-Plan):
The third alternative is used when the elements of a dependency
relationship are: a goal in the depender actor, a plan in the
dependee actor, and a plan as dependum. It indicates the need to
execute a plan for another actor to achieve a goal. Therefore, the
delegation of these elements is carried out as follows:

119

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

Step 1. Delegate the depender actor goal to the SSA and place
the dependee actor plan as its child node. These elements will
be linked by a means-end link. Figure 4.27 illustrates the
delegation of the depender actor goal and the delegation of the
plan of the dependee actors. The goal is placed as parent node,
and the plan is placed as the child node of this goal. These
elements are joined by a means-end link.

Before the delegation After the delegation

Figure 4.27 Organizational model before and after to apply the step 1 of the
third alternative

Step 2. Determine the roles played by the organizational
actors with the delegated plans.

Step 2.1. If an actor plays the role of Provider of
information in some of the delegated plans to the SSA, a
resource dependency between this actor and the SSA
must be created.

The SSA will act as depender in this dependency
relationship. This new dependency indicates the delivery
of information by the SSA.

Step 2.2. If some actor plays the role of Requester of
information in some of the delegated plans to the SSA, a
resource dependency between the actor and SSA must be
created. The SSA will act as dependee in this dependency
relationship. This new dependency indicates the delivery
of information to the organizational actor.

Step 2.3. If the actor does not have interaction with the SSA to
perform the plans delegated, no dependencies must be created.
The selection of this alternative implies the analysis of the

120

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

plan name in order to make it appropriate for the new
organizational configuration.

Step 3. Analyze the influence of the delegation of the
elements of the depender and dependee actors on the
organizational actors. When other organizational actors must
obtain or provide information from/to the delegated plans, new
dependencies among these actors and the SSA must be
created. If there is an interaction between the organizational
actors (O-Der and O-Dee), a new dependency between the
actors must be created.

Step 4. If more than one dependency relationship is generated
during the delegation of elements of the depender/dependee
actors to the SSA, they must be labeled with the same number,
in order to indicate their association.

Figure 4.28 shows the final model of the example illustrated in
Figure 4.27. The delegation of the depender actor element and
the dependee actor element are a goal and a plan. These
elements are joined by a means-end link.

)
0-Dee 0-Der 4__6
Actor Actor R, 4

Figure 4.28 Organizational model after applying steps from the third alternative of
the depender-dependee element delegation pattern

The O-Der actor acts as Provider of information to the SSA. A
resource dependency is used for modeling this option, and the
SSA will act as depender actor in this relationship. There is an
interaction between the organizational actors which is depicted
through a resource dependency between the O-Dee actor and
the O-Deer actor.

121

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

4.4.4.3.6 Examples

The delegation of the elements of depender and dependee actors to
the SSA s classified depending on the elements to be delegated. In
this sub-section we give an example for each alternative of
delegation, they are:

= First alternative: Plan-Resource-Plan,

= Second alternative: Plan-Plan-Plan,

= Third alternative: Goal-Plan- Plan

Example of the first Alternative (Plan-Resource-Plan):

The application of the steps of this alternative is illustrated with the
example shown in Figure 4.20, where both actors depender and
dependee want to delegate their plan to the SSA. They are: Obtain
Customer info and Provide info. Thus, the first steps in the solution
of this pattern consist of delegating both plans to the SSA, and place
a plan joined through an AND link in the SSA. Next step consists in
redefining the dependum element (resource: Customer info). The
depender actor in the dependency will be the plan which needs the
resource; meanwhile, the dependee actor in the relationship will be
the actor who acts as Provider of information to perform the plan.
Specifically, In this case the employee actor acts as Provider of
information to execute the plan, then the resource dependency
remains the same and a new dependency between the SSA and
Employee actor is created. In step 4, all the dependencies modified in
these alternatives are labeled with the number 1. Figure 4.29 shows
the result of applying this alternative of solution.

L7 Analyze
/ ustome)
/ \
'

1 \
|

|
Customer | 4 btain custo Provide "\,
info -\ merinfo info /4
\

N 7
o -

N

Figure 4.29 Organizational model after applying steps of the pattern

122

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

Second Alternative (Plan-Plan-Plan):

The application of the steps of the second alternative is illustrated
with the example shown in Figure 4.30, where both actors depender
and dependee want to delegate their plan to the SSA (Register car
reservation and Send info); also the dependum object is a plan (Send

info).
] - Employee,
Send Send ; Reglster car
Reservatlon

|nfo info

Dependee Depender

Legend
@ plan to be automated

Resource dependency:

0-Der actor—<—|:|—<— 0-Dee actor

Figure 4.30 Example of second alternative

First step in the solution of this pattern consists of delegating both
plans to the SSA, and place the dependee actor plan as a subplan of
the Register car reservation plan.

The delegation of the dependee actor plan (Send info) implies change
in the name of the subplan, in order to have a more appropriate name
for the intended semantics. Thus, the plan in this case is Obtain
information of the reservation. These plans will be linked by an AND
decomposition link.

The second step is determining the role played by each actor, in this
case, the two actors Customer and Employee can carry out the
register of a car reservation, and namely they act as Provider of
information with the SSA. Therefore, a resource dependency
between these actors and the SSA is created. The resource
dependencies are labeled with the number 2 in order to indicate their
association.

123

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

Figure 4.31 depicts this alternative, where the plans of the Customer
and Employee actors have been delegated to the SSA. The example
shows also the new resource dependencies generated in this
alternatives, it is because both actors act as Provider of information
of the plan (Obtain information of the reservation).

Register
Car
reservation

2

Reservation
info

Obtain informa-
tion of the reser-
vation

Employee

Reservation
info

Figure 4.31 Example of second alternatives in the Car Rental case study

4.4.4.4 The depender element delegation pattern

This pattern must be used only when the element of the depender
actor needs to be delegated to the SSA in order to automate its
execution; this element can be a plan or a goal, and where the
dependum object can be a resource or a plan. The pattern details the
problems that may be found in the delegation of the depender
element actor and also shows the alternative solutions for that
delegation. Figure 4.32 depicts an example of this structure.

Depende| .
Actor \ Dependee
Actor

\ ’
\ ’
N ’

~ -

Figure 4.32 Example of a depender actor plan to be automated

124

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

4.4.4.4.1 Context

This pattern concerns the automation of the element of the depender
actor, where the analyzed element has associated a dependency
relationship. Two conditions must be fulfilled in order to delegate the

analyzed element:
= An element of the depender actor needs to be delegated to the

SSA; this element can be a goal or a plan,

= The dependum object must be a resource or a plan
Figure 4.33 illustrates an example of this pattern, where the plan
(Obtain date and model car) of the depender actor must be delegated
to the SSA. The delegation of this plan focuses on the dependum,
which is a resource (car info). Therefore, the acquisition of this

resource needs to be automated.

Legend ,
@ plan to be automated '
1

Resource dependency:

1

1

1

O-Der actor—{-D—(— O-Dee actor | |
I

.

)

\

Obtain
date and
model car

Carinfo

Figure 4.33 An example of the depender element delegation pattern in the Car
Rental case study

4.4.4.4.2 Problem

The delegation of the depender actor element to the SSA can cause
several changes in the entire organizational context; mainly, in the
actors involved in the dependency relationship. These changes are
related to the role played by the dependee actor, once the depender
actor element is delegated. The influence of this delegation on the
other organizational actors involved in the business must also be

analyzed.

125

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

4.4.4.4.3 Forces

There are four forces associated to the solution of this pattern:

= The depender actor element is linked to a resource
dependency (dependum).

= The depender actor element is linked to a plan dependency
(dependum).

= The plans delegated to the SSA require the intervention of the
original owner actors.

= The plans delegated to the SSA require the intervention of
other organizational actors, not only of the original owner
actors.

4.4.4.4.4 Structure

The elements used in this pattern are the following:

= Organizational actors: these are the depender actor as well
as the dependee actor in the analyzed dependency
relationship.

= Depender actor element: this is the element that needs to be
delegated to the SSA. The element must be a plan or a goal.

= Dependum: this element represents the context around of the
dependency; it must be a resource or a plan.

= Dependency relationship: this element joins the
depender/dependee actors and the dependum object.

Scenarios:

There are three possible scenarios in which this pattern can be found
in the organizational context:

Scenario I. This describes the situation where the depender element
is a plan (it must be delegated to the SSA), and the dependum object
is a resource. Therefore, the scenario represents the need of the
business to obtain a resource in an automatic way. Figure 4.34 (a)
depicts this situation.

Scenario Il. This describes the situation where the depender element
is a plan (it must be delegated to the SSA), and the dependum object
is a plan. This scenario represents the automation of the depender
plan, which delegates a plan to another actor. Figure 4.34 (b) depicts
this situation.

126

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

Scenario Ill. This describes the situation where the depender
element is a goal (it must be delegated to the SSA), and the
dependum object is a plan. This scenario represents the delegation of
a goal to the SSA which delegates the execution of a plan to another
actor. Figure 4.34 (c) depicts this situation.

Dependeny ™~ ">+
Actor \
) Dependee! Legend
p / Actor
% 4 Resource dependency —P—D—P—
e Plan dependency > >
a) Scenario |

Depende Elements to be delegated to the SSA
Actor \ . Bepended @ Plan Goal

\ Actor

b) Scenario Il
Dependef - ==~
Actor
Dependee
~l--\‘~ .

NN

¢) Scenario Ill

Figure 4.34 Scenarios of the depender element delegation pattern

4.4.4.4.5 Solution

The solution proposed for delegating only the depender actor
element is guided by the dependum object. Therefore, when the
object dependum is a resource, it will indicate the need to automate
the reception of the resource. Otherwise, if the dependum is a plan, it
will indicate the need for the execution of a plan by an organizational
actor to fulfill the delegated plan or goal. This process is summarized
in six steps:

Step 1. Delegate the depender actor element to the SSA.

Step 2. Analyze the dependum object in the dependency relationship
under study; if the dependum is a resource, then the actor that will
provide the resource to the SSA must be determined.

Step 2.1 If the O-Dee will play the role of Provider of
information to execute the plan, (i.e., if the O-Dee provides the
resource directly to the SSA) then the original resource

127

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

\

\
N
~

ODer\ . T
Actor, : 0-Dee : O-Dee
1 Actor % y Actor

dependency is redefined between the SSA and O-Dee actor.
The SSA will act as the depender actor. Figure 4.35 shows a
scenario of the pattern described in this section (on the left).
Thus, the element to be delegated is a plan, and the object
dependum is a resource.

Before the delegation After to apply step 2.1

’
’
-

Figure 4.35 Organizational model before applying step 2.1 (the O-Dee actor
acts as provider of information)

On the other hand, the model on the right shows the obtained
solution before applying the step 2.1, where the resource
dependency has been redefined between the SSA and the O-
Dee actor to indicate that. Dependee actor will provide the
resource to SSA directly.

Step 2.2 In contrast to step 2.1, if the O-Der is the actor that
will play the role of Provider of information to execute the
plan, then the original resource dependency remains the same,
and another resource dependency must be created between the
SSA and the O-Der. The depender actor of this new
dependency will be the SSA. Figure 4.36 shows the alternative
solutions for this substep. The O-Der actor acts as Provider of
information, therefore the original resource dependency
remains the same between the O-Der actor and the O-Dee
actor, and a new resource dependency between the SSA and
O-Der actor is created.

128

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

After to apply step 2.2

A
\
1
Before the delegation L y
O-Der\ -, I
Actor Y 0-Dee New
\\ /: Actor,

dependency

Original dependency

Figure 4.36 Organizational model after applying step 2.2 (the O-Der actor
acts as provider of information)

Step 2.3 If no actor has any interaction with the SSA to
execute the delegated plan, no dependencies must be created.
The selection of this alternative implies the analysis of the
plan name in order to make it appropriate for the new
organizational configuration.
Step 3. If the dependum object is a plan, the organizational actor
responsible to execute the plan dependency must be determined.

Step 3.1 If the O-Der is responsible for executing the plan
dependency, the plan dependency must be redefined between
the SSA and the O-Der actor. However, if the O-Dee actor is
the one performing the plan of the plan dependency, then it
must be redefined between the SSA and the O-Dee actor.
Figure 4.37 shows the two scenarios where the object
dependum is a plan. The first scenario shows a depender actor
plan which must be delegated to the SSA,; after applying step
3.1, the plan dependency must be redefined among some
actors involved in the dependence (the O-Der or the O-Dee
actor) and the SSA. The depender actor is the SSA. On the
other hand, the second scenario of the figure shows a goal
associated to a plan (Figure 4.35); after applying step 3.1, both
organizational actors (the dependee/depender) can be
responsible to execute the plan, in order to fulfill the delegated
goal.

129

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

Before the delegation After to apply step 3.1

‘
Actor ;

a)Aplantobe

O Der
delegated to @
the SSA \\

delegated to
the SSA

Figure 4.37 Two examples where the object dependum is a plan of the depender
element delegation pattern

Step 4. Analyze the influence of the delegation of the depender actor
plan on the organizational actors.

Step 4.1 When other organizational actors must provide
information to the delegated plan, a new resource dependency
between the actor and SSA must be created. The depender of
this dependency will be the SSA.

Step 4.2 When other organizational actors need to obtain
information about the delegated plan, then a new resource
dependency between the actor and SSA must be created. The
dependee actor will be the SSA.
Step 5. If more than one dependency relationship is generated during
the delegation of the depender actor element to the SSA, they must
be labeled with the same number in order to indicate their
association.

4.4.4.4.6 Examples

The application of the steps of the depender element delegation
pattern is illustrated with the example shown in Figure 4.33.

The first step in the solution of this pattern consists of delegating the
plan Obtain date and model car to the employee actor to the Car
Rental actor.

130

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

The second step is applied because the dependum object is a
resource: Info car. Therefore, the different roles played by the actors
must be analyzed. The roles and their solutions are grouped in three
alternatives. They are specified as sub-steps. An example is shown
for each alternative in the following paragraphs.

The first alternative solution for this pattern must be applied when
the Customer (O-Dee actor) plays the role of Provider of
information. Thus, the original resource dependency is redefined
between the SSA and Customer actor. Figure 4.38 depicts this

example.

date and
model car

Car info

Figure 4.38 The O-Dee actor plays the role of provider of information

The second alternative solution for this pattern must be applied when
the O-Der actor (Employee actor) plays the role of Provider of
information to execute the plan. Thus, the original resource
dependency remains the same, and another resource dependency is
created between the SSA and the Employee actor. Figure 4.39
depicts this example.

4 \
4 \
] Obtain]
Car info Employee Car info (. date and !
', \s.model car y
\ ’
V ’

S

Figure 4.39 The O-Der actor plays the role of provider of information

131

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

The third alternative solution of this pattern cannot be applied in the
delegated plan because it needs to obtain information about an
organizational actor in order to be satisfied.

The fourth step is related to the creation of new dependency
relationships among the organizational actors and the SSA in order
to provide or require information about the plan delegated to the
SSA. Finally, in the fifth step, the dependencies have been labeled
with the number 1 to indicate their association

1 1
@ Car info Employee Car info

Car info

Obtain
date and
model car,

Rental
System

Figure 4.40 Organizational model after applying all steps of the pattern
4.4.4.5 The dependee element delegation pattern

This pattern must be used when only the element of the dependee
actor needs to be delegated to the SSA to automate its execution; this
element must be a plan, while that dependum object can be a
resource or a plan.

The pattern details the problems that could be found in the delegation
of the dependee element, and it shows the alternative solutions for
that delegation. Figure 4.41 depicts an example of this structure.

Dependee
_ A\ Actor Legend
/ \ @ plan to be automated
1] \
Depende . | \\ !
Actor ' \ Y

Figure 4.41 Example of the depender actor plan to be automated

132

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

4.4.4.5.1 Context

This pattern concerns the automation of the element of the dependee
actor, which is associated by a dependency relationship. This pattern
must fulfill the following conditions:

= One plan of the dependee actor joined by the dependency

relationships needs to be delegated to the SSA

= The dependum object must be a resource or a plan
Figure 4.42 illustrates an example of this pattern in the Car Rental
case study. Specifically, the figure represents the plan: Manage the
reservations. This plan has been selected to be automated. For this
reason; the plan needs to be delegated to the SSA.

,-~| Employee
,

7 \

I’ AY
1 \
1 A}
Manager Manage the ' /" Manage the 1
Company, reservations V\{ reservations ’;

\
’

\
\ ’
’

S Prd

Figure 4.42 Example of the dependee element delegation pattern in the Car Rental
case study

4.4.4.5.2 Problem

The delegation of the dependee actor element to the SSA can cause
several changes in the entire organizational context; mainly, in the
actors involved in the dependency relationship. These changes are
related to the role played by the depender actor, once the dependee
actor element is delegated. The influence of this delegation on the
other organizational actors involved in the business must also be
analyzed.

4.4.4.5.3 Forces

There are three forces associated to the solution of this pattern:
= The dependee actor element is linked to a resource
dependency (dependum).
= The depender actor element is linked to a plan dependency
(dependum).

133

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

= The plan delegated to the SSA requires the intervention of
other organizational actors, not just the original owner actor.

4.4.4.5.4 Structure

The elements used in this pattern are the following:

= Organizational actors: these are the depender actor as well
as the dependee actor in the analyzed dependency
relationship.

= Dependee actor element: this is the element that needs to be
delegated to the SSA. The element must be a plan.

= Dependum: this element represents the context around the
dependency; it can be a resource or a plan.

= Dependency relationship: this element joins the
depender/dependee actor and the object dependum.

Scenarios:

There are two possible scenarios in which this pattern can be found
in the organizational context:

Scenario |. This describes the situation where only the dependee
actor element must be delegated to the SSA; this element must be a
plan, and the dependum object is a resource. Therefore, the scenario
represents the need of the business to generate a resource in an
automatic way through the dependee actor plan. Figure 4.43 ()
depicts this situation.

Scenario Il. This describes the situation where only the dependee
actor element must be delegated to the SSA; this element must be a
plan, and the dependum object is a plan. This scenario represents the
automation of the dependee plan, which was delegated by the
depender actor. Figure 4.43 (b) depicts this situation.

134

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

Dependee Dependee
_-\Actor _-\ Actor
l/ // \
1 \
Depender ! |
Actor 9)

a) Scenario | b) Scenario Il
Legend

Resource dependency —P—D—P— @ Plan
Plan dependency > > Resource

Figure 4.43 Scenarios of the dependee element delegation pattern

4.4.4.5.5 Solution

The solution proposed for delegating only the dependee actor
element is guided by the dependum object. Therefore, when the
object dependum is a resource, it will indicate the need to automate
the generation of the resource. Otherwise, if the dependum is a plan,
it will indicate the delegation of the depender actor plan to the
dependee actor; this process is summarized in five steps:

Step 1. Delegate the dependee actor plan to the SSA.

Step 2. The dependum of the dependency relationship under study
must be analyzed; if the dependum is a resource then the roles played
by the organizational actors must be determined. It will be necessary
to determine the actor that will provide the resource to the SSA.

Step 2.1 If the O-Der actor will play the role of Requester of
information to execute the plan, (i.e., if the O-Der provides the
resource directly to the SSA) then the original resource
dependency is redefined between the O-Der actor and the
SSA. The SSA will act as the dependee actor. Figure 4.44
shows a scenario of the pattern described in this section (on
the left). Thus, the element to be delegated is a plan, and the
object dependum is a resource. The model on the right of the
figure shows the solution obtained after applying step 2.1, i.e.,
when the O-Der actor can access the SSA directly in order to
obtain the generated resource by the delegated plan. Thus, the

135

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

original resource dependency is redirected from the O-Der
actor to the SSA.

Before the delegation After applying step 2.1
_\ Actor ,
//, \\ /l, \\
O OO
Actor A \\ J Actor, % y

Figure 4.44 Organizational model after applying step 2.1 (the O-Der actor
acts as requester of information)

Step 2.2 In contrast to step 2.1, if the O-Der does not have
access to the SSA to obtain the resource generated by the
delegated plan, the original resource dependency remains the
same and another resource dependency must be created
between the SSA and the O-Dee. The dependee actor of this
new dependency will be the SSA.

Figure 4.45 shows the delegation of plan of the dependee
actor. The plan has a resource dependency associated to it.
Once the plan is delegated to the SSA, the dependency
relationship remains the same between the organizational
actors and a new resource dependency between the SSA and
O-Der actor is created. In this case the SSA will act as
provider of information of the delegated plan.

136

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

Before the delegation

Depender 4 !
Actor \ '

After applying step 2.2 i ‘
O-Der 0-Dee ! [
Actor Actor 9 y

Original dependency

g
.
N
~

New dependency
Figure 4.45 Organizational model after applying step 2.2

Step 3. Analyze the dependum object in the dependency relationship
under study; if the dependum is a plan, the dependency plan must be
redirected between the O-Der actor and the SSA. Figure 4.46 shows
an example of this step.

After applying the step 3
Before the delegation epende
Actor
Depende . \\ O Der
Actor \\ Actor

Figure 4.46 An example of the pattern when the dependum object is a plan

Step 4. Analyze the influence of this delegation in the organizational
actors.

Step 4.1 When an organizational actor provides information to
a delegated plan to execute it, a resource dependency between
the actor and the SSA must be created. The depender actor of
this new dependency will be the SSA. The new dependency
indicates the reception of information from the organizational
actor to the SSA.

137

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

Step 4.2 When an actor requires information from the
delegated plan, a resource dependency between the actor and
SSA must be created. The depender of this dependency will be
the organizational actor. This new dependency indicates the
delivery of information to the organizational actor from the
SSA.

Step 5. If more than one dependency relationship is generated during

the delegation of dependee actor plan to the SSA, then they must be

labeled with the same number in order to indicate their association.

4.4.4.5.6 Examples

The application of the steps of the dependee element delegation
pattern is illustrated with the example shown in Figure 4.42.

The first step in the solution of this pattern consists of delegating the
plan: Manage the reservations to the employee actor to the Car
Rental System actor. Second step must be omitted, because the
dependum is not a resource. Next, step 3 is applied, and the plan
dependency between the Company Manager actor and the Employee
actor must be redirected. Figure 4.47 shows the delegation of the
employee plan as well as the plan dependency redirected between the
Company Manager and the Car Rental System system.

Manage the
reservations,

Figure 4.47 An example of the organizational model after applying step 3 of this
pattern

The fourth step is related to the creation of new dependency
relationships among the organizational actors and the SSA in order
to provide or require information from the delegated plan to the SSA.
Figure 4.48 continues with the example shown above. A new
dependency is created between the Employee and the Car Rental

Car
Rental
System

AN

138

4.4 PATTERNS IN THE ORGANIZATIONAL MODEL

System; it indicates the need of the Car Rental System to obtain
information about the company cars. Additionally in this picture the
dependencies have been labeled with the number 2 to indicate the
relation among them (fifth step).

_--—+ CarRental
o7 Management
.
1 ,/ System

1 \
) 1
Prices and To provide !
Employee X . X 1
models info info of prices K

U

1

[Associated Prices and
Branches models info

Figure 4.48 Organizational model after applying all the steps of the pattern.

4.5 Summary

One of the main problems of current research works on
organizational modeling is the lack of a methodological approach to
map the elements of an organizational model into the elements of a
requirements model for the software system-to-be. Due to this
methodological lack, efforts in the organizational modeling phase
have not yet provided a practical solution for model transformation
in software development environments.

In this work, we have proposed a pattern language which allows us
to reduce the abstraction level of a “pure” organizational model so
that it is closer to the requirements model. This process has been
achieved by inserting the software system as an actor into the
organizational model and redirecting the relevant tasks, goals and
dependencies of the organizational actors to this new actor. In this
way, there is a pattern for each situation that arises in the redirection
of tasks or goals to the new organizational model. The new
organizational model generated from the application of FELRE
allows us to have a high-level description of the task that must be
supported by the information system. This high-level description

139

CHAPTER 4 JOINING EARLY AND LATE REQUIREMENTS

enables us to focus only on the relevant aspects to be automated,
thereby reducing the complexity of the analysis task. The generated
organizational model is, therefore, an intermediate model between
the organizational model and the software requirements model. The
proposed method complies with the MDA approach because it
implements the concept of PIM-to-PIM transformations.

Figure 4.49 shows a partial view of the organizational model
generated for the pattern language. This model includes the SSA and
the actors that interact with it. The new organizational model
represents a final result of the application of the goal analysis and the
pattern language. In this model, the software system is represented as
an actor (Car Rental System). The specification of the internal
elements of this actor represents all the functionalities that this actor
must provide for fulfilling the organizational goals. The model also
represents the interactions among the organizational actors and the
software system.

140

4.5 SUMMARY

Cars Sale
Maame /
v

Analyze the car
availabilit

Customer

Formalize
he reservatip

y

Resen

A Stated 4
ion info Reservz

Customer kioninfo Car

Paymen

t

Figure 4.49 Partial view of the organizational model, which includes the software
system actor

141

CH#

Part I

Late Requirements

Chapter 5

Extending the organizational
models

In this Chapter, we introduce the process to insert monitoring plans
into the organizational model. The monitoring plans enable the final
user to supervise the business activities needed to satisfy the
organizational objectives. Thus, we detail the generation process to
extend the organizational model where the monitoring plans are
defined. This model represents the relevant elements to be
considered in the construction of the software system. The aim of
this approach is to continue reducing the abstraction level between
the early and late requirements models.

5.1 Introduction

At the present time, there is no definite solution to the problem of
linking business (early) models with software (late) requirements
models in a methodological way. One of the main reasons for the
lack of solutions to this problem is the different nature of their
specifications. In the early requirements phase, the concepts are
related to the organizational context, whereas in the late
requirements phase, the concepts are related to the software system
to be developed. There is a significant difference between the
abstraction levels of the two requirements specifications.

The proposed method allows us to carry out a soft transition between
early and late requirements phases by detailing those elements that
are relevant in the construction of a software system. It is important
to point out that some of these elements may not be considered as
relevant when trying to understand the business context because they
are only important in defining its automation through an information
system.

Another contribution of this thesis is the insertion of monitoring
plans in the organizational model. The aim of monitoring plans is to
prevent or detect undesired behaviors in the system-to-be in order to
take the corrective measures to manage them.

5.2 The late requirements phase

The late requirements phase is mainly focused on describing the
system to-be within its operational environment along with the
relevant functions and qualities [Cast02].

We propose to extend the organizational model by representing the
objects of interest (concerned objects) associated to the relevant
plans and resources to be automated. This new model, which
contains the concerned objects, allows us to analyze the flow of
information in the enterprise and also permits us to analyze the
lifetime of the information managed in the organizational processes.

The organizational model that is extended with the concerned objects
will be the basis for the systematic generation of a requirements

146

5.2 THE LATE REQUIREMENTS PHASE

model, which is represented by using the use case models. The
extended organizational model is also the basis for the generation of
a conceptual model that is compliant with OO-Method.

Figure 5.1 shows an overview of the processes that make up the late
requirements phase. The inputs in this schema are the plans to be
automated that were identified using the goal-based requirements
elicitation process. The deliverables of these processes are: the
organizational model that is extended with the concerned objects and
the scenarios of the concerned objects.

The late New organi- X
Sgglc?gtbe requirements zational model . The monitory
S torated generation with the software plans insertion
process system actor prucess
The concerned
object model
generation
Cogend process
/ Input l—lﬁ
Process i
The extended Sc(;efn;réos
J) organizational
Deliverables N concerned
objects

Figure 5.1 Processes of the late requirements phase

A set of rules and algorithms that allow us to systematically carry out
the transformations between models are presented. Then, the concept
of monitoring is detailed.

5.3 'What i1s Monitoring?

Monitoring is often used to make a multi-agent system more robust
in the presence of undesirable behaviors such as faults. Several
approaches address the problem of monitoring in multi-agent
systems. They rely on events and their goal is to observe, analyze
and control the behavior of the system. These approaches usually
observe the execution of the multi-agent system in order to define its
current behavior model and correct the undesirable behaviors.

147

CHAPTER 5 EXTENDING THE ORGANIZATIONAL MODELS

There are several research works about the difficulties of using
monitoring to control undesirable situations.

Castelfranchi [Cast98], and Sichman and Conte [Sich02] introduce
interdependence graphs that are used to predict some undesirable
situations (e.g., inequity or incompatibility). Their analysis relies on
knowledge that is defined a priori, such as the number of agents,
their plans, their goals, and their relations of interdependence.
Kaminka et al. [Kami02] propose a monitoring approach in order to
detect and recover faults. This approach uses models of relations
between mental states of agents. These authors adopt a procedural
plan-recognition based approach to identify inconsistencies. They
argue that any failure comes from incompleteness of beliefs.

The works of Horling et al. [Horl01] present a distributed system of
diagnosis. The faults can directly or indirectly be observed in the
form of symptoms by using a fault model. The diagnosis process
modifies the relations between tasks, in order to avoid inefficiencies.
There are also monitoring techniques that are mainly used in the
analysis of problems presented in dynamic environments [Feat98]
[Kous04] [Fick95] [Cohe97] [Gues04].

5.4 'The monitoring plans msertion process

The addition of monitoring plans in the organizational model is one
of the contributions of this thesis. The main advantage of the
proposed technique is that it provides ongoing verification of
progress toward achievement of objectives and goals. The inclusion
of monitoring plans permits the business activities to be supervised,
observed, and tested and appropriately reported to the responsible
actors.

Our research work is focused on the analysis of the system to be to
define monitoring plans that must be installed to gather and analyze
pertinent information about the system’s run-time environment.
Therefore, we must detect those situations that adversely affect the
execution of the organizational processes. We need to analyze the
organizational context in which the system will be implemented,

148

5.4 THE MONITORING PLANS INSERTION PROCESS

how the organizational elements (goals, resources, planes) can be
affected, and who can help to solve these situations.

The monitoring analysis is applied in the organizational model that
has been extended by including the software system as a
organizational actor. In this work, the monitoring is implemented by
using preconditions that monitor the organizational plans. We
consider that the result of the monitoring process can play a relevant
role in determining the elements to be considered in the construction
of the system-to-be.

Nevertheless, the monitoring plans insertion process detailed here
requires great experience from the requirements analysts. This is
because the analyst must identify the elements and information that
can be affected during the system run-time. We propose some
guidelines to insert the monitoring plans into the organizational
model. The aim of these guidelines is to identify all the factors that
can affect the construction of the software system.

5.4.1 Monitoring plans and monitoring data

According to the Tropos approach, a plan represents a way of doing
something at an abstract level. When the plans are contained inside
the software system actor, the plans represent the actions that must
be supported by the system-to-be. The monitoring plans need to be
defined once the relevant plans to be automated through the software
system have been identified and delegated to the system actor.
Following, we detail the steps to carry out the insertion of
monitoring plans into the organizational model.

Step 1: Identify the plans to be monitored.

The first step consists of identifying the critical plans to be
monitored. These plans will be selected from the organizational
model which includes the software system actor.

In the Car Rental case study, the plan Register reservation of the
software system actor contains the reservation data (where a car is
assigned to a reservation) that is generated when the reservation is
registered in the software system. However, there are several
situations where the assigned car may not be available at the time of
delivery. Thus, the plan Register reservation is a candidate to be a

149

CHAPTER 5 EXTENDING THE ORGANIZATIONAL MODELS

monitored plan. The analyst must determine all the plans that could
be affected by unexpected situations. These plans are candidates to
be considered as monitoring plans.

Step 2: Determine the parameters to be monitored.

This step is carried out after the monitoring plans have been
identified. Each executed plan in the organizational model can be
associated to one or various resources that are created or modified
during the execution plan. Therefore, although the monitoring plans
are the central topic at this stage, it is also necessary to identify what
resources must be monitored.

Once the resource candidates to be monitored have been identified,
the conditions that activate the monitoring must be determined. For
example, the plan Register reservation has several associated
resources: car, reservation date, etc. In this case, car is the resource
that must be monitored. The condition that must be monitored is the
availability of the car that has been booked.

Step 3: Insert dependencies and new organizational plans.

In this step, new dependencies and plans must be inserted in the
organizational model in order to represent the actions (monitoring
body) that must be taken when the conditions for the monitoring
plans are reached.

The elements that compose the monitoring body will the be plans
executed by the SSA or by other organizational actors. In the first
case, the monitoring plans are defined as internal activities in the
software system actor. In the second case, the plans are represented
as strategic dependencies between the SSA and other organizational
actors. Figure 5.2 shows both schemas, where the preconditions to be
satisfied are represented as new plans to be executed inside the
software system actor.

150

5.4 THE MONITORING PLANS INSERTION PROCESS

Precondition Precondition

New plans
to execute

Figure 5.2 Schema of the monitoring plans in the organizational model

Step 4: Determining the success conditions.

This step consists of determining the success condition. By success
conditions, we mean the conditions that eliminate the need to
monitor a plan, so there is no reason to monitor it anymore. For
example, when a car is delivered to a Customer, the plans that
monitor the car availability must be terminated.

We propose four dimensions to characterize monitoring plans. Table
5.11 shows these four dimensions. The first column, Monitoring
plan, contains the name of the plan to be monitored. The second
column, Parameters of the monitoring, contains the condition to be
monitored. The third column, Period of time to carry out the
monitoring, contains the period of time which an element must be
controlled. Finally, the fourth column, Activities to do, describes all
the activities that must be executed if monitoring parameter is
affected.

Table 5.1 Dimensions to characterize monitoring plans

Monitoring Parameters of Period of time to Activities to
plan the monitoring carry out the do
monitoring

151

CHAPTER 5 EXTENDING THE ORGANIZATIONAL MODELS

5.5 Extending the organizational models with
the 1dentification of concerned objects

This section describes the process to extend the organizational model
in order to identify the relevant information® in the construction of
the system-to-be. There are two main sources for this information: a)
the plans performed by the organizational actors including the SSA
and b) the characteristics of the resources used, modified or
generated as a result of the execution of the organizational plans, in
the organizational context. The process to extend the organizational
model with the concerned objects is detailed by using rules, steps
and algorithms that enable the analyst to generate a new extended
organizational model. The following section describes the concepts,
notations and the models that are generated in the process of
extension of the organizational model.

5.5.1 Concepts and models

This subsection presents our definition of concerned object, which is
a key element in the transformation process of early to late
requirements. We also detail both models that are generated: the
extended actor diagram and the extended goal diagram. Finally, the
scenarios of the concerned objects are also detailed.

Definition of a concerned object

The term Concern has been widely used in the literature associated
to software engineering. It is often found in techniques that focus on
aspect-oriented software development (AOSD) [Sutt04].

A concern expresses a specific interest in some topic pertaining to a
particular system of interest (or other subject matter) [Hill99]. It is
important to point out that concerns do not exist until someone is
concerned about them. For example, in our proposed method, a plan

! By relevant information, we mean the information needed in the construction of an
information system.

152

5.5 EXTENDING THE ORG. MODEL WITH CONCERNED OBJECTS

does not constitute a concern until an analyst has some reason to be
interested in a plan as candidate for functionality in the system-to-be.
We use the concept of concerned object to represent an entity of
interest in the process of defining the system-to-be. Therefore, a
concerned object represents a resource that is used within the
organizational process or an abstract entity of information that will
be used in the software system-to-be.

A concerned object is represented by a circle, and its attributes are
represented by small circles that are associated to the concerned
object. The name of the concerned object and the names of the
attributes must be placed within each circle. Figure 5.3 shows an
example of a concerned object with its set of attributes.

Concerned
Object

Figure 5.3 Primitives of the concerned object model

The concerned object model

The concerned object model is an extension of the actor diagram and
the goal diagram of the Tropos framework. The proposed extensions
focus on describing the relevant information in the software system-
to-be through of the identification of concerned objects in the
elements of each organizational model.

The following subsections describe the structure of the extended
actor and goal diagrams. The structure of the scenarios of the
concerned object is also explained.

The extended actor diagram

The actor diagram is made up of the organizational actors, who are
related to other actors through dependency relationships. Therefore,
the main sources for the detection of the concerned objects are the
resource and plan dependency relationships, which involve
organizational plans to send and receive information to/from the
software system to-be. The extension of the actor diagram involves

153

CHAPTER 5 EXTENDING THE ORGANIZATIONAL MODELS

the representations of the concerned objects associated to the
resource and plan dependencies.

Figure 5.4 illustrates an actor diagram that is composed of two
organizational actors and the SSA. There are two resource
dependencies between the actors that show the flow of information
between them. Therefore, the extension of this diagram is carried out
over these dependencies.

Legend
@ Jconcemed Object
}éttributes of the

oncerned Object

Resource
dependency:

O Actor

ctor

Figure 5.4 The concerned object model (actor diagram)

The extended goal diagram

The goal diagram which is focused on actor activity provides a
microscopic view of the application domain. Therefore, the
extension of this diagram is related to the internal elements of each
actor (more specifically to actor plans and goals). The plans that
contain the SSA always involve manipulation of informational
entities that are relevant for the system-to-be. Thus, the plans in the
SSA must be extended with their corresponding concerned objects.
However, not all the goals need to be analyzed; only those that are
related to a set of plans by means-end links need to be extended
because these goals involve informational entities through plans.

Therefore, the internal plans in the goal diagram can be extended by
one or several concerned objects, depending on the information or
resources used in the execution of the plan. For example, a parent
plan can be composed of the set of concerned objects that are
identified in its child plans. In this way, the internal goals that

154

5.5 EXTENDING THE ORG. MODEL WITH CONCERNED OBJECTS

represent an “end” in a means-end will be extended with the
concerned objects that are identified in their child nodes.

Figure 5.5 shows two actors in a goal diagram. The elements of the
SSA have been extended with the identification of concerned
objects. For example, the SSA has a goal (Goal,) associated to three
plans (Plan;, Plan,, Plans) by a means-end link. Plan; is extended by
the concerned object “A”. Plan; is also extended by the same
concerned object.

*. Concerned { o e
*._ Objects

’
'
'
'
[l

[}

RS - Concerned
objects_{ o

Attributes SO

Figure 5.5 Concerned object model (goal diagram)

This situation represents the use of the same resource or information
in different plans executed in the organizational context. Plan; is
extended by the concerned object “B”. Thus, the goal G; of the SSA
is extended with the concerned objects of its associated plans
(concerned objects: “A’ and “B™).

The extension of the elements of the organizational actor is carried
out in the same way as in SSA. However, in this actor, plan;
identifies the concerned object “A” and “B” from its subplans, and
also identifies the concerned object “C”.

155

CHAPTER 5 EXTENDING THE ORGANIZATIONAL MODELS

Defining scenarios for each concerned object

As a natural consequence of sharing information in the
organizational context, the concerned objects identified in the actor
and goal diagrams can be identified in more that one element of the
diagrams. More specifically, the detected concerned actors can have
different attributes depending on the element where the concerned
object is identified. For example, the concerned object “A”, which
has been identified in the SSA of Figure 5.5, could contain different
attributes each time that the concerned object is identified in the
organizational model. Therefore, when a concerned object is
identified, the set of characteristics must be stored in order to obtain
the global characteristics of each concerned object. A scenario is a
situation where a concerned object is identified. The aim of the
proposed method is to capture the scenarios of each concerned
object.

The information of the analysis of concerned actors is stored in a
table; each column represents a parameter of the scenario and each
row represents the information of the concerned object each time that
it is used. Table 5.2 depicts the scenarios of the concerned objects.
Each parameter is explained in detail. The first column, Concerned
object name, contains the name of the identified concerned object;
the second column, Elements and associated links, contains the type
of element where the concerned object was identified (for instance, a
plan or a resource dependency or a subplan, etc.); the third column,
Associated elements, is only used for the concerned object identified
in the goal diagram. If the element that leads the concerned object is
involved in a means-end or and-or relationship with other internal
elements, then the value of this column indicates the name of the
parent node of the element that leads the concerned object. The
fourth column Used attributes, contains the attributes used in the
concerned object; the fifth column, Related actors, contains the
actors of the dependency (when the concerned object has been
located in the actor diagram) or the name of the actor where the
concerned object was identified (when the concerned object is
located in the goal diagram); finally, the sixth column, Label of the
concerned object, contains the state of the concerned object.

156

5.5 EXTENDING THE ORG. MODEL WITH CONCERNED OBJECTS

For example, when a concerned object is analyzed (to determine its
space of alternatives) then the label “Analyzed” is placed in the
object scenario. In another example, when the attributes of a
concerned object are divided in order to generate other concerned
objects the label “divide” must be placed in this column.

Table 5.2 Scenario of concerned objects

Concerned Elements Associated Used Related | Label of the
object and asso- elements attributes actors | concerned
name ciated links object

5.6 The generation process of the concerned
objects model

This section describes the generation process of the concerned
objects that is proposed in this thesis. Figure 5.6 shows the schema
of the generation process of the concerned objects model. The inputs
for this process are the organizational models (actor diagram and
goal diagrams) where the SSA is included. The process is
summarized in two stages: 1) the first stage consists in the
identification of the concerned objects and scenarios; 2) the second
stage consists in the reconciliation of the various scenarios for the
same concerned object. Finally, the outputs of the process are the
extended organizational models and the scenarios of the identified
concerned objects.

The concerned object model

. The extended
generation process

organizational
LIdentification of the concerned objects and models

Organizational scenarios ~ (:8
models —_ @] @ g@]
with the SSA

jon of the scenarios Scenarios of
o the concerned
objects

Legend

/ Input Process Deliverables

Figure 5.6 The schema of the generation process of the concerned objects model

157

CHAPTER 5 EXTENDING THE ORGANIZATIONAL MODELS

5.6.1.1 Identification of the concerned objects

As stated above, the concerned objects can be identified in the
resources, plans and goals, of the organizational model. Therefore,
attributes of a resource or the attributes used by a plan or goal must
be analyzed. It is important to point out that resources can be found
in dependency relationships or in parameters of a organizational
plan. However, goals and plans need to be analyzed as internal
elements in an actor or where they are represented as dependency
relationships.

Algorithms for the generation process of the concerned
objects model

The generation process of the concerned objects model is guided by
two algorithms. Figure 5.7 shows the first algorithm which details
the extension of the actor diagram. Figure 5.8 shows the algorithm to
extend the goal diagram. Both of these diagrams include the SSA.
These figures provide an overview of the algorithms of the
generation process of the concerned objects model, which is
represented by a control flow chart. The boxes in the figures
represent the activities that an analyst must perform to extend the
diagrams; these activities include the activation of a function or the
application of a rule. The diamonds represent the various inquiry
points. Diamonds have two exit points: one exit represents an answer
of “yes” and another exit indicate an answer of "no”. The arrows
denote the flow of the process as well as the iterations in the process.
The ellipses represent the inputs of the process and the outputs of the
process.

The set of rules and functions indicated in the proposed algorithms
are explained below in detail.

158

5.6 THE GENERATION PROCESS OF THE C