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Preface

General Topology has become one of the fundamental parts of mathematics. Nowa-

days, as a consequence of an intensive research activity, this mathematical branch

has been shown to be very useful in modeling several problems which arise in

some branches of applied sciences as Economics, Artificial Intelligence and Com-

puter Science. Due to this increasing interaction between applied and topological

problems, we have promoted the creation of an annual or biennial workshop to

encourage the collaboration between different national and international research

groups in the area of General Topology and its Applications. We have named this

initiative International Summer Workshop in Applied Topology (ISWAT).

This book contains a collection of papers presented by the participants in first

edition of the ISWAT which took place in Valencia (Spain) from September 1 to

2, 2014.

All the papers of the book have been strictly refereed.

We would like to thank all participants, the plenary speakers and the regular ones,

for their excellent contributions.

We express our gratitude to the Ministerio de Economı́a y Competitividad, grant

MTM2012-37894-C02-01, and Instituto de Matemática Pura y Aplicada for their

financial support without which this workshop would not have been possible.

We are certain of all participants have established fruitful scientific relations during

the Workshop.

The Organizing Committee of ISWAT’14
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Some results on nonconvex minimization for

quasi-metric spaces

Carmen Alegre a and Josefa Maŕın a,1

a Instituto Universitario de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, 46022 Valencia,

Spain (calegre@mat.upv.es, jomarinm@mat.upv.es)

Abstract

We provide a nonconvex minimization theorem in the setting of quasi-
metric spaces involving mw-distances. We also give a quasi-metric
version of the Ekeland variational principle. The strong form of this
celebrated result can be obtained as a corollary.

MSC: 47H10; 54H25; 54E50.

keywords: non convex minimization, fixed point, w-distance, mw-distance, complete

quasi-metric space.

1. Introduction

The following result, obtained by Takahashi in [13], gives sufficient conditions for

a real function defined on a complete metric space has minimum.

Theorem 1 (Theorem 1 of [13]). Let (X, d) be a complete metric space and let

f : X → (−∞,+∞] be a proper lower semicontinuous function on X bounded from

1The authors are grateful to the referee for several useful suggestions. They also acknowledge

the support of the Ministry of Economy and Competitiveness of Spain, Grant MTM2012-37894-

C02-01.



C. Alegre and J. Maŕın

below. If for any u ∈ X with infx∈X f(x) < f(u), there exists v ∈ X with v 6= u

and

f(v) + d(u, v) ≤ f(u),

then there exists x0 ∈ X such that infx∈X f(x) = f(x0).

In [8] Kada, Suzuki and Takahashi introduced the notion of w-distance on a metric

space and improved this theorem replacing the involved metric by w-distances.

They also provided suitable generalizations of Ekeland’s variational principle and

Caristi’s fixed point theorem.

Definition 2 ([8]). A w-distance on a metric space (X, d) is a function q :

X ×X → R
+ satisfying the following conditions:

(W1) q(x, y) ≤ q(x, z) + q(z, y), for all x, y, z ∈ X ;

(W2) q(x, ·) : X → R
+ is lower semicontinuous on (X, τd) for all x ∈ X ;

(W3) for each ε > 0 there exists δ > 0 such that if q(x, y) ≤ δ and q(x, z) ≤ δ

then d(y, z) ≤ ε.

Later, Park ([12]) generalized the notion of w-distance to quasi-metric spaces.

This concept of w-distance has been used in some directions to obtain fixed point

results on complete quasi-metric spaces ([2], [3], [10], [11]).

Definition 3 ([3], [12]). A w-distance on a quasi-metric space (X, d) is a

function q : X ×X → R
+ satisfying the following conditions:

(W1) q(x, y) ≤ q(x, z) + q(z, y), for all x, y, z ∈ X ;

(W2) q(x, ·) : X → R
+ is lower semicontinuous on (X, τd−1) for all x ∈ X ;

(W3) for each ε > 0 there exists δ > 0 such that if q(x, y) ≤ δ and q(x, z) ≤ δ

then d(y, z) ≤ ε.

If d is a quasi-metric on X , then d is not necessarily a w-distance on the quasi-

metric space (X, d). Motivated, in part, by this fact, we introduced in [1] the

notion of modified w-distance (mw -distance, in short) on a quasi-metric space

which generalizes the concept of quasi-metric. In this note, following the ideas

of [8], we obtain a minimization theorem and a version of Ekeland variational

10



Some results on nonconvex minimization for quasi-metric spaces

principle in complete quasi-metric spaces involving mw-distances. Our results

extend the minimization Takahashi theorem and the classical Ekeland variational

principle to certain class of quasi-metric spaces.

Our basic references for quasi-metric spaces are [15] and [9].

Let us recall that a quasi-pseudo-metric on a set X is a function d : X ×X → R
+

such that for all x, y, z ∈ X : (i) d(x, x) = 0; (ii) d(x, y) ≤ d(x, z) + d(z, y).

Following the modern terminology, a quasi-pseudo-metric d on X satisfying (i’)

d(x, y) = d(y, x) = 0 if and only if x = y, is called a quasi-metric on X .

A quasi-metric space is a pair (X, d) such that X is a set and d is a quasi-metric

on X .

Each quasi-pseudo-metric d on a set X induces a T0 topology τd on X which has

as a base the family of open balls {Bd(x, ε) : x ∈ X, ε > 0}, where Bd(x, ε) = {y ∈
X : d(x, y) < ε} for all x ∈ X and ε > 0.

Given a quasi-metric d on X, the function d−1 defined by d−1(x, y) = d(y, x) for

all x, y ∈ X , is also a quasi-metric on X , called the conjugate quasi-metric, and

the function ds defined by ds(x, y) = max{d(x, y), d(y, x)} for all x, y ∈ X , is a

metric on X.

In the setting of quasi-metric spaces there are a lot of completeness notions (see

e.g. [9]) all agreeing with the usual notions of completeness in the case of metric

spaces. In this paper we shall use the following one.

Definition 4. Let (X, d) be a quasi-metric space.

(a) A sequence (xn)n∈N in (X, d) is said to be d-Cauchy (or Cauchy) if

for each ε > 0 there exists n0 ∈ N such that d(xn, xm) ≤ ε whenever

n0 ≤ n ≤ m.

(b) A quasi-metric space (X, d) is d−1-complete if every Cauchy sequence

(xn)n∈N in (X, d) converges with respect to the topology τd−1 (i.e., there

exists z ∈ X such that limn d(xn, z) = 0).

11
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2. The results

Definition 5 ([1]). A modified w-distance (mw-distance, in short) on a quasi-

metric space (X, d) is a function q : X ×X → R
+ satisfying the following condi-

tions:

(W1) q(x, y) ≤ q(x, z) + q(z, y) for all x, y, z ∈ X ;

(W2) q(x, ·) : X → R
+ is lower semicontinuous on (X, τd−1) for all x ∈ X ;

(mW3) for each ε > 0 there exists δ > 0 such that if q(y, x) ≤ δ and q(x, z) ≤ δ

then d(y, z) ≤ ε.

The following result extends Theorem 1 to the class of d−1-complete quasi-metric

spaces. The proof, which will appear elsewhere, employs the methods of Takahashi

in [13].

Theorem 6. Let (X, d) be a d−1-complete T1 quasi-metric space, and let f : X →
(−∞,+∞] be a proper lower semicontinuous function on (X, d−1), bounded from

below. If there exists an mw-distance q on (X, d) such that for any u ∈ X with

infx∈X f(x) < f(u), there exists v ∈ X with v 6= u, q(v, v) = 0 and

f(v) + q(u, v) ≤ f(u),

then there exists x0 ∈ X such that infx∈X f(x) = f(x0).

By means of the previous theorem we obtain a version of Ekeland’s variational

principle in quasi-metric spaces.

Theorem 7. Let (X, d) be a d−1-complete T1 quasi-metric space. Let q be an mw-

distance on (X, d) and let f : X → (−∞,∞] be a proper lower semicontinuous

function on (X, τd−1), bounded from below. Then

(i) For any u ∈ X with f(u) < ∞, there exists v ∈ X such that f(v) ≤ f(u)

and

f(w) > f(v)− q(v, w)

for every w ∈ X with w 6= v and q(w,w) = 0,

(ii) For any ε > 0 and u ∈ X with q(u, u) = 0 and f(u) ≤ infx∈Xf(x) + ε,

there exists v ∈ X such that

12
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(1) f(v) ≤ f(u),

(2) q(u, v) ≤ 1,

(3) f(w) > f(v)− εq(v, w) for every w ∈ X with q(w,w) = 0 and w 6= v.

The classical strong form of the Ekeland variational principle can be obtained

directly as a corollary.

Corollary 8 (Theorem 1 of [6]). Let (X, d) be complete metric and let f : X →
(−∞,∞] be a proper lower semicontinuous function, bounded from below. Then,

for any ε > 0 and u ∈ X with f(u) ≤ infx∈Xf(x) + ε, there exists v ∈ X such

that

(1) f(v) ≤ f(u),

(2) d(u, v) ≤ 1,

(3) f(w) > f(v)− εd(v, w) for every w ∈ X with w 6= v.

We will note that S. Cobzas [5] proved a version of the Ekeland variational principle

in the class of d−1-complete T1-quasi-metric spaces which generalizes the weak

form of the classical variational principle (see Theorem 2.4 and Corollary 2.7 of

[5]). The proof of this result is based on the Brezis-Browder maximality principle

([4]).
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[10] J. Maŕın, S. Romaguera, P. Tirado, Weakly contractive multivalued maps and w-distances

on complete quasi-metric spaces, Fixed Point Theory and Applications, (2011), 2011:2.
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(ishakaltun@yahoo.com)

Abstract

In this survey paper, we collected the development of fixed point theory

for multivalued F -contractions on complete metric space.

1. Introduction and preliminaries

Fixed point theory contains many different fields of mathematics, such as nonlinear

functional analysis, mathematical analysis, operator theory and general topology.

The fixed point theory is divided into three major areas: First is the topological

fixed point theory, which attributed to the work of Brouwer in 1910, who proved

that any continuous self-map of the closed unit ball of R
n has a fixed point.

The results of Schauder (1930), Darbo (1955), Krasnoselskii (1955) and Mönch

(1980) are working of these directions. Second is the discrete fixed point theory,

which begins to the work of Kneser in 1950, who proved that: Let (X,�) be a

partially ordered set and T be a self mapping of X such that x � Tx for all

1The author thanks to Prof. Salvador Romaguera for his contributions and suggestions.
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x ∈ X . If every chain in X has a supremum, then T has a fixed point. The

results of Tarski (1955) and Aman (1977) are working of these directions. Third

is the metrical fixed point theory on contraction or contraction type mappings

on complete metric spaces. The metrical fixed point theory based on the Banach

Contraction Principle, published in 1922. Let (X, d) be a metric space and T :

X → X be a mapping. Then T is said to be a contraction (ordinary contraction)

mapping if there exists a constant L ∈ [0, 1), called a contraction factor, such that

(1) d(Tx, T y) ≤ Ld(x, y) for all x, y ∈ X.

Banach Contraction Principle says that any contraction self-mappings on a com-

plete metric space has a unique fixed point. This principle is one of a very power

test for existence and uniqueness of the solution of considerable problems arising

in mathematics. Because of its importance for mathematical theory, Banach Con-

traction Principle has been extended and generalized in many directions. One of

the most interesting generalization of it was given by Wardowski [28]. First we

recall the concept of F -contraction, which was introduced by Wardowski [28], later

we will mention his result.

Let F be the set of all functions F : (0,∞) → R satisfying the following conditions:

(F1) F is strictly increasing, i.e., for all α, β ∈ (0,∞) such that α < β, F (α) <

F (β),

(F2) For each sequence {αn} of positive numbers limn→∞ αn = 0 if and only if

limn→∞ F (αn) = −∞

(F3) There exists k ∈ (0, 1) such that limα→0+ α
kF (α) = 0.

Some examples of the functions belonging F are F1(α) = lnα, F2(α) = α + lnα,

F3(α) = − 1√
α
and F4(α) = ln

(
α2 + α

)
.

Definition 1 (Wardowski [28]). Let (X, d) be a metric space and T : X → X be

a mapping. Then T is said to be an F -contraction if there exist F ∈ F and τ > 0

such that

(2) τ + F (d(Tx, T y)) ≤ F (d(x, y))

for all x, y ∈ X with d(Tx, T y) > 0.

16
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By taking into account the condition (F1), we say that every F -contraction T is

a contractive mapping, i.e.,

d(Tx, T y) < d(x, y), for all x, y ∈ X,Tx 6= Ty.

Thus, every F -contraction is a continuous mapping. Also, it is easy to see that

every ordinary contraction mapping is an F -contraction with F1(α) = lnα. If we

consider F2(α) = α + lnα. Then each self mappings T on a metric space (X, d)

satisfying (2) is an F2-contraction such that

(3)
d(Tx, T y)

d(x, y)
ed(Tx,Ty)−d(x,y) ≤ e−τ , for all x, y ∈ X,Tx 6= Ty.

Also, Wardowski concluded that if F,G ∈ F with F (α) ≤ G(α) for all α > 0 and

H = G− F is nondecreasing, then every F -contraction T is an G-contraction.

He noted that for the mappings F1(α) = lnα and F2(α) = α+ lnα, F1 < F2 and

a mapping F2 − F1 is strictly increasing. Hence, it obtained that every ordinary

contraction satisfies the contractive condition (3). On the other side, the following

example, which is Example 2.5 in [28], shows that the mapping T is not F1-

contraction (ordinary contraction), but still is an F2-contraction.

Example 2. Let X = {xn = n(n+1)
2 : n ∈ N} and d(x, y) = |x− y|. Define

the mapping T : X → X by T (x1) = x1 and T (xn) = xn−1 for n > 1. Since

limn→∞
d(Txn,Tx1)
d(xn,x1)

= 1, the mapping T is not ordinary contraction. But after the

some calculation we can see that T is an F2-contraction with F2(α) = α+lnα and

τ = 1.

Thus, the following theorem, which was given by Wardowski, is a proper general-

ization of Banach Contraction Principle.

Theorem 3 (Wardowski [28]). Let (X, d) be a complete metric space and let

T : X → X be an F -contraction. Then T has a unique fixed point in X.

By combining the ideas of Wardowski [28], Ćirić [12] and Berinde [8], the following

results for single valued mappings are obtained.

17
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Theorem 4 (Mınak et al. [19], Wardowski-Van Dung [29]). Let (X, d) be a com-

plete metric space and T : X → X be a Ćirić type generalized F -contraction, that

is, there exist F ∈ F and τ > 0 such that

τ + F (d(Tx, T y)) ≤ F (M(x, y))

for all x, y ∈ X with d(Tx, T y) > 0, where

M(x, y) = max{d(x, y), d(x, Tx), d(y, T y), 1
2
[d(x, T y) + d(y, Tx)]}.

If T or F is continuous, then T has a unique fixed point in X.

Theorem 5 (Mınak et al. [19]). Let (X, d) be a complete metric space and T :

X → X be an almost F -contraction, that is, there exist F ∈ F , τ > 0 and λ ≥ 0

such that

τ + F (d(Tx, T y)) ≤ F (d(x, y) + λd(y, Tx))

for all x, y ∈ X with d(Tx, T y) > 0. Then T has a fixed point in X.

We can find some detailed information about Ćirić type generalized F -contractions,

almost F -contractions and some counter examples in [19, 29].

2. Fixed point theory for multivalued maps

In this section, we recall some fundamental fixed point theorems for multival-

ued mappins on complete metric space. Let (X, d) be a metric space. P (X)

denotes the family of all nonempty subsets of X, C(X) denotes the family of all

nonempty, closed subsets of X, CB(X) denotes the family of all nonempty, closed

and bounded subsets of X and K(X) denotes the family of all nonempty compact

subsets of X. It is clear that K(X) ⊆ CB(X) ⊆ C(X) ⊆ P (X). For A,B ∈ C(X),

let

H(A,B) = max

{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)

}
,

where d(x,B) = inf {d(x, y) : y ∈ B}. Then H is called generalized Pompeiu-

Hausdorff distance on C(X). It is well known that H is a metric on CB(X),

which is called Pompeiu-Hausdorff metric induced by d. We can find detailed

information about the Pompeiu-Hausdorff metric in [3, 10, 16]. An element x ∈ X

is said to be fixed point of a multivalued mapping T : X → P (X) if x ∈ Tx.
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Following the Banach contraction principle, Nadler [8] first initiated the study of

fixed point theorems for multivalued contraction mappings.

Theorem 6 (Nadler [8]). Let (X, d) be a complete metric space and T : X →
CB(X) be a multivalued contraction, that is, there there exists L ∈ [0, 1) such that

H(Tx, T y) ≤ Ld(x, y)

for all x, y ∈ X. Then T has a fixed point.

Then many researchers studied on fixed points of multivalued contractive map-

pings, which some important of them as follows:

Theorem 7 (Reich [24]). Let (X, d) be a complete metric space and T : X →
K(X). Assume that there exists a map ϕ : (0,∞) → (0, 1) such that

lim sup
t→s+

ϕ(t) < 1, ∀s > 0;

and

H(Tx, T y) ≤ ϕ(d(x, y))d(x, y).

for all x, y ∈ X with x 6= y. Then T has a fixed point.

In [25, 26], Reich asked the question as if the above theorem is also true for the

map T : X → CB(X). The partial affirmative answer was given by Mizoguchi

and Takahashi [6]. They proved the following theorem.

Theorem 8 (Mizoguchi-Takahashi [6]). Let (X, d) be a complete metric space and

T : X → CB(X). Assume that there exists a map ϕ : (0,∞) → (0, 1) such that

lim sup
t→s+

ϕ(t) < 1, ∀s ≥ 0;

and

H(Tx, T y) ≤ ϕ(d(x, y))d(x, y).

for all x, y ∈ X with x 6= y. Then T has a fixed point.

In [27] Suzuki gave a simple proof of Mizoguchi Takahashi fixed point theorem and

also an example to show that it is a real generalization of Nadler’s.
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Following the above results, Berinde and Berinde [9] introduced a general class of

multivalued contractions and proved the following fixed point theorems:

Theorem 9 (Berinde-Berinde [9]). Let (X, d) be a complete metric space and

T : X → CB(X) be a multivalued almost contraction, that is, there exist two

constants δ ∈ (0, 1) and L ≥ 0 such that

(4) H(Tx, T y) ≤ δd(x, y) + Ld(y, Tx)

for all x, y ∈ X. Then T has a fixed point.

Theorem 10 (Berinde-Berinde [9]). Let (X, d) be a complete metric space and

T : X → CB(X) be a multivalued nonlinear almost contraction, that is, there exist

a constant L ≥ 0 and a function ϕ : [0,∞) → [0, 1) satisfying

(5) lim sup
t→s+

ϕ(t) < 1, ∀s ≥ 0,

such that

(6) H(Tx, T y) ≤ ϕ(d(x, y))d(x, y) + Ld(y, Tx)

for all x, y ∈ X. Then T has a fixed point.

A function ϕ : [0,∞) → [0, 1) satisfying (5) is called Mizoguchi-Takahashi function

(MT -function) in the literature.

On the other hand, without using the Pompeiu-Hausdorff metric H , many fixed

point results for multivalued mappings were obtained. Here we will mention some

important of them. For the sake of conformity we denote a set

Ixb = {y ∈ Tx : bd(x, y) ≤ d(x, Tx)},

where b is a real constant and T is a multivalued mapping on a metric space

X . Note that the mapping T is defined from X to C(X) in the following three

theorems.

Theorem 11 (Feng-Liu [15]). Let (X, d) be a complete metric space and T : X →
C(X). Assume that the following conditions hold:

(i) the map x→ d(x, Tx) is lower semi-continuous;
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(ii) there exist b, c ∈ (0, 1) with c < b such that for any x ∈ X there is y ∈ Ixb

satisfying

d(y, T y) ≤ cd(x, y).

Then T has a fixed point.

Then Klim and Wardowski [17] generalized Theorem 11 as follows:

Theorem 12 (Klim-Wardowski [17]). Let (X, d) be a complete metric space and

T : X → C(X). Assume that the following conditions hold:

(i) the map x→ d(x, Tx) is lower semi-continuous;

(ii) there exists b ∈ (0, 1) and a function ϕ : [0,∞) → [0, b) satisfying

lim sup
t→s+

ϕ(t) < b, ∀s ≥ 0

and for any x ∈ X, there is y ∈ Ixb satisfying

d(y, T y) ≤ ϕ(d(x, y))d(x, y).

Then T has a fixed point.

Considering the same direction, in 2009, Ćirić [11] introduced new multivalued

nonlinear contractions and established a few nice fixed point theorems for such

mappings, one of them is as follows:

Theorem 13 (Ćirić [11]). Let (X, d) be a complete metric space and T : X →
C(X). Assume that the following conditions hold:

(i) the map x→ d(x, Tx) is lower semi-continuous;

(ii) there exists a function ϕ : [0,∞) → [a, 1) , 0 < a < 1, satisfying

lim sup
t→s+

ϕ(t) < 1, ∀s ≥ 0;

(iii) for any x ∈ X, there is y ∈ Tx satisfying
√
ϕ(d(x, Tx))d(x, y) ≤ d(x, Tx)

and

d(y, T y) ≤ ϕ(d(x, Tx))d(x, y).

Then T has a fixed point.
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Analyzing the proofs of above all theorems, we can observe that the mentioned

maps on complete metric spaces are multivalued weakly Picard (MWP) opera-

tors. We know that, a multivalued map T on a metric space is MWP operator if

there exists a sequence {xn} in X such that xn+1 ∈ Txn for any initial point x0,

converges to a fixed point of T .

3. Multivalued F -contractions

In this section we consider the Wardowski’s technique for multivalued maps.

Definition 14. Let (X, d) be a metric space and T : X → CB(X) be a mapping.

Then T is said to be a multivalued F -contraction if there exist F ∈ F and τ > 0

such that

(7) τ + F (H(Tx, T y)) ≤ F (d(x, y))

for all x, y ∈ X with H(Tx, T y) > 0.

When we consider F (α) = lnα, we can say that every multivalued contraction is

also multivalued F -contraction.

Theorem 15 (Altun et al. [5]). Let (X, d) be a complete metric space and T :

X → K(X) be a multivalued F -contraction, then T has a fixed point in X.

In the proof of this theorem we use the following important property: Let A be a

compact subset of a metric space (X, d) and x ∈ X , then there exists a ∈ A such

that d(x, a) = d(x,A).

Remark 16. Note that in Theorem 15, Tx is compact for all x ∈ X . Thus, we

can present the following problem: Can we replace CB(X) instead of K(X) in

Theorem 15. In the following example shows that this is not possible with the

same conditions.

Example 17 (Atun et al. [4]). Let X = [0, 1] and

d(x, y) =





0 , x = y

1 + |x− y| , x 6= y

,
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then it is clear that (X, d) is complete metric space, which is also bounded. Since

τd is discrete topology, all subsets of X are closed. Therefore all subsets of X are

closed and bounded. Define a map T : X → CB(X) as:

Tx =





A , x ∈ B

B , x ∈ A

,

where A is the set of all rational numbers in X and B is the set of all irrational

numbers in X . Therefore T has no fixed point. Now, define F : (0,∞) → R by

F (α) =





lnα , α ≤ 1

α , α > 1

,

then we can see that F ∈ F and all conditions of Theorem 15 except for Tx is

compact are satisfied, but T has no fixed point.

Here, if we consider the following condition on F , we can take CB(X) instead of

K(X) in Theorem 15.

(F4) F (inf A) = inf F (A) for all A ⊂ (0,∞) with inf A > 0.

Note that if F satisfied (F1), then it satisfied (F4) if and only if it is right con-

tinuous. We denote by F∗ be the set of all functions F satisfying (F1)-(F4). For

example, let F (α) = lnα for α ≤ 1 and F (α) = 2α for α > 1, then it is clear that

F ∈ F\F∗.

Theorem 18 (Altun et al. [5]). Let (X, d) be a complete metric space and T :

X → CB(X) be a multivalued F -contraction with F ∈ F∗, then T has a fixed point

in X.

In the light of the Example 2, we can give the following example. This example

shows that T is a multivalued F -contraction but it is not multivalued contraction.

Example 19 (Altun et al. [5]). Let X = {xn = n(n+1)
2 : n ∈ N} and d(x, y) =

|x− y| , x, y ∈ X. Then (X, d) is a complete metric space. Define the mapping
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T : X → CB(X) by the formulae:

Tx =






{x1} , x = x1

{x1, x2, · · · , xn−1} , x = xn

Then, T is a multivalued F -contraction with respect to F (α) = α+lnα and τ = 1.

Therefore, all conditions of Theorem 18 are satisfied and so T has a fixed point in

X .

On the other hand, since

lim
n→∞

H(Txn, T x1)

d(xn, x1)
= lim

n→∞
xn−1 − 1

xn − 1
= 1,

then T is not a multivalued contraction.

Now we consider τ as a function of d(x, y) in Definition 14 and define a new concept

of multivalued nonlinear F -contraction. Then we give some fixed point results for

mappings of this type on complete metric spaces. In a special case, we obtain the

Mizoguchi-Takahashi fixed point theorem.

Definition 20. Let (X, d) be a metric space, T : X → CB(X) and τ : (0,∞) →
(0,∞) be two mappings. Given F ∈ F , we say that T is a multivalued nonlinear

F -contraction such that

(8) τ(d(x, y)) + F (H(Tx, T y)) ≤ F (d(x, y))

for all x, y ∈ X with H(Tx, T y) > 0.

Theorem 21 (Olgun et al. [23]). Let (X, d) be a complete metric space and

T : X → K(X) be a multivalued nonlinear F -contraction. If τ satisfies

lim inf
t→s+

τ(t) > 0, for all s ≥ 0,

then T has a fixed point.

By considering the condition (F4) we can obtain the following:
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Theorem 22 (Olgun et al. [23]). Let (X, d) be a complete metric space and

T : X → CB(X) be a multivalued nonlinear F -contraction with F ∈ F∗. If τ

satisfies

lim inf
t→s+

τ(t) > 0, for all s ≥ 0,

then T has a fixed point.

If we take F (α) = lnα in Theorem 22, we have the following corollaries.

Corollary 23. Let (X, d) be a complete metric space. Suppose that T : X →
CB(X) satisfies

H(Tx, T y) ≤ e−τ(d(x,y))d(x, y),

for all x, y ∈ X, x 6= y, where τ : (0,∞) → (0,∞) satisfying lim inf
t→s+

τ(t) > 0 for all

s ≥ 0. Then T has a fixed point.

Corollary 24 (Mizoguchi-Takahashi). Let (X, d) be a complete metric space. Sup-

pose that T : X → CB(X) satisfies

H(Tx, T y) ≤ ϕ(d(x, y))d(x, y),

for all x, y ∈ X, x 6= y, where ϕ : (0,∞) → (0, 1) satisfying lim sup
t→s+

ϕ(t) < 1 for all

s ≥ 0. Then T has a fixed point.

Proof. Define τ(t) = − lnϕ(t). If lim sup
t→s+

ϕ(t) < 1 for all s ≥ 0, then lim inf
t→s+

τ(t) > 0

for all s ≥ 0. Therefore, by Corollary 23, the proof is complete. �

By considering the almost contraction method, we introduce some new concept of

multivalued almost F -contraction and multivalued nonlinear almost F -contraction.

Then we give some fixed point results for mappings of these type on complete met-

ric spaces. In a special case, we obtain the Berinde-Berinde fixed point theorem.

Definition 25. Let (X, d) be a metric space and T : X → CB(X) be a mapping.

We say that T is a multivalued almost F -contraction if there exist F ∈ F , τ > 0

and λ ≥ 0 such that

(9) τ + F (H(Tx, T y)) ≤ F ((d(x, y) + λd(y, Tx))

for all x, y ∈ X with H(Tx, T y) > 0.
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Theorem 26 (Altun et al. [4]). Let (X, d) be a complete metric space and T :

X → CB(X) be a multivalued almost F -contraction with F ∈ F∗, then T is an

MWP operator.

Remark 27. Taking into account Example 17, we can say that the condition (F4)

on F can not be removed in Theorem 26. But, if we take T : X → K(X) in

Theorem 26, we can remove the condition (F4) on F .

Remark 28. If there exist δ ∈ (0, 1) and L ≥ 0 satisfying (4), then (9) is satisfied

with F (α) = lnα, τ = − ln δ and λ = L
δ
. Therefore, Theorem 9 is a special case

of Theorem 26.

Remark 29. If there exist τ > 0 and F ∈ F∗ satisfying (7), then (9) is satisfied

with λ = 0. Therefore, Theorem 18 is a special case of Theorem 26.

Now we give two examples to show that Theorem 26 is a real generalization of

Theorem 9 and Theorem 18, respectively.

Example 30 (Altun et al. [4]). Let X = {xn = n(n+1)
2 : n ∈ N} and d(x, y) =

|x− y| . Then (X, d) is a complete metric space. Define a mapping T : X →
CB(X) by:

Tx =






{x1} , x = x1

{x1, x2, · · · , xn−1} , x = xn

.

Then, as shown in Example 19, T is multivalued almost F -contraction with respect

to F (α) = α+lnα, τ = 1 and λ ≥ 0. Thus, by Theorem 26, T is an MWP operator.

On the other hand, since d(x1, T xn) = 0 and

lim
n→∞

H(Txn, T x1)

d(xn, x1)
= lim

n→∞
xn−1 − 1

xn − 1
= 1,

then we can not find δ ∈ (0, 1) and L ≥ 0 satisfying (4). Therefore, T is not

a multivalued almost contraction. That is, Theorem 9 cannot be applied to this

example.
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Example 31 (Altun et al. [4]). Let X = [0, 1]∪{2, 3} and d(x, y) = |x− y|, then
(X, d) is complete metric space. Define a map T : X → CB(X),

Tx =





[
1−x
3 , 1−x

2

]
, x ∈ [0, 1]

{x} , x ∈ {2, 3}
.

Since H(T 2, T 3) = 1 = d(2, 3), then for all F ∈ F and τ > 0 we have

τ + F (H(T 2, T 3)) > F (d(2, 3)).

Therefore, T is not a multivalued F -contraction, and so Theorem 18 can not be

applied to this example. On the other hand T is multivalued almost F -contraction

with τ = ln 2 and λ = 10.

Definition 32. Let (X, d) be a metric space and T : X → CB(X). We say that

T is a multivalued nonlinear almost F -contraction with F ∈ F if there exist a

constant λ ≥ 0 and a function τ : (0,∞) → (0,∞) such that

(10) lim inf
t→s+

τ(t) > 0, for all s ≥ 0

satisfying

(11) τ(d(x, y)) + F (H(Tx, T y)) ≤ F ((d(x, y) + λd(y, Tx))

for all x, y ∈ X with H(Tx, T y) > 0.

Remark 33. Taking τ(t) = τ > 0 in Definition 32, we deduce that every multival-

ued almost F -contraction is also multivalued nonlinear almost F -contraction.

Remark 34. Every multivalued nonlinear almost contraction is also multivalued

nonlinear almost F -contraction with a special F .

Theorem 35 (Mınak et al. [18]). Let (X, d) be a complete metric space and

T : X → CB(X) be a multivalued nonlinear almost F -contraction with F ∈ F∗,

then T is an MWP operator.

Example 36 (Mınak et al. [18]). Consider the complete metric space (X, d),

where X = { 1
n2 : n ∈ N, n ≥ 2} ∪ {0} and d : X × X → [0,∞) is given by
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d(x, y) = |x− y| . Define T : X → CB(X) by

Tx =






{
0, 1

(n+1)2

}
, x = 1

n2 , n > 2

{x} , x =
{
0, 14

}
.

Since H(T 0, T 1
4 ) = 1

4 = d(0, 14 ), then for all F ∈ F∗ and τ : (0,∞) → (0,∞)

satisfying inequality (10), we have

τ(d(0,
1

4
)) + F (H(T 0, T

1

4
)) > F (d(0,

1

4
)).

Therefore Theorem 22 can not be applied to this example. Also, T is not a

multivalued nonlinear almost contraction and so Theorem 10 can not be applied

to this example. But T is multivalued nonlinear almost F -contraction with λ = 1

and τ = ln 100
81 and

F (α) =






lnα√
α

, 0 < α < e2

2α
e3

, α ≥ e2

.

Thus all conditions of Theorem 35 are satisfied.

4. Fixed point results without using Pompeiu-Hausdorff metric

Let T : X → P (X) be a multivalued map, F ∈ F and σ ≥ 0. For x ∈ X with

d(x, Tx) > 0, define the set F x
σ ⊆ X as

F x
σ = {y ∈ Tx : F (d(x, y)) ≤ F (d(x, Tx)) + σ}.

We need to consider the following cases:

If T : X → K(X), then for all σ ≥ 0 and x ∈ X with d(x, Tx) > 0, we have

F x
σ 6= ∅. If T : X → C(X), then F x

σ may be empty for some x ∈ X and σ > 0. If

T : X → C(X) (even if T : X → P (X)) and F ∈ F∗, then for all σ > 0 and x ∈ X

with d(x, Tx) > 0, we have F x
σ 6= ∅.

By considering the above facts we give the following theorems:
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Theorem 37 (Mınak et al. [20]). Let (X, d) be a complete metric space, T : X →
K(X) be a multivalued map and F ∈ F . If there exists τ > 0 such that for any

x ∈ X with d(x, Tx) > 0, there exists y ∈ F x
σ satisfying

τ + F (d(y, T y)) ≤ F (d(x, y)),

then T has a fixed point in X provided σ < τ and x → d(x, Tx) is lower semi-

continuous.

In the following theorem we replace C(X) by K(X), but we need to take F ∈ F∗.

Theorem 38 (Mınak et al. [20]). Let (X, d) be a complete metric space, T :

X → C(X) and F ∈ F∗. If there exists τ > 0 such that for any x ∈ X with

d(x, Tx) > 0, there exists y ∈ F x
σ satisfying

τ + F (d(y, T y)) ≤ F (d(x, y))

then T has a fixed point in X provided 0 < σ < τ and x → d(x, Tx) is lower

semi-continuous.

Corollary 39 (Feng-Liu). Let (X, d) be a complete metric space, T : X → C(X).

If there exists c ∈ (0, 1) such that for any x ∈ X, there exists y ∈ Ixb (b ∈ (0, 1))

satisfying

d(y, T y) ≤ cd(x, y),

then T has a fixed point in X provided c < b and x → d(x, Tx) is lower semi-

continuous.

Remark 40. Theorem 37 is a generalization of Theorem 15. In fact, let T satisfies

the conditions of Theorem 15. Since every multivalued F -contractions are mul-

tivalued nonexpansive and every multivalued nonexpansive maps are upper semi-

continuous, then T is upper semi-continuous. Therefore, the function x→ d(x, Tx)

is lower semi-continuous (see the Proposition 4.2.6 of [3]). On the other hand, for

any x ∈ X with d(x, Tx) > 0 and y ∈ F x
σ , we have

τ + F (d(y, T y)) ≤ τ + F (H(Tx, T y)) ≤ F (d(x, y)).

Hence T satisfies conditions of Theorem 37, the existence of a fixed point has been

proved. There is the similar relation between Theorem 18 and Theorem 38.
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The following example shows that Theorem 37 (resp. Theorem 38) is a proper

generalization of Theorem 15 (resp. Theorem 18).

Example 41. Let X = { 1
2n−1 : n ∈ N} ∪ {0} with the usual metric d, then (X, d)

is complete metric space. Define a mapping T : X → C(X) as

Tx =





{ 1
2n , 1} , x = 1

2n−1

{0, 12} , x = 0

.

Since H(T 1
2 , T 0) =

1
2 = d(12 , 0), then for all F ∈ F and τ > 0 we have

τ + F (H(T
1

2
, T 0)) > F (d(

1

2
, 0)).

Thus T is not multivalued F -contraction. Therefore Theorem 15 and Theorem 18

can not be applied to this example.

On the other hand, it is easy to compute that all conditions of Theorem 37 and

Theorem 38 are satisfied and so T has a fixed point.

In the following theorem we replace P (X) by C(X), but we need to add an extra

condition.

Theorem 42 (Mınak et al. [20]). Let (X, d) be a complete metric space, T : X →
P (X) and F ∈ F∗. Suppose there exists τ > 0 such that for any x ∈ X with

d(x, Tx) > 0, there exists y ∈ F x
σ satisfying d(y, T y) > 0 and

τ + F (d(y, T y)) ≤ F (d(x, y)).

If there exists x0 ∈ X with d(x0, T x0) > 0 such that for all convergent sequence

{xn} with xn+1 ∈ Txn, we have T (limxn) is closed, then T has a fixed point in

X provided σ < τ and x→ d(x, Tx) is lower semi-continuous.

Corollary 43. Let (X, d) be a complete metric space, T : X → P (X). Suppose

there exists c ∈ (0, 1) such that for any x ∈ X with d(x, Tx) > 0 there exists y ∈ Ixb

(b ∈ (0, 1)) satisfying

(12) 0 < d(y, T y) ≤ cd(x, y).
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If there exists x0 ∈ X with d(x0, T x0) > 0 such that for all convergent sequence

{xn} with xn+1 ∈ Txn, we have T (limxn) is closed, then T has a fixed point in

X provided c < b and x→ d(x, Tx) is lower semi-continuous.

Example 44 (Mınak et al. [20]). Let X = [0, 2] with the usual metric. Define

T : X → P (X) as

Tx =





(x4 ,
x
2 ] , x ∈ (0, 1]

{x
2 } , x ∈ {0} ∪ (1, 2]

.

Since Tx is not closed for some x ∈ X , both Nadler and Feng-Liu’s results can not

be applied to this example. On the other hand if we take 1
2 ≤ c < b and x0 ∈ (0, 2],

then all conditions of Corollary 43 are satisfied. Therefore T has a fixed point.

By considering the above facts, we give the following theorems, which are non-

linear form of Theorem 37 and Theorem 38. Note that Theorem 45 is a proper

generalization of Theorem 12.

Theorem 45 (Altun et al. [6]). Let (X, d) be a complete metric space, T : X →
C(X) and F ∈ F∗. Assume that the following conditions hold:

(i) the map x→ d(x, Tx) is lower semi-continuous;

(ii) there exist σ > 0 and a function τ : (0,∞) → (σ,∞) such that

lim inf
t→s+

τ(t) > σ for all s ≥ 0

and for any x ∈ X with d(x, Tx) > 0, there exists y ∈ F x
σ satisfying

τ(d(x, y)) + F (d(y, T y)) ≤ F (d(x, y)).

Then T has a fixed point.

In the following example, we show that there are some multivalued maps such that

Theorem 45 can be applied but Theorem 12 can not.
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Example 46. Let X = {xn = n(n+1)
2 : n ∈ N} and d(x, y) = |x− y| . Then (X, d)

is a complete metric space. Define a mapping T : X → C(X) by the formulae:

Tx =





{x1} , x = x1

{x1, xn−1} , x = xn

.

Then, since τd is discrete topology, the map x → d(x, Tx) is continuous. Now we

claim that the condition (ii) of Theorem 12 is not satisfied. Indeed, let x = xn for

n > 1, then Tx = {x1, xn−1}. In this case, for all b ∈ (0, 1), there exists n0(b) ∈ N

such that for all n ≥ n0(b), I
xn

b = {xn−1}. Thus, for n ≥ n0(b) we have

d(y, T y) = n− 1, d(x, y) = n.

Therefore since d(y,Ty)
d(x,y) = n−1

n
, we can not find a function ϕ : [0,∞) → [0, b)

satisfying

d(y, T y) ≤ ϕ(d(x, y))d(x, y).

On the other hand the condition (ii) of Theorem 45 is satisfied with F (α) = α+lnα,

σ = 1
2and τ(t) =

1
t
+ 1

2 .

Remark 47. If we take K(X) instead of C(X) in Theorem 45, we can remove the

condition (F4) on F . Further, by taking into account F x
σ , we can take σ ≥ 0.

Therefore, the proof of the following theorem is obvious.

Theorem 48. Let (X, d) be a complete metric space and T : X → K(X). Assume

that the following conditions hold:

(i) the map x→ d(x, Tx) is lower semi-continuous;

(ii) there exist σ ≥ 0, F ∈ F and a function τ : (0,∞) → (σ,∞) such that

lim inf
t→s+

τ(t) > σ for all s ≥ 0

and for any x ∈ X with d(x, Tx) > 0, there exists y ∈ F x
σ satisfying

τ(d(x, y)) + F (d(y, T y)) ≤ F (d(x, y)).

Then T has a fixed point.

Now, we shall prove a theorem which extends and generalizes Theorem 13.

32



Multivalued F-contractions and some fixed point results

Theorem 49 (Altun et al. [7]). Let (X, d) be a complete metric space, T : X →
C(X) and F ∈ F∗. Assume that the following conditions hold:

(i) the map x→ d(x, Tx) is lower semi-continuous;

(ii) there exists a function τ : (0,∞) → (0, σ], σ > 0 such that

(13) lim inf
t→s+

τ(t) > 0, ∀s ≥ 0;

(iii) for any x ∈ X with d(x, Tx) > 0, there is y ∈ Tx satisfying

(14) F (d(x, y)) ≤ F (d(x, Tx)) +
τ(d(x, Tx))

2

and

(15) τ(d(x, Tx)) + F (d(y, T y)) ≤ F (d(x, y)).

Then T is a MWP operator.

Remark 50. If we take K(X) instead of C(X) in Theorem 49, we can remove the

condition (F4) on F . Therefore, by taking into account Remark ?? the proof of

the following theorem is obvious.

Theorem 51 (Altun et al. [7]). Let (X, d) be a complete metric space, T : X →
K(X) and F ∈ F . Assume that the following conditions hold:

(i) the map x→ d(x, Tx) is lower semi-continuous;

(ii) there exists a function τ : (0,∞) → (0, σ], σ > 0 such that

lim inf
t→s+

τ(t) > 0, ∀s ≥ 0;

(iii) for any x ∈ X with d(x, Tx) > 0, there is y ∈ Tx satisfying

F (d(x, y)) ≤ F (d(x, Tx)) +
τ(d(x, Tx))

2

and

τ(d(x, Tx)) + F (d(y, T y)) ≤ F (d(x, y)).

Then T is a MWP operator.

Taking into account our results, T is a MWP operator in the following nontrivial

example. We also show that all mentioned theorems except for Theorems 49 and

51 can not be applied to this example.
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Example 52. Let X = { 1
n2 : n ∈ N} ∪ {0} and d(x, y) = |x− y|, then (X, d) is

complete metric space. Let T : X → CB(X) be defined by

Tx =






{
0, 1

(n+1)2

}
, x = 1

n2

{x} , x ∈ {0, 1}
.

It is easy to see that

d(x, Tx) =






0 , x ∈ {0, 1}

2n+1
n2(n+1)2

, x = 1
n2 , n ≥ 2

and it is lower semi-continuous.

Let τ(t) = ln 2 and σ = 4, then the condition (ii) of Theorem 49 is satisfied.

We can see that the condition (iii) of Theorem 49 is satisfied with

F (α) =






lnα√
α

, 0 < α < e2

α− e2 + 2
e

, α ≥ e2

.

Thus all conditions of Theorem 49 are satisfied and so T has a fixed point in X .

On the other hand, after some calculation we can see that Theorems 6-22 can not

be applied to this example.

Remark 53. In [1, 2, 13, 14], we can find some different approach to multivalued

F -contractions.
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[5] I. Altun, G. Mınak and H. Dağ, Multivalued F -contractions on complete metric space,

Journal of Nonlinear and Convex Analysis, Accepted.

[6] I. Altun, G. Mınak and M. Olgun, Fixed points of multivalued nonlinear F -contractions on

complete metric spaces, Submitted.

[7] I. Altun, M. Olgun and G. Mınak, On a new class of multivalued weakly Picard operators

on complete metric spaces, Taiwanese Journal of Mathematics, Accepted.

[8] V. Berinde, On the approximation of fixed points of weak contractive mappings, Carpathian

J. Math. 19 (1) (2003), 7-22.

[9] M. Berinde and V. Berinde, On a general class of multi-valued weakly Picard mappings, J.

Math. Anal. Appl., 326 (2007), 772-782.
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Abstract

Using as an example a type of algorithm described by a system of recur-

rences, we review existing methods that apply the Banach contraction

principle to the study the existence and uniqueness of solution of the

recurrence equations related to computer algorithms.

1. Introduction

Classical analysis of the complexity of algorithms is based on the use of asymp-

totical analysis [2]. Our study will focus on the use of recursive algorithms such

as those implementing the divide an conquer strategy.

1The second author thanks the supports of the Ministry of Economy and Competitiveness of

Spain, grant MTM2012-37894-C02-01, and the Universitat Politècnica de València, grant PAID-

06-12-SP20120471.
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During the last years, some authors have applied the Banach contraction principle

equipped with an appropriate complexity space introduced by Schellekens, see

[12] and its application to the Mergesort algorithm and [5] or [10], and bicomplete

quasi-metrics [7, 8, 11] to show the existence and uniqueness of solution for the

recurrence equations of several well known algorithms.

To extend these results, we will summarize how these techniques can be applied

to show the existence and uniqueness of a class of algorithms defined by a system

of recurrence equations (a more detailed study can be found in [3] so it may be

used as a source for basic references mentioned in this survey). An example of

algorithm of such class was considered by Atkinson in [1, p. 16-17].

For both approaches, the obtention of a contraction constant is not a straightfor-

ward task. This fact will serve as the motivation to study a new approach based

on the usage of a fixed point theorem for preordered complete fuzzy quasi-metric

spaces which was presented in [13] to show in a much more direct way the existence

and uniqueness of solution for the aforementioned algorithm.

2. Product of fuzzy quasi-metric defined on the domain of words

This approach is based on the notions of G-Cauchy sequence and G-complete fuzzy

metric promoted by Grabiec in [4].

Using the definition of a B-contraction on a fuzzy metric space Grabiec’s fixed

point theorem can be formulated in the fuzzy-metric setting where we can obtain

a fuzzy version of the classical Banach fixed point theorem [3, Theorem 1] which

can be generalized to the fuzzy quasi-metric setting [3, Theorem 2] so that then

we can apply it to the standard fuzzy quasi-metric space of any bicomplete non-

Archimedean quasi-metric space:

Theorem 1. Let (X, d) be a bicomplete non-Archimedean quasi-metric space.

Then (X,Md,∧) is a G-bicomplete (non-Archimedean) fuzzy quasi-metric space

such that lim
t⇒∞

Md(x, y, t) = 1 for all x, y ∈ X.

In order to apply these results to study the algorithm, first we use the following

non-Archimedean quasi-metric d⊑(x, y) = 0 if x ⊑ y, and d⊑(x, y) = 2−ℓ(x⊓y)
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otherwise (where ℓ(x ⊓ y) is the length of the common prefix of words x and y),

on the domain of words Σ∞. This domain allows us to model the iterations of the

algorithm as words over the alphabet Σ are ordered by the information order ⊑.

For our system of recurrences, we will use a product fuzzy quasi-metric space:

(M1 ×M2)((x1, x2), (y1, y2), t) =M1(x1, y1, t) ∗M2(x2, y2, t).

If the recurrences A and B are defined as a generalization of the algorithm in [1]

are given by A(0) > 0, B(0) > 0, and

A(n) = pA(n− 1) + qB(n− 1) +K1,

B(n) = rA(n− 1) + sB(n− 1) +K2,

for all n ∈ N, where p, q, r, s,K1,K2, are nonnegative constants with p, q, r, s > 0.

This definition suggests the construction of the functional:

Φ : Σ∞ × Σ∞ → Σ∞ × Σ∞,

given for each pair x1, x2 ∈ Σ∞, by Φ(x1, x2) = (u1, u2), where

(u1)0 = A(0), (u2)0 = B(0),

(u1)n = p(x1)n−1 + q(x2)n−1 +K1, (u2)n = r(x1)n−1 + s(x2)n−1 +K2,

for all n ∈ N such that n ≤ (ℓ(x1) ∧ ℓ(x2)) + 1.

To find the solution we work on the product space defined on the product set of all

finite words. This is a non-bicomplete non-Archimedean fuzzy quasi-metric space,

but it is bicompletable, and using the following theorem:

Theorem 2. (Σ∞ × Σ∞,Md⊑ ×Md⊑ ,∧) is a bicomplete non-Archimedean fuzzy

quasi-metric space such that lim
t→∞

(Md⊑ ×Md⊑)((x1, x2), (y1, y2) , t) = 1 for all

(x1, x2), (y1, y2) ∈ Σ∞ × Σ∞. Therefore, every B-contraction on this space has

a unique fixed point.

39



F. Castro-Company and P. Tirado

We need to show that Φ is a B-contraction of the G-bicomplete (non-Archimedean)

fuzzy quasi-metric space (Σ∞×Σ∞,Md⊑×Md⊑ ,∧). By Theorem 2, Φ has a unique

fixed point which is obviously the solution of the recurrences A and B. For each

pair of finite words x1, x2, the sequence of iterations (Φk(x1, x2))k converges, in

(Σ∞ ×Σ∞, (Md⊑ ×Md⊑)
i,∧), to the element that constitutes the solution for the

pair of recurrence equations.

3. Product quasi-metric space of complexity space

In this approach, as a first step we need to generalize the Banach contraction

principle to the quasi-metric setting.

The product quasi-metric space of two quasi-metric spaces (X, d) and (Y, e) is the

quasi-metric space (X × Y, d× e), where d× e is defined by

(d× e)((x1, y1), (x2, y2)) = d(x1, x2) ∨ e(y1, y2),

for all (x1, y1), (x2, y2) ∈ X × Y.

The complexity space is a quasi-metric space (C, dC), and it is bicomplete.

Next, we construct a monotone increasing functional Φ, associated with the two

recurrence equations A and B constructed in the preceding section, which is a

contraction on (C × C, dC × dC). Its unique fixed point (f0, g0) will be the solution

of the recurrence equations system.

Theorem 3. [3, Theorem 7] Let Φ be the functional on C × C defined by

Φ(f, g)(0) = (A(0), B(0)),

Φ(f, g)(n) = (pf(n− 1) + qg(n− 1) +K1, rf(n− 1) + sg(n− 1) +K2) ,

for n ∈ N and f, g ∈ C.

If α < 1, where α =
1

2

(
1

p ∧ r +
1

q ∧ s

)
, then:

(1) Φ is a monotone increasing contraction on (C × C, dC×dC) with contraction

constant α.

(2) Φ has a unique fixed point (f0, g0).
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4. Preordered complete fuzzy quasi-metric space

In [13], authors take as a starting point Ricarte and Romaguera [6, Theorem

2.2] new version of Matowski’s theorem, which generalized Banach’s contraction

principle:

Theorem 4. [6]. Let (X,M, ∗) be a complete fuzzy metric space and f : X → X

a self-map such that

M(x, t, y) > 1− t→ M(fx, fy, ϕ(t)) > 1− ϕ(t),

for all x, y ∈ X and t > 0, where ϕ : [0,∞) → [0,∞) is a nondereasing function

satisfying limn→∞ ϕx(t) = 0 for all t > 0. Then f has a unique fixed point

A preorder on a nonempty set X is a reflexive and transitive binary relation �
on X . A preordered fuzzy (quasi-)metric space is a 4-tuple (X,M,�, ∗) such that

(X,M, ∗) is a fuzzy (quasi)-metric space and � is a preorder on X .

If (M, ∗) is a fuzzy quasi-metric on X , the relation ≤M on X given by x ≤M y ⇔
M(x, y, t) = 1 for all t > 0, is an order on X called the specialization order of

(M, ∗).

The authors obtain the following generalization of Theorem 4 to preordered fuzzy

quasi-metric spaces [13, Theorem 5]:

Theorem 5 ([13]). If the ordered fuzzy quasi-metric space (X,M,≤M , ∗) is ≤M -

complete and f : X → X is a ≤M -nondecreasing self-map such that there is x0 ∈ X

satisfying x0 ≤M fx0, then f has a fixed point.

To deduce the existence of the solution for the algorithm equations we shall use

the following subset of the complexity space from [12]:

C1 = {f ∈ C : f(n) ≥ 1 for all n ∈ N}

and the function QC defined in [9]: QC(f, g, t) =
∞∑

k=n

2−k

(
(

1

g(k)
− 1

f(k)
) ∨ 0

)
,

where t ∈ (n− 1, n], n ∈ N.
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Now we can construct a fuzzy set M1 in (C × C)× (C × C)× [0,∞) as:

M1((f1, g1), (f2, g2), 0) = 0 for all fi, gi ∈ C1,

M1((f1, g1), (f2, g2), t) = 1 if f1 ≤ f2 and g1 ≤ g2 and t > 0, and

M1((f1, g1), (f2, g2), t) = 1− [QC(f1, f2, t) ∨QC(g1, g2, t)] otherwise.

Notice that, in this first attempt to use the method, we will try to order and

compare each term of the recurrence equations system independently.

This set must be appropriate to define the following fuzzy quasi-metric space:

Lemma 6 ([13, Lemma 1]). (C1,M1,≤M1 , ∗L) is a ≤M1-complete fuzzy quasi-

metric space.

So we will have to show that:

QC(f1, f2, t+ s) ≤ QC(f1, f3, t) +QC(f3, f2, s)

QC(g1, g2, t+ s) ≤ QC(g1, g3, t) +QC(g3, g2, s)

and that the fuzzy quasi-metric space is ≤M1 -complete.

In the end, we will have the following consequence [13, Theorem 6]

Theorem 7 ([13]). If Φ : C1 → C1 is a ≤M1-nondecreasing map and there is

f0 ∈ C1 such that f0 ≤M Φf0, then Φ has a fixed point.

One of the most interesting facts of this new approach is that the contraction

condition of the preceding theorem is automatically satisfied whenever the self-

map f is nondecreasing for the specialization order and ϕ : [0,∞) → [0,∞) verifies

that ϕ(t) > 0 for all t > 0.

In our case, the construction of the functional can be borrowed from Theorem 3

in section 3. We will have to show that if f1 ≤ f2 and g1 ≤ g2 then Φ(f1, g1) ≤
Φ(f2, g2) and then by Theorem 7 we will find that Φ has a fixed point, which is

the solution to the system of recurrence equations.

Acknowledgement. The authors thank the referee for several useful suggestions.
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Abstract

In [On Interval-Valued Fuzzy Metric Spaces, International Journal of

Fuzzy Systems, Vol 14, N. 1, March 2012] Y. Shen, H. Li and F. Wang

introduced and studied a notion of interval-valued fuzzy metric space

as a natural generalization of fuzzy metric spaces due to George and

Veeramani [On some results in fuzzy metric spaces, Fuzzy Sets and

Systems, vol. 64, pp. 395-399, 1994]. In this paper we show that each

interval-valued fuzzy metric space (X,M, ∗) induces in a natural way

two fuzzy metric spaces (X,M−, ∗−) and (X,M+, ∗+) and that the

topology generated by the interval-valued fuzzy metric M coincides

with the topology generated by M−, and hence the study of the space

(X,M, ∗) reduces to the study of the fuzzy metric space (X,M−, ∗−),

so that Shen, Li and Wang’s results follow directly from well-known

results in fuzzy metric spaces.

1This is a preliminary work. The complete version including proofs will be published else-

where. The authors thank to referees for their comments which have helped in improving the

quality of the paper. The second author thanks the support of the Ministry of Economy and

Competitiveness of Spain, grant MTM2012-37894-C02-01, and the Universitat Politècnica de

València, grant PAID-06-12-SP20120471.
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The concept of interval-valued fuzzy set was introduced by Zadeh in 1975 [11].

An interval-valued fuzzy set is characterized by an interval-valued membership

function, and it is taken as a generalization of the fuzzy sets.

Throughout this paper the letter N will denote the set of all positive integers, I

the closed unit interval, i. e. I = [0, 1] and [I] all interval numbers on I, i. e.

[I] = {a = [a−, a+] : 0 ≤ a− ≤ a+ ≤ 1}. If a− = a+, then the interval number a

degenerates into an ordinary real number on I. Conversely, every a ∈ I induces

the interval number [a, a] that we will denote as a if no confusion arises, so that

we will write (I] = I − {0} and (I) = I − {0, 1}.

Given a, b ∈ [I] we will say that a ≤ b if a− ≤ b− and a+ ≤ b+, a = b if a− = b−

and a+ = b+ and a < b if a ≤ b and a 6= b. It is obvious that ([I],≤) is a partial

ordered set.

For every a, b ∈ [I] the following operations were introduced in [9]:

(i) a ∧ b = [a− ∧ b−, a+ ∧ b+];

(ii) a ∨ b = [a− ∨ b−, a+ ∨ b+];

(iii) ac = 1− a = [1− a+, 1− a−].

In general [8], given a = [a−, a+] and b = [b−, b+] we have b−a = [b−−a+, b+−a−]
and b+ a = [b− + a−, b+ + a+].

Recall [10] that a t-norm is a binary operation ∗ : I × I → I that satisfies the

following conditions: (i) ∗ is associative and commutative; (ii) a ∗ 1 = a for every

a ∈ I; (iii) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, for a, b, c, d ∈ I. If, in addition,

∗ is continuous, then ∗ is called a continuous t-norm.

Paradigmatic examples of continuous t-norms are the minimum, denoted by ∧, the
usual product, denoted by · and the Lukasiewicz t-norm, denoted by ∗L, where
a ∗L b = max{a + b − 1, 0}. They satisfy the following well-known inequalities:

a ∗L b ≤ a · b ≤ a ∧ b. In fact, a ∗ b ≤ a ∧ b for each t-norm ∗.
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Y.Shen, H.Li and F.Wang extended in [9] t-norm to interval-valued t-norm ( IV-
t-norm for short) as it follows:

Definition 1 ([9]). An IV-t-norm is a binary operation ∗ : [I] × [I] → [I] that

satisfies the following conditions (i) ∗ is associative and commutative; (ii) a ∗ 1 = a

and a ∗ I = [0, a+] for every a = [a−, a+] ∈ [I]; (iii) a ∗ b ≤ c ∗ d whenever a ≤ c

and b ≤ d, for a, b, c, d ∈ [I]. If, in addition, ∗ is continuous, then ∗ is called a

continuous IV-t-norm.

Definition 2 ([9]). A sequence {an}n∈N = {[a−n , a+n ]}n∈N of interval numbers

converges to a = [a−, a+] if limn→∞ a−n = a− and limn→∞ a+n = a+. In this case

we write limn→∞ an = a (or {an} → a).

In [9, Definition 4] the authors define an IV-t-norm ∗ as continuous if it is con-

tinuous in its first component, i.e., if for each b ∈ [I] and limn→∞ an = a, then

limn→∞(an ∗ b) = (limn→∞ an ∗ b) = a ∗ b, where {an}n∈N ⊆ [I], a ⊆ [I]. As in

the case of continuous t-norms (see [6, Proposition 1.19]), the following proposi-

tion shows that the continuity of IV-t-norms is equivalent to its continuity in the

first component. As usually we say that ∗ : [I] × [I] → [I] is continuous if for all

convergent sequences {xn}n∈N, {yn}n∈N ∈ [I] we have limn→∞ xn ∗ limn→∞ yn =

limn→∞ xn ∗ yn .

Proposition 1. An IV-t-norm ∗ is continuous if and only if it is continuous in

its first component.

Some examples of IV-t-norms are:

(1) a∧b = [a−, a+]∧[b−, b+] = [a− ∧ b−, a+ ∧ b+].

(2) a · b = [a−, a+]·[b−, b+] = [a− · b−, a+ · b+].

Proposition 2. Every IV−t-norm ∗ acts componentwise. So, given an IV-t-
norm ∗ we can write ∗ = [∗−, ∗+] were ∗− and ∗+ are two continuous t-norms such

that ∗− ≤ ∗+. In fact ∧ = [∧,∧] and · = [·, ·].
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Following the ideas of interval-valued fuzzy set and continuous IV-t-norm Y.Shen,

H.Li and F.Wang introduced in [9] a notion of interval-valued fuzzy metric space (in

the following IV-fuzzy metric space) which is a generalitation of fuzzy metric space

in the sense of George and Veeramani [2] and they showed, as in the case of fuzzy

metric spaces, that every IV-fuzzy metric space generates a Hausdorff first count-

able topology. We can show that every IV-fuzzy metric space (X,M, ∗) induces

two fuzzy metrics spaces (X,M−, ∗−) and (X,M+, ∗+) and that the topology τM

generated by the IV-fuzzy metric space (X,M, ∗) coincides with the topology τM−

generated by the fuzzy metric space (X,M−, ∗−), and thus, the results obtained

in [9] are consequences of well-known results for fuzzy metric spaces.

Recall [2] that a fuzzy metric space is a triple (X,M, ∗) such that X is a (non-

empty) set, ∗ is a continuous t-norm and M is a fuzzy set on X ×X× (0,∞) such

that for all x, y, z ∈ X ; t, s > 0: (i) M(x, y, t) > 0; (ii) M(x, y, t) = 1 if and only

if x = y; (iii) M(x, y, t) = M(y, x, t); (iv) M(x, z, t+ s) ≥ M(x, y, t) ∗M(y, z, s);

(v) M(x, y, ) : (0,∞) → (0, 1] is continuous.

If (X,M, ∗) is a fuzzy metric space, we will say that (M, ∗) (or simply M) is a

fuzzy metric on X .

Our basic reference for general topology is [1].

George and Veeramani proved in [2] that every fuzzy metric (M, ∗) on X generates

a Hausdorff first countable topology τM on X which has as a base the family of

open sets of the form {BM (x, r, t) : x ∈ X , r ∈ (0, 1), t > 0}, where BM (x, r, t) =

{y ∈ X : M(x, y, t) > 1 − r} for all x ∈ X , r ∈ (0, 1)and t > 0. Actually, it is

proved in [3] the following result.

Theorem 1 ([3]). Let(X,M, ∗) be a fuzzy metric space. Then (X, τM ) is a

metrizable topological space.

As a natural generalization of fuzzy metric space Y.Shen, H.Li and F.Wang gave

in [9] the following definition of IV-fuzzy metric space.

Definition 3 ([9]). An IV-fuzzy metric space is a triple (X,M, ∗) such that X is

a non-empty set, ∗ is a continuous IV t-norm and M is an interval-valued fuzzy

set on X ×X × (0,∞) such that for all x, y, z ∈ X ; t, s > 0:
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(a) M(x, y, t) > 0;

(b) M(x, y, t) = 1 if and only if x = y;

(c) M(x, y, t) =M(y, x, t);

(d) M(x, z, t+ s) ≥M(x, y, t)∗M(y, z, s);

(e) M(x, y, ) : (0,∞) → (I] is continuous;

(f) limt→∞M(x, y, t) = 1.

In the above definition M = [M−,M+] is called an interval-valued fuzzy metric

on X (IV-fuzzy metric in short). Following [9] the functions M−(x, y, t) and

M+(x, y, t) can be interpreted as the lower nearness degree and the upper nearness

degree between x and y with respect to t, respectively. This interpretation is

according to the original one of M(x, y, t) in the case of fuzzy metric spaces in the

sense of [7] and [2] (see for instance [2, Remark 2.3]). Taking into account that

an interesting class of fuzzy metric spaces were defined in [4] where M does not

depend on t and that the topology generated by a (IV-)fuzzy metric space can

be defined with t ∈ (0, ε), ε > 0, to our purposes here we are going to consider a

more general definition of (X,M, ∗) without condition (f). In fact, the equivalent

condition is not considered in the original definition of fuzzy metric space given

by George and Veeramani.

Conditions in Definition 3 together with Proposition 2, where ∗ = [∗−, ∗+], imply

that (X,M−, ∗−) and (X,M+, ∗+) are fuzzy metric spaces.

In [9] the authors proved that each IV-fuzzy metricM on X generates a Hausdorff

first countable topology τM on X which has as a base the family of open sets of

the form {BM (x, r, t) : x ∈ X , 0 < r < 1, t > 0}, where BM (x, r, t) = {y ∈ X :

M(x, y, t) > 1− r} for all x ∈ X , 0 < r < 1 and t > 0.

Proposition 3. Let (X,M, ∗) = (X, [M−,M+], [∗−, ∗+]) be an IV-fuzzy metric

space. Then, for each x ∈ X , r ∈ (0, 1), t > 0 we have BM (x, r, t) = BM−(x, r, t).

From Proposition 3 we deduce the following.
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Theorem 2. Let (X,M, ∗) = (X, [M−,M+], [∗−, ∗+]) be an IV-fuzzy metric

space. Then the topologies τM and τM− coincide on X .

By Theorem 1 and 2 we have the following improvement of Theorem 5 of [9].

Corollary 1. Let (X,M, ∗) = (X, [M−,M+], [∗−, ∗+]) be an IV-fuzzy metric

space. Then (X, τM ) is a metrizable topological space.
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1. Introduction

Fractal dimension is the main invariant on a fractal set which is widely studied

both theoretically and in applications. It allows to give a measure of some com-

plexity aspects of the fractal and it is mainly used as a classification tool with
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an uncountable number of applications in many fields including physics, finance,

ecology, geology, medicine and many others.

In this paper, we include some generalizations of the concept of fractal dimension

for a fractal structure as well as new applications of fractal dimension to new

contexts.

2. Fractal structures

The concept of fractal structure was first introduced in [1] to characterize non-

Archimedeanly quasi-metrizable spaces. It has been used to study topological and

uniform concepts like compactness or completeness as well as to study fractals.

Some of the uses of fractal structures can be found in [16].

Given Γ1, Γ2 two coverings of a set X , we say that Γ2 is a strong refinement of Γ1,

denoted by Γ2 ≺≺ Γ1, if it is a refinement (that is, each element of Γ2 is included

in some element of Γ1) and for each A ∈ Γ1 it holds that A =
⋃{B ∈ Γ2 : B ⊆ A}.

Definition 1. A fractal structure on a set X is a countable family of coverings

Γ = {Γn : n ∈ N} such that Γn+1 ≺≺ Γn for each n ∈ N. Γn is called level n of

the fractal structure.

A fractal structure Γ on a set X induces a transitive base of quasi-uniformity

(and hence a topology) given by Un = {(x, y) ∈ X × X : y 6∈ ⋃
x 6∈A;A∈Γn

A}.
Indeed, in [1] it was proved a strong connection between fractal structures and non-

Archimedean quasi-metrics. In particular, any non-Archimedean quasi-pseudometric

ρ : X×X → R defined on a topological spaceX induces a fractal structure Γ given

by Γ = {Γn : n ∈ N}, whose levels are defined by Γn = {Bρ−1(x, 1
2n ) : x ∈ X} for

all natural number n, where Bρ(x, ε) denotes the ball centered at a point x ∈ X

with radius ε > 0, namely, Bρ(x, ε) = {y ∈ X : ρ(x, y) < ε}.

The natural fractal structure on any Euclidean space R
d is defined as Γ = {Γn :

n ∈ N}, where its levels are given by Γn = {[ k1

2n ,
k1+1
2n ] × . . . × [ kd

2n ,
kd+1
2n ] : ki ∈

Z, i ∈ {1, . . . , d}} for all n ∈ N (see [7, Definition 3.1]). Note that Γn is a grid of

cubes of sides equal to 1/2n.
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Herein, the concept of a distance function may include metrics, semimetrics, quasi-

metrics, . . ., etc. In most definitions and theoretical results, we will define a fractal

structure on a distance space to calculate diameters of subsets.

3. Fractal dimensions for fractal structures and their applications

In this section, we introduce some models to calculate the fractal dimension for a

fractal structure and show some of their interdisciplinary applications. An addi-

tional reference for all of them is [11].

3.1. Box-counting dimension. In applications of fractal dimension, it is usually

used the box-counting dimension, since it is easy to calculate. There are several

equivalent versions for the definition of the box-counting dimension and even dif-

ferent names for the same concept (see [5]). The most useful definition to write

an algorithm for its calculation is the next one.

The (lower/upper) box-counting dimension of a subset F ⊆ R
d is given by the

following (lower/upper) limit:

dimB(F ) = lim
δ→0

logNδ(F )

− log δ
,

where δ is the scale and Nδ(F ) is the number of δ-cubes which meet F , where a

δ-cube in R
d is a set of the form [k1δ, (k1+1)δ]× . . .× [kdδ, (kd+1)δ], where ki are

integers for all i ∈ {1, . . . , d}. Alternative (equivalent) ways to calculate Nδ(F )

can be found in [5].

3.2. Fractal dimensions I and II. In this subsection, we introduce the first

concepts of fractal dimension for any fractal structure.

First of all, if in the previous definition of the box-counting dimension we consider

δ = 1/2n, then the quantity Nδ(F ) is just the number of elements of level n of the

natural fractal structure on R
d which meet F . This fact is the motivation for the

following definition.

Definition 2 ([7, Definition 3.3]). Let Γ be a fractal structure on a set X and let

F be a subset of X . The (lower/upper) fractal dimension I of F is defined as the
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(lower/upper) limit:

dim1
Γ(F ) = lim

n→∞
logNn(F )

n log 2
,

where Nn(F ) is the number of elements of level n of the fractal structure which

meet F .

Note that the fractal dimension I model does not depend on any metric or distance

function which may constitute an advantage in some empirical applications. A

slight alternative to fractal dimension I was proposed in [7, Definition 4.2] and is

as follows:

Definition 3. Let Γ be a fractal structure on a distance space (X, ρ) and let F

be a subset of X . Then the (lower/upper) fractal dimension II of F is defined as

the (lower/upper) limit:

dim2
Γ
(F ) = lim

n→∞
logNn(F )

− log δ(F,Γn)
,

where δ(F,Γn) = sup{diam (A) : A ∈ Γn, A ∩ F 6= ∅}. Here, diam (A) denotes the

diameter of A and is given, as usual, by

diam (A) = sup{ρ(x, y) : x, y ∈ A}.

Note that if Γ is the natural fractal structure on R
d, then we have that dim1

Γ
(F ) =

dim2
Γ(F ) = dimB(F ) ([7, Theorem 4.7]). Also, note that the calculation of Nn(F )

for any fractal structure Γ is as easy as the calculation of Nδ(F ) in the case of the

box-counting dimension, which implies that the calculation of both fractal dimen-

sions I and II is as easy as the calculation of the box-counting dimension. This

fact allows to develop some applications of fractal dimension for fractal structures

to new contexts, as we will see along this paper.

3.3. Applications to the domain of words. Some applications of fractal di-

mension I to the non-Euclidean context of the domain of words were contributed

in [10]. The domain of words appears when modeling the streams of information

in Kahn’s model of parallel computation (see [14, 15]). This is constructed from

a non-empty set Σ (called alphabet), by defining Σ∞ as the collection of finite
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(
⋃

n∈N
Σn) and infinite (ΣN) sequences (called words) of elements of Σ, namely,

Σ∞ =
⋃

n∈N
Σn

⋃
ΣN. The empty word ε also belongs to Σ∞.

A non-Archimedean quasi-metric on Σ∞ was defined in [18] based on the prefix

order as follows. The prefix order ⊑ is defined on Σ∞ by x ⊑ y iff x is a prefix of

y. On the other hand, for each x ∈ Σ∞, let l(x) be the length of x, where l(ε) = 0,

and for all x, y ∈ Σ∞, we denote by x ⊓ y to the common prefix of x and y. The

definition of the quasi-metric ρ on Σ∞ is given by

ρ(x, y) =

{
0 if x ⊑ y

2−l(x⊓y) in another case

Hence, ρ induces a fractal structure Γ on Σ∞ (see Section 2). In this case, the

levels of that fractal structure are defined as

Γn = {ω# : ω ∈ Σn} ∪ {ω⊑ : ω ∈ Σk, k < n},

where for all ω ∈ Σn, ω⊑ = {u ∈ Σk : u ⊑ ω, k ≤ n} is the collection of all prefixes

of ω, and ω# = {ωu : u ∈ Σ∞}∪ω⊑ is the collection of finite or infinite words that

start with ω or are a prefix of ω. Indeed, note that for each word ω ∈ Σn, we have

that ω# = Bρ−1(ω, 2−n), and for each ω ∈ Σk with k < n, ω⊑ = Bρ−1(ω, 2−n).

A subset L of Σ∞ is called a language, so fractal dimension I allows to calculate

the fractal dimension of any language.

Some examples about how to calculate the fractal dimension I of a language were

provided in [10]. One of them is about the calculation of the fractal dimension I

of a node of a search tree. In particular, it was described a way to construct a

language from a tree. In that paper, the authors used the search tree of the board

game Othello. That construction can be summarized as follows: we can name each

node of the tree and consider all the words valid for the tree. For example, the

word abc is valid if there is an edge from the root node to node a, another edge

from node a to node b and a third one from node b to node c. In this way, we can

define the language generated by the tree.

Based on this construction, in [10] it was show that the search tree of Othello

has a strong fractal pattern and it was provided an interpretation of the fractal

dimension of any node of the search tree.
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3.4. Hausdorff dimension. The most important definition of fractal dimension

is the Hausdorff dimension which was first introduced in [12] (1919) based on

previous works due to Carathéodory [4]. The Hausdorff dimension is the classical

definition of fractal dimension and it presents some advantages from a theoretical

point of view since its definition is built on a measure.

The study of the Hausdorff dimension properties becomes a classical issue since

Besicovitch and his pupils started to explore them during the XXth century (see

[2, 3], for instance). Next, we recall the basic definition of the Hausdorff dimension

(that may be consulted in [5]) since it will constitute the main reference for those

models of fractal dimension for a fractal structure we provide in the upcoming

subsections.

Let (X, ρ) be a metric space. Given a scale δ > 0 and a subset F of X , a δ-cover

of F is just a countable family of subsets {Ui : i ∈ I} such that F ⊆ ⋃
i∈I Ui, with

diam (Ui) ≤ δ for all i ∈ I. In addition, let us define the following quantities:

Hs
δ(F ) = inf

{∑

i∈I

diam (Ui)
s : {Ui : i ∈ I} is a δ-cover of F

}
.

The s-dimensional Hausdorff measure of F is defined by

Hs
H(F ) = lim

δ→0
Hs

δ(F ).

Then the Hausdorff dimension of F is defined by

dimH(F ) = inf{s : Hs
H(F ) = 0} = sup{s : Hs

H(F ) = ∞}.

Note that Hs
H(F ) = ∞ if s < dimH(F ), and Hs

H(F ) = 0 when s > dimH(F ).

Moreover, HdimH (F )
H (F ) ∈ [0,∞].

3.5. Fractal dimension III. Based on the Hausdorff dimension definition, in [6,

Definition 4.2] it was introduced the so-called fractal dimension III which can be

calculated through coverings by elements of level n of the fractal structure instead

of δ-covers. This idea leads to the following construction.

Let Γ be a fractal structure on a distance space (X, ρ) and let F be a subset of X .

Let us suppose that δ(F,Γn) → 0, and let us consider the following expression:
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Hs
n,3(F ) = inf{Hs

m(F ) : m ≥ n},

where

Hs
n(F ) =

∑
{diam(A)s : A ∈ Γn, A ∩ F 6= ∅}

for all n ∈ N. Define also Hs
3(F ) = limn→∞ Hs

n,3(F ). Then the fractal dimension

III of F is defined as follows:

dim3
Γ(F ) = inf{s : Hs

3(F ) = 0} = sup{s : Hs
3(F ) = ∞}.

Note that Hs(F ) = limn→∞ Hs
n(F ) does not exist in general whereas Hs

3(F ) does

always exist (since Hs
n,3(F ) is monotonic non-decreasing).

The following theorem allows to use the easier Hs(F ) instead of Hs
3(F ) in the

calculation of dim3
Γ
(F ).

Theorem 4 ([6, Theorem 4.7]). Let Γ be a fractal structure on a distance space

(X, ρ) and let F be a subset of X. Suppose that there exists the quantity Hs(F )

for each s ≥ 0. Then the fractal dimension III of F can be calculated as follows:

dim3
Γ
(F ) = inf{s : Hs(F ) = 0} = sup{s : Hs(F ) = ∞}.

Finally, note that the fractal dimension III of any Euclidean subset is equal to its

box-counting dimension when considering the natural fractal structure on R
d as

well as the Euclidean metric (see [6, Theorem 4.15]).

3.6. The fractal dimension of a curve. In [17, Definition 2], the fractal di-

mension III was applied to define the fractal dimension of a curve by means of an

induced fractal structure on its image set. We recall both definitions next.

Definition 5. Let ρ be a distance (resp. a metric, semimetric, quasi-metric, . . . ,

etc) on a topological space X , and let α : [0, 1] → X be a parametrization of a

curve (not necessarily continuous). Let Γ be the natural fractal structure on [0, 1].

Then
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• the fractal structure induced by Γ on the image set α([0, 1]) ⊆ X is given

as the countable family of coverings ∆ = {∆n : n ∈ N}, whose levels are

defined as ∆n = α(Γn) = {α(A) : A ∈ Γn}.
• the fractal dimension of the curve α with respect to Γ is

dimΓ(α) = dim3
∆(α([0, 1])).

Note that the fractal dimensions of two curves with the same image set may be

different, so this definition results especially appropriate if we want to take into

account the parametrizations of the curves and not only their image sets. We

explain how to apply this fractal dimension to study the behavior of random

processes below.

3.7. Studying the Hurst exponent of random processes. In this subsection,

we show some theoretical results connecting the fractal dimension of a curve and

the so-called Hurst exponent (first appeared in [13]). Recall that the latter is the

main tool applied to explore long-memory in financial time series though its range

of interdisciplinary applications is much wider.

Let (X,A, P ) be a probability space where t ∈ [0,∞) usually denotes time. We

say that X = {X(t, ω) : t ≥ 0} is a random process or a random function from

[0,∞)×Ω to R, ifX(t, ω) is a random variable for all t ≥ 0 and all ω ∈ Ω (ω belongs

to a sample space Ω). We think of X as defining a sample function t 7→ X(t, ω)

for all ω ∈ Ω. Thus, the points of Ω parametrize the functions X : [0,∞)×Ω → R

and P is a probability measure on this class of functions.

Let X(t, ω) and Y (t, ω) be two random functions. The notation X(t, ω) ∼ Y (t, ω)

means that the two preceding random functions have the same finite joint distri-

bution functions.

Further, the increments of a random function X(t, ω) are said to be:

(1) stationary, if for each a > 0 and t ≥ 0,

X(a+ t, ω)−X(a, ω) ∼ X(t, ω)−X(0, ω);

(2) self-affine with parameter H ≥ 0, if for any h > 0 and any t0 ≥ 0,

X(t0 + τ, ω)−X(t0, ω) ∼ 1
hH {X(t0 + hτ, ω)−X(t0, ω)}.
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The parameter H is called the self-similarity index or the Hurst exponent. Typ-

ical examples of random processes with stationary and self-affine increments are

fractional Brownian motions and Lévy stable motions (see [5]).

In [17], it was proved that the fractal dimension III of a random process with

stationary and self-affine increments with parameter H is equal to the inverse of

H . Next, we recall that result.

Theorem 6 ([17, Theorem 1]). Let α : [0, 1] → R be a sample function of a

random process X with stationary and self-affine increments with parameter H.

Let Γ be the natural fractal structure on [0, 1]. Then dimΓ(α) = 1/H.

Given a random function X(t, ω), its cumulative range is given by

M(t, T, ω) = sup
s∈[t,t+T ]

{
Y (s, t, ω)

}
− inf

s∈[t,t+T ]

{
Y (s, t, ω)

}
,

where Y (s, t, ω) = X(s, ω)−X(t, ω). We also denote M(T, ω) =M(0, T, ω).

Additionally, the next result also allows to calculate the fractal dimension of a

random process (and hence to calculate its Hurst exponent, if we are under Theo-

rem 6 conditions) such that the moments of its cumulative ranges verify a certain

condition.

Theorem 7 ([17, Theorem 3]). Let α : [0, 1] → R be a sample function of a

random process X and let Γ be the natural fractal structure on [0, 1]. Suppose that

there exists a positive real number s that verifies the next two conditions:

(1) there exists ms(M( 1
2n , ω)), and

(2) ms(M( 1
2n , ω)) = 2 ms(M( 1

2n+1 , ω))

for all n ∈ N. Then dimΓ(α) = s.

Based on both Theorems 6 and 7, three new algorithms (called FD methods) were

introduced in [17] to calculate the self-similarity index H of random processes. In

particular, they have been applied to study long-memory in financial markets.
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3.8. Fractal dimension IV. In [8, Definition 3.2], the authors contributed a new

model of fractal dimension for a fractal structure based on the Hausdorff dimension

definition but using finite coverings by elements of the fractal structure instead.

So let us recall that definition next.

Definition 8. Let Γ be a fractal structure on a metric space (X, ρ), and let F be

a subset of X . Let us suppose that δ(F,Γn) → 0 and let us consider the following

expression:

Hs
n,4(F ) = inf

{
∑

i∈I

diam (Ai)
s : {Ai}i∈I ∈ An(F )

}
,

where An(F ) is the family of finite coverings of F by elements of
⋃

l≥n Γl. Take

also Hs
4(F ) = limn→∞ Hs

n,4(F ). Then the fractal dimension IV of F is defined by

dim4
Γ(F ) = inf{s : Hs

4(F ) = 0} = sup{s : Hs
4(F ) = ∞}

Note that in Definition 8, we consider that inf ∅ = ∞. Accordingly, if the family

An(F ) is empty, then dim4
Γ
(F ) = ∞. Moreover, Hs

n,4(F ) is the general term

of a monotonic non-decreasing sequence in n ∈ N what implies that the fractal

dimension IV of any subset F of X always exists.

In the next subsection, we provide the connection between both fractal dimension

IV and Hausdorff dimension. Some additional relations among fractal dimension

IV and the previously defined fractal dimensions for a fractal structure as well as

some of their properties are studied in detail in [8, Subsections 3.2 and 3.4].

3.9. Calculation of the Hausdorff dimension in empirical applications.

Fractal dimension IV (introduced previously in Subsection 3.8) can be applied in

order to calculate the Hausdorff dimension of any compact Euclidean subset. For

instance, in [8, Example 1] the authors showed how to approach the Hausdorff di-

mension of the Cantor set using only the first levels of the natural fractal structure

induced on [0, 1].

The key result which supports the appropriate calculation of the Hausdorff di-

mension of any compact Euclidean subspace through fractal dimension IV is the

following.
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Theorem 9 ([8, Theorem 3.13 and Corollary 3.14]). Let Γ be the natural fractal

structure on the Euclidean space R
d, and let F be a bounded subset of Rd. Then

dim4
Γ
(F ) = dimH(F ). In particular, if F is a compact subset, then dim4

Γ
(F ) =

dimH(F ).

A novel procedure that allows to calculate the Hausdorff dimension of an Euclidean

subspace was developed in [9]. This new algorithm combines fractal techniques

with tools from Machine Learning Theory.
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Abstract

By means of the classical Goetschel-Voxman’s representation theorem,

we provide a characterization of the compact subsets of the fuzzy num-

ber space endowed with the supremummetric. Our tools are the notions

of pointwise convergence and of uniform convergence of a sequence of

monotonic real-valued functions.

1. Introduction

Fuzzy analysis is based on the notion of fuzzy number just as much as classical

analysis is based on the concept of real number. It has significant applications in

fuzzy optimization, fuzzy decision making, etc. (see, for instance, [11], [13], [14]).

It is worth noting that, with the development of the theory and applications of

fuzzy numbers, these are becoming increasingly important.
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Fuzzy numbers, which provide formalized tools to deal with non-precise quantities,

were introduced by Dubois and Prade ([5]), who also defined their basic operations.

Later, in [7], Goetschel and Voxman proposed an equivalent representation of such

numbers in a topological vector space setting, which eased the development of the

theory and applications of fuzzy numbers (see Theorem 1).

Several authors, such as Diamond, Kloeden, Kaleva, Seikkala, etc. defined and

studied various types of convergence in the set E1 of fuzzy numbers: the conver-

gence induced by different kind of metrics ([3, 4]), the level convergence and the

level convergence almost everywhere on [0, 1] (see [3, 14]), etc.

In any topological framework, an appropriate knowledge and a useful characteri-

zation of compact sets is necessary not only for the development of the theory, but

also for its applications. In the case of the set E1, this problem has been studied

by several authors and by means of several techniques: for instance, in the case

of so-called supremum metric d∞, Diamond and Kloeden ([2]) obtained a charac-

terization by embedding first the fuzzy numbers as a cone in an adequate Banach

space and, then, using a special notion of left-equicontinuity (it is well-known that

Diamond-Kloeden’s result fails to be correct). In [8] Greco and Moschen (in the

realm of fuzzy subsets of a metric space Y ) obtained a characterization by using

the classical notions of sided -equicontinuity for families of functions from the unit

interval into the family of the nonempty compact subsets of Y endowed with the

Hausdorff metric. Later, Fang and Xue presented in [5] a new characterization of

compact subsets of the space (E1, d∞). Fang-Xue’s approach is stimulating: the

characterization was obtained by using Goetschel-Voxman’s representation theo-

rem. The interest is twofold: they use one of the most helpful tools in the theory of

fuzzy numbers (Goetschel-Voxman’s representation theorem ) and, consequently,

only intrinsic properties are used: it is not necessary to pass to external struc-

tures as, for instance, Banach spaces, hyperspaces, etc. Moreover, it suffices to

work only with two well-known basic notions: monotonic functions and uniform

convergence. Unfortunately, Fang-Xue’s characterization is not valid: actually,

to obtain a counterexample (as in the above mentioned theorem of Diamond and

Kloeden ) is an easy task as we will see below. The aim of this paper is to give a

correct version of Fang-Xue’s theorem, that is, to present a description of compact
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subsets of (E1, d∞) by using Goetschel-Voxman’s representation theorem. Our

method of proof will be a particular case of the reasoning used in [6] where given

a first countable compact linearly ordered topological spac (X,<, τO) and a uni-

form sequentially compact linearly ordered space (Y,D) with density less than

the splitting number s, then the authors characterize the sequentially compact

subsets of the space M(X,Y ) of all monotone functions from X into Y endowed

with the topology of the uniform convergence induced by the uniformity D. The

potential interest of our proof lies in the fact that it is sufficient to use the notions

of pointwise convergence and of uniform convergence of a sequence of monotonic

real-valued functions.

Before stating our result, we need to introduce some notation and fix some details.

Let F (R) denote the family of all fuzzy subsets on the real numbers R. For

u ∈ F (R) and λ ∈ [0, 1], the λ-level set of u is defined by

[u]λ := {x ∈ R : u(x) ≥ λ } , λ ∈]0, 1], [u]0 := clR {x ∈ R : u(x) > 0 } .

The fuzzy number space E1 is the set of elements u of F (R) satisfying the following

properties:

(1) u is normal, i.e., there exists an x0 ∈ R with u(x0) = 1;

(2) u is convex, i.e., u(λx+(1−λ)y) ≥ min {u(x), u(y)} for all x, y ∈ R, λ ∈ [0, 1];

(3) u is upper-semicontinuous;

(4) [u]0 is a compact set in R.

Notice that if u ∈ E
1, then the λ-level set [u]λ of u is a compact interval for each

λ ∈ [0, 1]. We denote [u]λ = [u−(λ), u+(λ)]. Every real number r can be considered

a fuzzy number since r can be identified with the fuzzy number r̃ defined as

r̃(t) :=





1 if t = r,

0 if t 6= r.

We can now state the representation theorem of fuzzy numbers provided by Goetschel

and Voxman ([7]):
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Theorem 1. Let u ∈ E
1 and [u]λ = [u−(λ), u+(λ)], λ ∈ [0, 1]. Then the pair of

functions u−(λ) and u+(λ) has the following properties:

(i) u−(λ) is a bounded left-continuous nondecreasing function on ]0, 1];

(ii) u+(λ) is a bounded left-continuous nonincreasing function on ]0, 1];

(iii) u−(λ) and u+(λ) are right-continuous at λ = 0;

(iv) u−(1) ≤ u+(1).

Conversely, if a pair of functions α(λ) and β(λ) satisfy the above conditions (i)-

(iv), then there exists a unique u ∈ E
1 such that [u]λ = [α(λ), β(λ)] for each

λ ∈ [0, 1].

We consider E1 endowed with the following metric:

Definition 2 ([7, 2]). For u, v ∈ E
1, we can define

d∞(u, v) := sup
λ∈[0,1]

max
{
|u−(λ)− v−(λ)|, |u+(λ) − v+(λ)|

}
,

which is a metric on E
1. It is called the supremum metric on E

1, and (E1, d∞) is

a complete metric space.

Notice that max {|u−(λ)− v−(λ)|, |u+(λ)− v+(λ)|} is the Hausdorff distance be-

tween the λ-level sets [u]λ and [v]λ in the hyperspace of all nonempty compact

subsets of the reals. It is apparent that a sequence {un} d∞-converges to u ∈ E
1 if

and only if {u+n } and {u−n } converge uniformly to u+ and u−, respectively, on [0, 1].

Consequently, by Goetschel-Voxman’s representation theorem, we are reduced to

studying uniform convergence of monotonic real-valued functions on [0, 1].

By the definition of d∞, R endowed with the Euclidean topology can be topo-

logically identified with the closed subspace R̃ = { x̃ : x ∈ R } of (E1, d∞) where

x̃+(λ) = x̃−(λ) = x for all λ ∈ [0, 1]. As a metric space, we shall always consider

E
1 equipped with the metric d∞.
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2. Compact subsets of (E1, d∞) and the Goetschel-Voxman’s theorem

As we mention in the Introduction, Fang and Xue ([5]) present a weaker version of

Diamond-Kloeden’s theorem ([3, Proposition 8.2.1]) characterizing compact sub-

sets of the space (E1, d∞) as follows:

Theorem 3. A subset M of (E1, d∞) is compact if, and only if, the following

three conditions are satisfied:

(i) M is uniformly support-bounded, i.e., there is a constant L > 0 such that

|u+(0)| ≤ L and |u−(0)| ≤ L for all u ∈M ;

(ii) M is a closed subset in (E1, d∞);

(iii) {u+ : u ∈M } and { u− : u ∈M } are left-equicontinuous on ]0, 1], i.e., for

each ǫ > 0 there exists δ > 0 such that |u+(λ′)− u+(λ)| < ǫ (resp. |u−(λ′)−
u−(λ)| < ǫ) for all u ∈M whenever λ, λ′ ∈]0, 1] with λ′ ∈]λ− δ, λ].

A careful reading of the notion of left-equicontinuity used by Fang and Xue shows

that the functions {u+ : u ∈M } and {u− : u ∈M } have to be continuous.

Thus, if we choose a fuzzy number (u+, u−) where, for instance, the function

u+ is not continuous, then the singleton {(u+, u−)} is a compact set which need

not satisfy Condition (iii) in the previous theorem (by using the definition of left-

equicontinuity given in [2, p.72], the same basic argument works for Diamond-

Kloeden’s theorem).

As the following example shows, it is worth noting that it is not sufficient to

consider left-equicontinuity in the classical sense in order to obtain a correct version

of Fang-Xue’s theorem. Let us remember that a family {fi}i∈I of real-valued

functions on ]0, 1] is said to be left-equicontinuous at a point λ0 ∈ ]0, 1] if, for all

ε > 0 and for all i ∈ I, there is δ > 0 such that |fi(λ) − fi(λ0)| < ε whenever

λ ∈ ]λ0 − δ, λ0]. The family {fi}i∈I is called left-equicontinuous if it is left-

equicontinuous at every point of ]0, 1].
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Example 4. Consider the sequence of fuzzy numbers M = {(u+n , u−n )} where

u+n (λ) =





1 if λ ∈ [0, 12 ],

1
2 if λ ∈] 12 , 12 + 1

n
],

0 if λ ∈] 12 + 1
n
, 1]

and u−n (λ) ≡ 0 for all n > 0. It is straightforward to check that {u+n } is left-

equicontinuous. Moreover, each subsequence of {u+n } pointwise converges to the

function u(λ) = 1 if 0 ≤ λ ≤ 1
2 and u(λ) = 0 if 1

2 < λ ≤ 1. Since this convergence

is not uniform, the sequence M is a noncompact closed subset of (E1, d∞).

The previous example shows that it will be necessary to consider an additional

condition if we want to obtain a correct version of Theorem 3. Notice that, since

the functions u+ and u− can fail to be right-continuous, we cannot consider right-

equicontinuity as the desired property. This is the reason for introducing the

following concept.

Given a function f : [0, 1] → R, let f(λ0+) denote the limit of f when λ approaches

λ0 from above (right).

Definition 5. Let { fi }i∈I be a family of functions defined from the unit interval

[0, 1] into the reals. Given λ0 ∈ [0, 1[ such that fi(λ0+) exists for all i ∈ I, the

family { fi }i∈I is said to be almost-right-equicontinuous at λ0 if, for every ε > 0,

there is δ > 0 such that |fi(λ)− fi(λ0+)| < ε for all i ∈ I whenever λ ∈ ]λ0, λ0+δ[.

Notice that, when working with right-continuous functions, the notions of almost-

right-equicontinuity and right-equicontinuity coincide. If the family { fi }i∈I is

almost-right-equicontinuous at λ for all λ ∈ [0, 1[, then we say that { fi }i∈I is

almost-right-equicontinuous on [0, 1[.

Proposition 6. Let λ0 ∈ [0, 1[ and let { fn }n∈N
be a sequence of real-valued

functions on [0, 1] which is almost-right-equicontinuous at λ0. If { fn }n∈N
point-

wise converges to a function f in [0, 1[ and f(λ0+) exists, then { fn(λ0+) }n∈N

converges to f(λ0+).
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Proof. Let ε > 0. By hypothesis, f(λ0+) exists and, since { fn }n∈N
is almost-

right-equicontinuous at λ0, we know that fn(λ0+) also exists and that there is

λ ∈ [0, 1[ such that

|fn(λ)− fn(λ0)| < ε for all n ∈ N

and

|f(λ)− f(λ0+)| < ε.

Moreover, since { fn }n∈N
pointwise converges to f in [0, 1[, there is n0(λ) ∈ N

such that, for all n ≥ n0(λ), we have

|fn(λ) − f(λ)| < ε.

Then, if n ≥ n0(λ), we obtain

|fn(λ0+)− f(λ0+)| ≤ |fn(λ0+)− fn(λ)|+

|fn(λ)− f(λ)|+ |f(λ)− f(λ0+)| < 3ε

which completes the proof. �

Remark 7. The notion of almost-right-equicontinuity (and the previous result) has

a left counterpart. We will not insist on this point because our functions u+ and

u− are always left-continuous on ]0, 1] (see Theorem 1).

The following result will be useful in the proof of our characterization.

Theorem 8 ([9]). Any bounded sequence of monotonic real-valued functions on

[0, 1] contains a pointwise convergent subsequence.

We are now ready to prove our main result:

Theorem 9. A closed subset M of (E1, d∞) is compact if, and only if, it satisfies

the following properties:
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(i) M is uniformly support-bounded, i.e., there is a constant L > 0 such that

|u+(0)| ≤ L and |u−(0)| ≤ L for all u ∈M .

(ii) {u+ : u ∈M } and {u− : u ∈M } are left-equicontinuous on ]0, 1] and almost-

right-equicontinuous on [0, 1[.

Proof. Sufficiency Assume that M satisfies conditions (i)-(ii). Since sequential

compactness and compactness are equivalent in a metric space, we only need to

prove that any sequence in M has a convergent subsequence.

To this end, given a sequence {un }n∈N
⊂ M , we shall first show that {u+n }n∈N

has a subsequence which converges uniformly. Indeed, condition (i) implies that

{u+n }n∈N
is bounded. So, by Theorem 8, we can assume that { u+n }n∈N

pointwise

converges to a real-valued function, say u+, on [0, 1]. It is clear that u+ is bounded.

Let us now check that u+ is left-continuous on ]0, 1]. Since M is left-equiconti-

nuous, given ε > 0 and λ′ ∈ ]0, 1], there is δ > 0 such that |u+n (λ)− u+n (λ
′−)| < ε

for all n ∈ N and all λ ∈ ]λ′ − δ, λ′]. The left-continuity of u+ now follows

from the fact that the functions u+n , n ∈ N, are left-continuous at λ′ and that

u+n (λ) → u+(λ) for all λ ∈ ]0, 1].

We shall next prove that u+n → u+ uniformly in [0, 1]. If we assume, contrary to

what we claim, that the convergence is not uniform, then we can choose ε > 0,

an infinite sequence of natural numbers n1 < n2 < n3 < . . . and a sequence

{λnk
}k∈N

⊂ [0, 1] such that

|u+nk
(λnk

)− u+(λnk
)| ≥ 3ε.

Let us suppose, with no loss of generality, that the sequence {λnk
}k∈N

converges

to a number λ0 ∈ [0, 1]. We shall consider two cases.

Case 1. There exists an infinite subsequence of {λnk
}k∈N

whose elements are less

than λ0. For the sake of simplicity, we shall keep denoting this subsequence by

{λnk
}k∈N

. Now, since u+ is left-continuous at λ0 and
{
u+nk

}
k∈N

is a left-equi-

continuous sequence at λ0 that pointwise converges to u+, we can choose k0 ∈ N

such that
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|u+nk
(λnk

)− u+nk
(λ0)| < ε, |u+nk

(λ0)− u+(λ0)| < ε, |u+(λnk
)− u+(λ0)| < ε

for all k ≥ k0. Thus,

|u+nk
(λnk

)− u+(λnk
)| < 3ε

whenever k ≥ k0, which contradicts our assumption above.

Case 2. There exists an infinite subsequence of {λnk
}k∈N

whose elements are

greater than λ0. As above, for simplicity, we shall denote this subsequence again by

{λnk
}k∈N

. First notice that u+ is nonincreasing; indeed, it is the pointwise limit

of a sequence of nonincreasing functions. Hence u+(λ+) exists for all λ ∈ [0, 1].

Now, the definition of u+(λ0+) and the fact that
{
u+nk

}
k∈N

is a almost-right-equi-

continuous sequence at λ0 tell us that there exists k0 ∈ N such that

|u+nk
(λnk

)− u+nk
(λ0+)| < ε, |u+(λnk

)− u+(λ0+)| < ε

for all k ≥ k0. Moreover, by Proposition 6, we can choose such k0 satisfying the

additional condition

|u+nk
(λ0+)− u+(λ0+)| < ε

for all k ≥ k0. Therefore

|u+nk
(λnk

)− u+(λnk
)| < 3ε,

which provides the promised contradiction.

Therefore, u+n → u+ uniformly in [0, 1] and, consequently, it is clear that u+ is

right-continuous at λ = 0 since it is the uniform limit of a sequence of functions

which are right-continuous at λ = 0.
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In like manner, we can prove that the sequence {u−n }n∈N
has a subsequence which

converges uniformly in [0, 1] to a nondecreasing function, say u−, which is bounded,

right-continuous at λ = 0 and left-continuous on ]0, 1]. Notice that, by construc-

tion, u−(1) ≤ u+(1) and, consequently, the pair (u−, u+) defines a fuzzy number.

Thus, the sequence {un }n∈N
has a convergent subsequence, which is to say that

M is sequentially compact.

Necessity. Every compact subset of a metric space is bounded, so that M verifies

condition (i).

Suppose now that M is not almost-right-equicontinuous at a point λ0 ∈ ]0, 1].

Then, we can asssume, without loss of generality, that there exists ε > 0, a decreas-

ing sequence {λn }n∈N
converging to the right to λ0 and a sequence {un }n∈N

⊂M

such that

(1)
∣∣u+n (λn)− u+n (λ0+)

∣∣ ≥ 3ε for all n ∈ N.

Since M is compact, there is a subsequence { unr
}r∈N

converging uniformly to a

function u. Then, taking also into account Proposition 6, there exists r0 ∈ N such

that, for all r ≥ r0,
∣∣u+nr

(λnr
)− u+nr

(λ0+)
∣∣ ≤

∣∣u+nr
(λnr

)− u+(λnr
)
∣∣

+
∣∣u+(λnr

)− u+(λ0+)
∣∣+

∣∣u+(λ0)− u+nr
(λ0+)

∣∣

< ε+ ε+ ε = 3ε,

a contradiction with (1). Thus { u+ : u ∈M } and, similarly, { u− : u ∈M } are

almost-right-equicontinuous on [0, 1].

On the other hand, since { un(λ+) }n∈N
converges to u(λ+) whenever un → u

uniformly, an argument resembling the previous one shows that {u+ : u ∈M }
and { u− : u ∈M } are left-equicontinuous on [0, 1]. This completes the proof. �

Notice that condition (i) of Theorem 9 is equivalent to being bounded in the

metric space (E1, d∞), i.e., it is equivalent to the fact that there is L > 0 such

that d∞(0, u) ≤ L for all u ∈ M . It is also worth mentioning that neither
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left-equicontinuity nor almost-right-equicontinuity is sufficient for the previous

theorem to hold. Indeed, it is easy to see that Example 4 provides a closed

noncompact set M with {u+ : u ∈M } left-equicontinuous but not almost-right-

equicontinuous. The following example exchanges the roles of left-equicontinuity

and almost-right-equicontinuity.

Example 10. Let M = {(u+n , u−n )} the sequence of fuzzy numbers defined as

u+n (λ) =





1 if λ ∈ [0, 12 − 1
n
],

1
2 if λ ∈] 12 − 1

n
, 1]

and u−n (λ) ≡ 0 for all n ≥ 3. It is an easy matter to show that {u+n } is almost-right-

equicontinuous. Moreover, each subsequence of {u+n } pointwise converges to the

function u(λ) = 1 if 0 ≤ λ ≤ 1
2 and u(λ) = 1

2 if 1
2 < λ ≤ 1. Since this convergence

is not uniform, the sequence M is a noncompact closed subset of (E1, d∞). Let

us see that M is not left-equicontinuous. Consider the point λ0 = 1
2 and take

ε < 1
2 . Given δ > 0, choose n0 ≥ 3 such that

(
1
2 − δ

)
<

(
1
2 − 1

n0

)
. Then, if

λ ∈
]
1
2 − δ, 12 − 1

n0

[
, we have

∣∣u+m(λ)− u+m(12 )
∣∣ = 1

2 > δ for all m > n0. Thus, M

is not left-equicontinuous at λ0 = 1
2 .

Since the closure operator preserves condition (ii) in the previous theorem, we

have

Corollary 11. A subset M of (E1, d∞) is relatively compact if, and only if, it

satisfies the following properties:

(i) M is uniformly support-bounded, i.e., there is a constant L > 0 such that

|u+(0)| ≤ L and |u−(0)| ≤ L for all u ∈M .

(ii) {u+ : u ∈M } and {u− : u ∈M } are left-equicontinuous on ]0, 1] and almost-

right-equicontinuous on [0, 1[.
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3. Conclusion

A major direction in the study of fuzzy numbers is their metric and topological

properties. Among these properties, compactness is obviously one of the most im-

portant. In this paper, by using the Goetschel-Voxman’s representation theorem,

we provide a characterization of the compact subsets of the fuzzy number space

endowed with the supremum metric which corrects the one provided in [5]. In the

context of fuzzy numbers referred to, our result forms part of a potentially inter-

esting direction of research in fuzzy analysis (particularly, in topological aspects

of fuzzy analysis where compactness plays a central role) due to the undoubted

importance of Goetschel and Voxman’s representation theorem.
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1. Introduction and Preliminaries

In 1975 Kramosil and Michalek extended in [7] the concept of Menger space to

fuzzy context and they gave a concept of fuzzy metric space that we callKM -fuzzy

metric space. Here we deal with the concept of fuzzy metric space introduced by
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George and Veeramani [1], which is a slight modification of the one due to Kramosil

and Michalek. So, a fuzzy metric space is a tern (X,M, ∗) such that X is a (non-

empty) set, ∗ is a continuous t-norm and M is a fuzzy set on X × X×]0,∞[

satisfying the following conditions, for all x, y, z ∈ X , s, t > 0:

(GV1) M(x, y, t) > 0

(GV2) M(x, y, t) = 1 if and only if x = y

(GV3) M(x, y, t) =M(y, x, t)

(GV4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s)

(GV5) M(x, y, ) :]0,∞[→]0, 1] is continuous.

If axioms (GV1), (GV2) and (GV5) are replaced by

(KM1) M(x, y, 0) = 0

(KM2) M(x, y, t) = 1 for all t > 0 if and only if x = y

(KM5) M(x, y, ) : [0,∞[→ [0, 1] is left continuous

respectively, we obtain the concept of KM -fuzzy metric space. It is also said that

(M, ∗), or simply M , is a (KM -) fuzzy metric on X .

The authors proved in [1] that every fuzzy metric M on X generates a topology

τM on X which has as a base the family of open sets of the form {BM (x, ǫ, t) :

x ∈ X, ǫ ∈]0, 1[, t > 0}, where BM (x, ǫ, t) = {y ∈ X : M(x, y, t) > 1 − ǫ} for

all x ∈ X , ǫ ∈]0, 1[, t > 0. A sequence {xn} in X converges to x if and only if

limnM(xn, x, t) = 1 for all t > 0.

Let (X, d) be a metric space and let Md a fuzzy set on X ×X×]0,∞[ defined by

Md(x, y, t) =
t

t+ d(x, y)

Then (X,Md, ·) is a fuzzy metric space, [1], and Md is called the standard fuzzy

metric induced by d. Consequently, every metrizable topological space is fuzzy

metrizable. Moreover, it has been proved that the class of topological spaces

which are fuzzy metrizable agrees with the class of metrizable topological spaces

(see [2, 8]). The same is true for KM -fuzzy metric spaces.
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Here we deal with the concept of Cauchy sequence given in [1], which was originally

stated in PM -spaces by H. Sherwood [15]: A sequence {xn} in a fuzzy metric

space (X,M, ∗) is said to be Cauchy if for each ǫ ∈]0, 1[ and each t > 0 there

exists n0 ∈ N such that M(xn, xm, t) > 1 − ǫ for all n,m ≥ n0, or equivalently,

limn,mM(xn, xm, t) = 1 for all t > 0. Obviously, convergent sequences are Cauchy.

If every Cauchy sequence converges in X then X is called complete. Arguments

for considering that these concepts are appropriate can be found in [1, 17]. These

concepts are defined in an analogous way for KM -fuzzy metric spaces. Moreover,

all the definitions that we will see in the next paragraphs remain valid in both types

of spaces. Now, other well-motivated concepts of Cauchyness or convergence have

appeared in fuzzy metric spaces. These concepts are defined in an analogous way

for KM -fuzzy metric spaces, and we will not insist on this aspect.

Up we know the concepts of Cauchyness or convergence given in fuzzy setting are

comparable with the concept of Cauchy sequence or convergent sequence, respec-

tively. From the mathematical point of view, for a given concept of Cauchyness

(respectively, convergence) it is interesting to introduce a concept of convergence

(respectively, Cauchyness) preserving, at least, the most basic relationship among

them, that is convergence implies Cauchyness. This fact carried out to the authors

in [5] to define a concept of compatibility between convergence and Cauchyness

(Definition 1). In this paper we revise some concepts of convergence and Cauchy-

ness appeared in fuzzy setting and some aspects about their compatibility.

2. Cauchyness and convergence in metric spaces

Let (X, d) be a metric space and suppose X endowed with the topology induced

by d.

(1) A sequence {xn} in X is convergent to x0 if and only if lim
n
d(x0, xn) = 0

and

(2) {xn} is Cauchy if and only if lim
n,m

d(xm, xn) = 0
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Comparing (1) and (2) one can say, formally, that (2) is deduced, in a natural way,

from (1) replacing x0 by xm and tacking double limit or vice-versa ((1) is obtained

from (2) replacing xm by x0).

It is well-known that if d is an ultrametric (non-Archimedean) metric on X then

(3) {xn} is Cauchy if and only if lim
n
d(xn, xn+1) = 0

The most basic relationship between convergence and Cauchyness is that conver-

gence implies Cauchyness. In complete metric spaces the converse, by definition,

is also true.

3. Compatibility between convergence and Cauchyness in fuzzy

metric spaces

The authors in [5] gave the next definition about compatibility of concepts of

convergence and Cauchyness in fuzzy metric spaces.

Definition 1. (See Gregori and Miñana [5].) Suppose it is given a stronger

(weaker, respectively) concept than Cauchy sequence, say s-Cauchy sequence (w-

Cauchy sequence, respectively). A concept of convergence, say s-convergence (w-

convergence, respectively), is said to be compatible with s-Cauchy (w-Cauchy,

respectively), and vice-versa, if the diagram of implications below on the left (on

the right, respectively) is fulfilled

s− convergence → convergence convergence → w − convergence

↓ ↓ ↓ ↓
s− Cauchy → Cauchy Cauchy → w − Cauchy

and there is not any other implication, in general, among these concepts.

4. Grabiec’s Cauchy sequence

In order to establish a Banach Contraction Principle in the context of KM -

fuzzy metric spaces, M. Grabiec gave in [4] the following weaker concept than

Cauchy sequence that we denote G-Cauchy: A sequence {xn} is G-Cauchy if

limnM(xn+p, xn, t) = 1 for each t > 0 and p ∈ N. A fuzzy metric space in which
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every G-Cauchy sequence is convergent is called G-complete. In this way Grabiec

for a certain class of KM -fuzzy metric spaces was able to state an elegant fuzzy

version of the Banach Contraction Principle: Every fuzzy contractive self-mapping

on a G-complete fuzzy metric space X admits a unique fixed point ([4], Theorem

5). Now, an inconvenience of the concept of G-Cauchy sequence is that a compact

fuzzy metric space is not necessarily G-complete as it was proved in [16], Example

3.7.

As it was observed by Mihet in [12], a sequence {xn} is G-Cauchy if and only

if limnM(xn, xn+1, t) = 1 for all t > 0 (compare with (3)). So, if one tries to

define a concept of G-convergent sequence to x0 in X , imitating the classical case

and attending to the definition of G-Cauchy sequence, it is obtained the following

concept: A sequence {xn} is G-convergent to x0 if limnM(x0, xn+1, t) = 1 for

each t > 0, which are equivalent to limnM(x0, xn, t) = 1 for each t > 0, i.e., it is

the usual concept of convergence to x0.

Up we know there is not any concept of G-convergence considered as a compatible

concept with respect to G-Cauchyness.

5. p-convergence

Again in order to establish a fixed point theorem in KM -fuzzy metric spaces

D. Mihet introduced in [10] the following weaker concept than convergence of

sequences: A sequence {xn} is p-convergent (to x0) if limnM(xn, x0, t0) = 1 for

some t0 > 0. The authors in [4] showed that every p-convergent sequence in a

fuzzy metric space (X,M, ∗) is convergent if and only if for each t > 0 the family

{B(x, r, t) : r ∈]0, 1[} is a local base at x, for each x ∈ X . These spaces were called

principal fuzzy metric spaces.

The author in [10] suggested to continue this study defining an appropriate concept

of p-Cauchyness. This was made in [4] where the authors, in a natural way and im-

itating the classical case, gave the following concept: A sequence {xn} is p-Cauchy

if there exists t0 > 0 such that for each ǫ ∈]0, 1[ there exists n0 ∈ N such that

M(xn, xm, t0) > 1− ǫ for all n,m ≥ n0, or equivalently, limn,mM(xn, xm, t0) = 1

for some t0 > 0.
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From the results obtained in [4] one concludes that the next diagram is fulfilled

convergence → p− convergence

↓ ↓
Cauchy → p− Cauchy

and it is left to the reader the construction of appropriate examples that prove

that the implications of the diagram are not reversible, in general, or in other

words that p-Cauchy is compatible with p-convergence, in the sense of [5].

6. Standard Cauchy sequence

In order to establish a relationship between the theory of complete fuzzy metric

spaces and domain theory the authors introduced in [14] in fuzzy metric spaces the

following stronger concept than Cauchy sequence, which we denote std-Cauchy,

as follows: A sequence {xn} is std-Cauchy if for each ǫ ∈]0, 1[ there exists n0 ∈ N

such that M(xn, xm, t) >
t

t+ǫ
for all n,m ≥ n0 and for all t > 0.

Then, in a natural way and imitating the classical case the authors gave in [13]

the following concept: A sequence {xn} is std-convergent to x0 if for each ǫ ∈]0, 1[
there exists n0 ∈ N such that M(xn, x0, t) >

t
t+ǫ

for all n ≥ n0 and for all t > 0.

Unfortunately, the authors have shown in [5] that there exist std-convergent se-

quences, which are not std-Cauchy. Then, in the sense of [5], the concept of

std-convergence is not compatible with std-Cauchy. Nevertheless the authors in

[5] has given a concept of std∗-convergence which is compatible with std-Cauchy.

7. s-convergence

The authors have introduced in [7] in the context of fuzzy metric spaces the next

stronger concept than convergence: A sequence {xn} in X is s-convergent to

x0 ∈ X if limnM(xn, x0,
1
n
) = 1. A fuzzy metric space in which every convergent

sequence is s-convergent is called s-fuzzy metric space. s-fuzzy metric spaces are

characterized in [7] as follow: M is an s-fuzzy metric if and only if
⋂

t>0B(x, r, t)

is a neighbourhood of x, for all x ∈ X and for all r ∈]0, 1[, or equivalently,

{⋂t>0B(x, r, t) : r ∈]0, 1[} is a local base at x, for each x ∈ X .
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If (X,M, ∗) is a fuzzy metric space where N(x, y) =
∧

t>0M(x, y, t) > 0 for all

x, y ∈ X , then N is a stationary fuzzy metric on X . In [7] it is proved that

τN = τM if and only if M is an s-fuzzy metric.

Imitating the classical case and seeing the above definition it is natural to give the

next definition: A sequence {xn} is s-Cauchy if limn,mM(xn, xm,
1
n
) = 1.

In this case we have the next proposition.

Proposition 2. Every s-Cauchy sequence is Cauchy.

Proof. Suppose that {xn} is s-Cauchy. Let t > 0 and take n0 ∈ N such that
1
n0
< t. Then we have that M(xn, xm, t) ≥ M(xn, xm,

1
n0

) ≥M(xn, xm,
1
n
) for all

n ≥ n0 and all m ∈ N. Then limnM(xn, xm, t) = 1. �

Unfortunately, as in the case of std-convergence, an s-convergent sequence is not

necessarily s-Cauchy, as it is shown in [8].

Up we know there is not any concept in the literature of s-Cauchy sequence com-

patible with s-convergence.
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[7] V. Gregori, J. J. Miñana, S. Morillas, A note on convergence in fuzzy metric spaces, sub-

mitted.
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which constitutes a modification of the one due to Kramosil and Michalek [7],

1Supported by Ministry of Economy and Competitiveness of Spain under Grant MTM 2012-

37894-C02-01 and supported by Universitat Politènica de València under Grant PAID-05-12
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has been studied by several authors in the literature. In particular, it has been

proved that the class of topological spaces which are fuzzy metrizable agrees with

the class of metrizable topological spaces (see [2, 8]) and then, some classical

theorems on metric completeness and metric (pre)compactness have been adapted

to the realm of fuzzy metric spaces, [8]. Nevertheless, the theory of fuzzy metric

completion is, in this context, very different from the classical theory of metric

completion. In fact, there exist fuzzy metric spaces which does not admit a fuzzy

metric completion.

The topic of fuzzy metric completion, for fuzzy metric spaces in the sense of

George and Veeramani, it was studied for first time by Gregori and Romaguera

in [9], where they introduced the concept of fuzzy metric completion by means of

isometries and they constructed a fuzzy metric space which does not admit com-

pletion (see [9] Example 2). Indeed, it was proved that this fuzzy metric space

cannot be isometric to a dense subset of complete fuzzy metric space. This fact

suggests in a natural way the problem of obtaining necessary and sufficient con-

ditions for a fuzzy metric space admits a fuzzy metric completion. This issue was

approached by the above mentioned authors in [4], where they gave the following

characterization.

Theorem 1. A fuzzy metric space (X,M, ∗) is completable if and only if it satisfies

the following conditions:

(C1) Given two Cauchy sequences {an} and {bn} in X, then the assignment

t→ lim
n
M(an, bn, t)

is a continuous function on ]0,∞[ with values in ]0, 1].

(C2) Given two Cauchy sequences {an} and {bn} in X, then limnM(an, bn, s) =

1 for some s > 0 implies limnM(an, bn, t) = 1 for all t > 0.

Further, in this paper the authors introduced another example of fuzzy metric

space which is not completable (see [4] Example 2). In it, they showed a fuzzy

metric space in which there exist two Cauchy sequences {an} and {bn} such that

limnM(an, bn, s) = 1 for each s ≥ 1, but limnM(an, bn, t) = t for each t ∈]0, 1[,
and soM does not satisfy condition (C2). On the other hand, they showed that in
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the non-completable fuzzy metric space of Example 2 in [9], there exist two Cauchy

sequences {an} and {bn} such that limnM(an, bn, t) = 0 for all t > 0, and so M

does not satisfy condition (C1) (see [4] Example 1). Really, the authors showed

that the assignment t → limnM(an, bn, t) for all t > 0 is, in this case, a constant

function on ]0,∞[ to {0}. So, an interesting question about this condition remained

open, that is, does it exist a fuzzy metric space in which the above assignment is

not a continuous function on ]0,∞[? (It was posed formally in [6], Problem 25).

Recently, in [7] the authors answer in affirmative way to this question (see Example

12) and reformulate the above characterization of completable fuzzy metric spaces

as follows.

Theorem 2. A fuzzy metric space (X,M, ∗) is completable if and only if for each

pair of Cauchy sequences {an} and {bn} in X the following three conditions are

fulfilled:

(c1) limnM(an, bn, s) = 1 for some s > 0 implies limnM(an, bn, t) = 1 for all

t > 0.

(c2) limnM(an, bn, t) > 0 for all t > 0.

(c3) The assignment t → limnM(an, bn, t) for each t > 0 is a continuous

function on ]0,∞[, provided with the usual topology of R.

Therefore, an example of non-completable fuzzy metric space which does not sat-

isfy each of these three conditions has been given in the literature, since as we

mentioned above, Example 2 in [4] does not satisfy condition (c1), Example 2 in

[9] does not satisfy condition (c2) and Example 12 in [7] does not satisfy condition

(c3). Now, an interesting question about this reformulation of the characterization

of completable fuzzy metric spaces is that whether these three conditions consti-

tute an independent axiomatic system, i.e., if anyone of these three conditions

cannot be obtained from the other two conditions.

In this paper we answer to this question in affirmative way seeing that each of the

above mentioned examples satisfies two of these three conditions but it does not

satisfy the remaining condition.
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2. Preliminaries

Definition 3 (George and Veeramani [1]). A fuzzy metric space is an ordered

triple (X,M, ∗) such that X is a (non-empty) set, ∗ is a continuous t-norm and

M is a fuzzy set on X × X×]0,∞[ satisfying the following conditions, for all

x, y, z ∈ X , s, t > 0:

(GV1) M(x, y, t) > 0;

(GV2) M(x, y, t) = 1 if and only if x = y;

(GV3) M(x, y, t) =M(y, x, t);

(GV4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s);

(GV5) M(x, y, ) :]0,∞[→]0, 1] is continuous.

If (X,M, ∗) is a fuzzy metric space, we will say that (M, ∗) (or simply M) is a

fuzzy metric on X .

The following is a well-known result.

Lemma 4 (Grabiec [4]). M(x, y, ) is non-decreasing for all x, y ∈ X.

George and Veeramani proved in [1] that every fuzzy metric M on X generates

a topology τM on X which has as a base the family of open sets of the form

{BM (x, ǫ, t) : x ∈ X, 0 < ǫ < 1, t > 0}, where BM (x, ǫ, t) = {y ∈ X : M(x, y, t) >

1− ǫ} for all x ∈ X , ǫ ∈]0, 1[ and t > 0.

Let (X, d) be a metric space and let Md a fuzzy set on X ×X×]0,∞[ defined by

Md(x, y, t) =
t

t+ d(x, y)

Then (X,Md, ·) is a fuzzy metric space, [1], and Md is called the standard fuzzy

metric induced by d.

Definition 5 (Gregori and Romaguera [4]). A fuzzy metric M on X is said to

be stationary if M does not depend on t, i.e., if for each x, y ∈ X , the func-

tion Mx,y(t) = M(x, y, t) is constant. In this case we write M(x, y) instead of

M(x, y, t).
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Proposition 6 (George and Veeramani [1]). A sequence {xn} in X converges to

x if and only if limnM(xn, x, t) = 1, for all t > 0.

Definition 7 (George and Veeramani [1]). A sequence {xn} in a fuzzy metric

space (X,M, ∗) is said to be M-Cauchy, or simply Cauchy, if for each ǫ ∈]0, 1[ and
each t > 0 there exists n0 ∈ N such that M(xn, xm, t) > 1− ǫ for all n,m ≥ n0. X

is said to be complete if every Cauchy sequence in X is convergent with respect

to τM . In such a case M is also said to be complete.

Definition 8 (Gregori and Romaguera [9]). Let (X,M, ∗) and (Y,N, ⋄) be two

fuzzy metric spaces. A mapping f from X to Y is said to be an isometry if for

each x, y ∈ X and t > 0, M(x, y, t) = N(f(x), f(y), t) and, in this case, if f is a

bijection, X and Y are called isometric. A fuzzy metric completion of (X,M) is

a complete fuzzy metric space (X∗,M∗) such that (X,M) is isometric to a dense

subspace of X∗. X is said to be completable if it admits a fuzzy metric completion.

Proposition 9 (Gregori and Romaguera [9]). If a fuzzy metric space has a fuzzy

metric completion then it is unique up to isometry.

Proposition 10 (Gregori and Romaguera [4]). A stationary fuzzy metric space

(X,M, ∗) is completable if and only if limnM(an, bn) > 0 for each pair of Cauchy

sequences {an} and {bn} in X.

Remark 11. Obviously, if (X,M, ∗) is a stationary fuzzy metric space, then M

satisfies conditions (c1) and (c3) in Theorem 2.

3. Non-completable fuzzy metric spaces

In this section we will see that the axioms (c1), (c2) and (c3) of Theorem 2 con-

stitute an independent axiomatic system. For it, we will see that each of the

three examples of non-completable fuzzy metric spaces mentioned above, does not

satisfy one of these three axioms but it satisfy the other two.

Example 12 (Gregori and Romaguera [4]). Let {xn} and {yn} be two strictly

increasing sequences of positive real numbers, which converge to 1 with respect

to the usual topology of R, with A ∩ B = ∅, where A = {xn : n ∈ N} and
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B = {yn : n ∈ N}. Put X = A∪B and define a fuzzy set M on X ×X×]0,∞[ by:

M(xn, xn, t) =M(yn, yn, t) = 1 for all n ∈ N, t > 0,

M(xn, xm, t) = xn ∧ xm for all n,m ∈ N with n 6= m, t > 0,

M(yn, ym, t) = yn ∧ ym for all n,m ∈ N with n 6= m, t > 0,

M(xn, ym, t) =M(ym, xn, t) = xn ∧ ym for all n,m ∈ N, t ≥ 1,

M(xn, ym, t) =M(ym, xn, t) = xn ∧ ym ∧ t for all n,m ∈ N, t ∈]0, 1[.

As pointed out in [4], an easy computation shows that (X,M, ∗) is a fuzzy metric

space, where ∗ is the minimum t-norm, and it satisfies condition (C1) of Theo-

rem 1. So M satisfies conditions (c2) and (c3) of Theorem 2. But M does not

satisfy condition (c1) of Theorem 2. Indeed, in [4] was observed that {xn} and

{yn} are Cauchy sequences in X such that limnM(xn, yn, t) = 1 for all t ≥ 1, but

limnM(xn, yn, t) = t for all t ∈]0, 1[.

Therefore, condition (c1) is independent of conditions (c2) and (c3).

Example 13 (Gregori and Romaguera [9]). Let {xn} and {yn} be two sequences

of distinct points such that A ∩ B = ∅, where A = {xn : n ≥ 3} and B = {yn :

n ≥ 3}. Put X = A ∪B and define a fuzzy set M on X ×X×]0,∞[ by:

M(xn, xm, t) =M(yn, ym, t) = 1−
[

1
n∧m

− 1
n∨m

]
,

M(xn, ym, t) =M(ym, xn, t) =
1
n
+ 1

m
,

for all n,m ≥ 3. In [9], it was proved that (X,M, ∗) is a fuzzy metric space,

where ∗ is the Luckasievicz t-norm (a ∗ b = max{0, a + b − 1}), for which both

{xn}n≥3 and {yn}n≥3 are Cauchy sequences. Then

lim
n
M(xn, yn, t) = lim

n

(
1

n
+

1

n

)
= 0.

Therefore, M does not satisfy condition (c2).

On the other hand, M is a stationary fuzzy metric on X , and so by Remark 11

we have that this fuzzy metric space satisfies conditions (c1) and (c3).

Therefore, condition (c2) is independent of conditions (c1) and (c3).
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Finally, we will show that the non-completable fuzzy metric space of Example 12

in [7] does not satisfy condition (c3) of Theorem 2, but it satisfies conditions (c1)

and (c2) of this theorem. Consequently, we have that condition (c3) is independent

of conditions (c1) and (c2) of the mentioned theorem.

Example 14 (Gregori et al. [6]). Let d be the usual metric on R restricted to

]0, 1] and consider the standard fuzzy metric Md induced by d. Put X =]0, 1] and

define a fuzzy set M on X ×X ]×]0,∞[ by

M(x, y, t) =






Md(x, y, t), 0 < t ≤ d(x, y)

Md(x, y, 2t) · t−d(x,y)
1−d(x,y) +Md(x, y, t) · 1−t

1−d(x,y) , d(x, y) < t ≤ 1

Md(x, y, 2t), t > 1

In [7] it is proved that (X,M, ∗) is a fuzzy metric space, where ∗ is the usual

product. Also, it is proved that {an}, where an = 1
n
for all n ∈ N, is a Cauchy

sequence in X . Now, if we consider the constant sequence {bn}, where bn = 1 for

all n ∈ N, we have that

lim
n
M(an, bn, t) =





t
t+1 , 0 < t < 1

2t
2t+1 , t ≥ 1

So, t→ limnM(an, bn, t) is a well-defined function on ]0,∞[, but it is not contin-

uous at t = 1. Then, M does not satisfy condition (c3).

On the other hand, in [5] it is proved that M satisfies condition (c1) and (c2), and

so (c3) is independent of (c1) and (c2).

Consequently, (c1), (c2) and (c3) constitute an independent axiomatic system.
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Abstract

In this expository paper we give a short introduction to the injective
hull of a T0-quasi-metric space. Its construction exhibits the intriguing
features of the interplay between partial orders and metrics (compare
for instance [11, 13]).
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1. Introduction

Isbell [10] constructed the hyperconvex (or injective) hull of a metric space. Later

his theory was rediscovered independently several times, for instance by Dress [6]

in his theory of the tight span of a metric space. Lawvere [13] had observed that

metrics that do not necessarily satisfy the symmetry condition (they will be called

quasi-metrics in the following) can be understood as quantified partial orders.

1The author would like to thank the South African National Research Foundation for partial

financial support. These notes are partially based on a talk given at the University of Stellenbosch

in South Africa in November 2013.
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This crucial observation indeed helps explain many similarities that exist in the

classical theory of metric spaces and the theory of partially ordered sets, since in

fact both theories can be understood as special cases of the more general theory

of T0-quasi-metric spaces.

In the last years many aspects of the theory of analysis in metric spaces have been

generalized to quasi-metric spaces. In our talk we shall consider the injective hull

in the category of T0-quasi-metric spaces. Generalizing Isbell’s theory of endpoints

in metric spaces, we shall in particular discuss the concept of an endpoint in the

quasi-metric theory. A simple final example will illustrate how the injective hull

in the category of T0-quasi-metric spaces generalizes the better known Dedekind-

MacNeille completion for partially ordered sets.

2. The injective hull of a metric space

In this section we first recall a construction of the hyperconvex hull of a metric

space. The corresponding theory can for instance be found in the papers [6, 10].

Definition 1. A map f : (X, d) → (Y, e) between (possibly generalized) metric

spaces (X, d) and (Y, e) is called nonexpansive provided that e(f(x), f(y)) ≤ d(x, y)

whenever x, y ∈ X.

A metric space (X,m) is said to be injective if it has the following extension

property for nonexpansive maps: Whenever Y is a subspace of a metric space Z

and f : Y → X is a nonexpansive map, then f has a nonexpansive extension

f̃ : Z → X.

Note that the latter definition is of categorical nature and can be reformulated

analogously for other categories of generalized metric spaces.

Definition 2. A metric space (X,m) is called hyperconvex (compare for instance

[7]) if for each A ⊆ X and each family of positive real numbers (rx)x∈A the

conditions m(x, y) ≤ rx + ry whenever x, y ∈ A imply that ∅ 6= ⋂
x∈ACm(x, rx).

Here Cm(x, rx) denotes the closed ball of radius rx at x ∈ A.
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Proposition 3 (1956: N. Aronszajn and P. Panitchpakdi [4]). A metric space is

hyperconvex if and only if it is injective.

Remark 4. The ground set of the metric hyperconvex hull MX of a metric space

(X,m) consists of all the minimal ample functions f : X → [0,∞) where we call f

ample if m(x, y) ≤ f(x) + f(y) whenever x, y ∈ X and f is called minimal among

the ample functions on X if it is minimal with respect to the pointwise order on

these functions.

Then E(f, g) = supx∈X |f(x) − g(x)| whenever f, g ∈ MX defines the metric on

MX .

Furthermore given x ∈ X, h(x) = m(x, y) whenever y ∈ X defines an isometric

embedding of (X,m) into the hyperconvex metric hull (MX , E).

The closure of h(X) in MX yields the completion of the metric space (X,m).

3. T0-quasi-metric spaces

In this section we describe in some detail the injective hull in the category of

T0-quasi-metric spaces and nonexpansive maps. The corresponding theory is for

instance developed in [9, 12, 14]. Let us first fix the necessary terminology.

Definition 5. Let X be a set and d : X ×X → [0,∞) be a function. Then d is

called a quasi-pseudometric on X if

(a) d(x, x) = 0 whenever x ∈ X, and

(b) d(x, z) ≤ d(x, y) + d(y, z) whenever x, y, z ∈ X.

We shall say that (X, d) is a T0-quasi-metric space provided that d also satisfies

the following condition: For each x, y ∈ X, d(x, y) = 0 = d(y, x) implies that

x = y.

Definition 6. Given a T0-quasi-metric space (X, d), the specialization (partial)

order ≤d of d is defined as follows: For each x, y ∈ X, set x ≤d y if d(x, y) = 0.

95



H.-P. A. Künzi

Example 7. Let (X,≤) be a partially ordered set. Then the function d on X×X
defined by d(x, y) = 0 if x ≤ y and d(x, y) = 1 otherwise, is called the natural

T0-quasi-metric of the partial order ≤ on X.

Example 8. Given two real numbers a and b we shall write

a−̇b for max{a− b, 0}.

Then u(x, y) = x−̇y with x, y ∈ R defines the standard T0-quasi-metric on the set

R of the reals.

Let d be a quasi-pseudometric on a set X. Then d−1 : X × X → [0,∞) defined

by d−1(x, y) = d(y, x) whenever x, y ∈ X is also a quasi-pseudometric, called the

conjugate or dual quasi-pseudometric of d.

If d is a T0-quasi-metric on X, then ds = max{d, d−1} = d∨ d−1 is a metric on X.

Given x ∈ X and a nonnegative real number r we also set Cd(x, r) = {y ∈ X :

d(x, y) ≤ r}.

This set is τ(d−1)-closed, where τ(d) is the topology having the balls Bd(x, ǫ) =

{y ∈ X : d(x, y) < ǫ} with x ∈ X and ǫ > 0 as basic (open) sets.

Let (X, d) be a T0-quasi-metric space. We shall say that a function pair f = (f1, f2)

on (X, d) where fi : X → [0,∞) (i = 1, 2) is ample provided that d(x, y) ≤
f2(x) + f1(y) whenever x, y ∈ X.

Let PX denote the set of all ample function pairs on (X, d). For each f, g ∈ PX we

set

D(f, g) = sup
x∈X

(f1(x)−̇g1(x)) ∨ sup
x∈X

(g2(x)−̇f2(x)).

Then D is an extended quasi-pseudometric on PX . (“Extended” means that D

may attain the value ∞.)

We shall call a function pair f minimal on (X, d) (among the ample function pairs

on (X, d)) if it is ample and whenever g is ample on (X, d) and for each x ∈ X we

have g1(x) ≤ f1(x) and g2(x) ≤ f2(x), then g = f.
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Zorn’s Lemma implies that below each ample function pair there is a minimal

ample pair (a more constructive method can be based on an idea of Dress (compare

[6])).

By QX we shall denote the set of all minimal ample pairs on (X, d) equipped with

the restriction of D to QX ×QX , which we shall also denote by D. Then D is a

(real-valued) T0-quasi-metric on QX ×QX .

For each x ∈ X we can define the minimal function pair

fx(y) = (d(x, y), d(y, x))

(whenever y ∈ X) on (X, d). The map e defined by x 7→ fx whenever x ∈ X

defines an isometric embedding of (X, d) into (QX , D). Then (QX , D) is called the

q-hyperconvex hull of (X, d).

It is known that we have f = (f1, f2) ∈ QX if and only if the following equations

(∗) are satisfied:

f1(x) = sup{d(y, x)−̇f2(y) : y ∈ X}

and

f2(x) = sup{d(x, y)−̇f1(y) : y ∈ X}

whenever x ∈ X . In particular function pairs satisfying these equations are ample

on (X, d). The following observations turn out to be crucial:

(0) A kind of ‘metric’ density of e(X) in QX holds: For any y1, y2 ∈ QX , we have

that

D(y1, y2) =

sup{(D(fx1 , fx2)−D(fx1 , y1)−D(y2, fx2)) ∨ 0 : x1, x2 ∈ X}.

(1) An interesting case occurs when in (0) a positive supremum is attained, that

is, when D(fx1 , y1) + D(y1, y2) + D(y2, fx2) = D(fx1 , fx2) for some x1, x2 ∈ X

(compare with our investigations on collinearity in the next section).

(2) We have that f ∈ QX implies that f1(x)−f1(y) ≤ d−1(x, y) and f2(x)−f2(y) ≤
d(x, y) whenever x, y ∈ X.
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(3) Furthermore supx∈X(f1(x)−̇g1(x)) = supx∈X(g2(x)−̇f2(x)) whenever f, g ∈
QX .

(4) MoreoverD(f, fx) = f1(x) and D(fx, f) = f2(x) whenever x ∈ X and f ∈ QX .

The second component f2 of a minimal ample pair (f1, f2) on (X, d) satisfies the

following equation (∗∗) :

f2(x) = sup
y∈X

(d(x, y)−̇ sup
y′∈X

(d(y′, y)−̇f2(y′))

whenever x ∈ X.

Indeed equation (∗∗) characterizes exactly those functions f : X → [0,∞) that are

second components of minimal ample pairs on (X, d). An analogous result holds

for the first components of minimal ample pairs on (X, d).

These facts can be explained by the so-called underlying Isbell conjugation ad-

junction (compare [8, 14]).

A T0-quasi-metric space X is said to be q-hyperconvex if f ∈ QX implies that there

is an x ∈ X such that f = fx.

An intrinsic characterization of q-hyperconvexity is the following:

A T0-quasi-metric space (X, d) is q-hyperconvex if and only if, given A ⊆ X and

families of nonnegative reals (rx)x∈A and (sx)x∈A such that d(x, y) ≤ rx + sy

whenever x, y ∈ A, we have that
⋂

x∈A(Cd(x, rx) ∩ Cd−1(x, sx)) 6= ∅.

Similarly, as in the category of metric spaces and nonexpansive maps, we have the

following result:

A T0-quasi-metric space is q-hyperconvex if and only if it is injective in the category

of T0-quasi-metric spaces (and nonexpansive maps) ; see e.g [12].

We next describe an important property of the q-hyperconvex hull of a T0-quasi-

metric space (compare [3]).
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Example 9 (The general quasi-metric ‘segment’ Iab). Let X = [0, 1]. Choose

a, b ∈ [0,∞) such that a + b 6= 0. Set dab(x, y) = (x − y)a if x > y and

dab(x, y) = (y − x)b if y ≥ x. Then ([0, 1], dab) is a T0-quasi-metric space.

Let (X, d) be a T0-quasi-metric space and f, g ∈ QX such that f 6= g. Set a =

D(f, g) and b = D(g, f). Then there is an isometric embedding φ : ([0, 1], dab) →
(QX , D) connecting g to f , that is φ(0) = g and φ(1) = f.

If we equip the unit interval [0, 1] with the restriction of τ(us) and QX with the

topology τ(D), then QX is contractible in the classical topological sense.

Injective hulls of metric spaces can also be described as maximal tight extensions

(see [6]). We describe the corresponding theory here only for the category of

T0-quasi-metric spaces (compare [3]).

Let X be a subspace of a T0-quasi-metric space (Y, d). Then Y is called a tight

extension of X if for any quasi-pseudometric e on Y that satisfies e ≤ d and agrees

with d on X ×X we have e = d.

Proposition 10. For any T0-quasi-metric space (X, d) the q-hyperconvex hull QX

is a (maximal) tight extension of e(X).

4. Endpoints in a T0-quasi-metric space

In this section we briefly describe the recently developed theory of endpoints in T0-

quasi-metric spaces. This is joint work with my students Collins Amburo Agyingi

and Paulus Haihambo (see for instance [1, 2], which generalizes work of Isbell and

Dress [10, 6]).

Definition 11. Let (X, d) be a quasi-pseudometric space.

(a) A finite sequence (x1, x2, . . . , xn) in X is called collinear in (X, d) provided

that i < j < k ≤ n implies that d(xi, xk) = d(xi, xj) + d(xj , xk).
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(b) An element x ∈ X is called an endpoint of (X, d) provided that there exists an

element y in (X, d) such that d(y, x) > 0 and for any z ∈ X collinearity of (y, x, z)

in (X, d) implies that x = z. We shall say that y witnesses that x is an endpoint.

(c) An element x ∈ X is called a startpoint of (X, d) if it is an endpoint of (X, d−1).

We illustrate the concept of a startpoint (resp. endpoint) in the case of natural

T0-quasi-metrics.

Let (X,≤) be a partially ordered set and y ∈ X. We set ↑ y := {x ∈ X : y ≤ x}
and ↓ y := {x ∈ X : y ≥ x}.

Lemma 12. Let (X,≤) be a partially ordered set, d its natural T0-quasi-metric

and x, y ∈ X.

Then x is a startpoint of (X, d) witnessed by y if and only if x is a minimal element

in X\ ↓ y.

Dually, x is an endpoint of (X, d) witnessed by y if and only if x is a maximal

element in X\ ↑ y.

Let (X,≤) be a linearly ordered set and let a, b ∈ X be such that a < b, but that

there does not exist an element z ∈ X such that a < z < b. The pair (a, b) is called

a jump in X.

Proposition 13. Let (X,≤) be a linearly ordered set equipped with its natural

T0-quasi-metric d. The first elements of jumps in X are exactly the endpoints of

(X, d). The second elements of jumps in X are exactly the startpoints of (X, d).

x y

Recall that a nonempty partially ordered set X is called a complete lattice if
∨
S

and
∧
S exist for any subset S ⊆ X.

Example 14. For a set X with at least one element consider the complete lattice

(P(X),⊆) equipped with its natural T0-quasi-metric d where P(X) is the powerset

of X. Then the startpoints of (P(X), d) are exactly the singletons. The endpoints

of (P(X), d) are exactly the complements of the singletons.
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Example 15. Let R be the usual topology on the set R of the reals equipped with

set-theoretic inclusion as a partial order and let d be its natural T0-quasi-metric.

Then there are no startpoints and exactly the complements of singletons are the

endpoints in (R, d).

Definition 16. An element x in a complete lattice X is called completely join-

irreducible if for each subset S of X, x =
∨
S implies that x ∈ S.

Completely meet-irreducible elements are defined dually.

We have the following general result for complete lattices.

Example 17. Let X be a complete lattice and d its natural T0-quasi-metric. Then

x ∈ X is a startpoint in (X, d) if and only if x is completely join-irreducible.

Similarly, x ∈ X is an endpoint in (X, d) if and only if x is completely meet-

irreducible in (X, d).

Let us now consider another class of T0-quasi-metric spaces in which the concept

of an endpoint is very useful.

As usual, a T0-quasi-metric space (X, d) is called joincompact provided that τ(ds)

is compact.

Proposition 18. Let (X, d) be a joincompact T0-quasi-metric space with y1, y2 ∈
X such that d(y1, y2) > 0. There exist a startpoint s in (X, d) and an endpoint e

in (X, d) such that (s, y1, y2, e) is collinear in (X, d).

Proposition 19. Let (X, d) be a joincompact T0-quasi-metric space. Then (QX , D)

is joincompact and has exactly the same endpoints and startpoints as (X, d).

The injective hull of a joincompact T0-quasi-metric space X can be identified with

the injective hull of the T0-quasi-metric subspace B of X which consists of all the

startpoints and endpoints of X.

We finish this section with three examples.

Example 20. Let X = {0, 1} be equipped with its usual order ≤ and with its

natural T0-quasi-metric d. Then (QX , D) can be identified with ([0, 1], u) under
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the obvious inclusion X → [0, 1]. (Here, as in the following, u also denotes its

restrictions.) Note that (X, d) is not q-hyperconvex, although (X,≤) is a complete

lattice.

Example 21. The T0-quasi-metric space (R, u) is q-hyperconvex. The special-

ization order ≤ of that space is the standard order on R; hence (R,≤) is not a

complete lattice. Furthermore (R, us) is not q-hyperconvex, since (R2, u× u−1) is

the q-hyperconvex hull of its diagonal.

Willerton [14] proved the following result: The hyperconvex hull MX of a metric

space X is isometric to the largest metric subspace containing e(X) in the q-

hyperconvex hull QX of X .

Example 22. Let (X, d) be a bounded q-hyperconvex T0-quasi-metric space and

≤ its specialization order. Then (X,≤) is a complete lattice.

5. The Dedekind-MacNeille completion of a partially ordered set

This section shows how for the natural T0-quasi-metric space (X, d) of a par-

tially ordered set (X,≤) its Dedekind-MacNeille completion sits inside the q-

hyperconvex hull of (X, d) (compare [2] for more details). This result is not

unexpected because of the following classical theorem:

(1967: B. Banaschewski and G. Bruns) A partially ordered set is injective if and

only if it is a complete lattice. (Here monotonically increasing maps are used as

morphisms. Note that a map f : (X, d) → ({0, 1}, u) is nonexpansive if and only

if f is monotonically increasing.)

Let (X,≤) be a partially ordered set and let A ⊆ X. Then we define the set of

upper bounds of A, that is, Au = {x ∈ X : a ≤ x whenever a ∈ A} and the set of

lower bounds of A, that is, Aℓ = {x ∈ X : a ≥ x whenever a ∈ A}.

A subset E of a partially ordered set X is called join-dense in X provided that for

each x ∈ X there exists E′ ⊆ E such that x =
∨
E′.

Dually one defines the concept of a meet-dense subset of a partially ordered set X.
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Let DM(X) = {A ⊆ X : Auℓ = A}. The partially ordered set (DM(X),⊆) is a

complete lattice, known as the Dedekind-MacNeille completion of X.

Furthermore φ : X → DM(X) defined by φ(x) =↓ x is an order-embedding

such that φ(X) is both join-dense and meet-dense in DM(X). This is indeed the

characteristic property of the Dedekind-MacNeille completion.

Proposition 23. Let X be a partially ordered set and d its natural T0-quasi-

metric. Furthermore let D be the natural T0-quasi-metric of (DM(X),≤). Then

(X, d) and (DM(X), D) have the same startpoints (resp. endpoints).

Lemma 24. Let (X,≤) be a partially ordered set and d its natural T0-quasi-metric.

Furthermore let FX be the set of all those minimal ample function pairs (f1, f2)

on (X, d) that attain only the values 0 and 1. Consider an arbitrary pair (f1, f2)

of functions X → {0, 1}. Then the following conditions are equivalent:

(a) (f1, f2) ∈ FX .

(b)

f1(x) = sup{d(y, x)−̇f2(y) : y ∈ X}
and

f2(x) = sup{d(x, y)−̇f1(y) : y ∈ X}
whenever x ∈ X.

(c) f−1
1 {0} = (f−1

2 {0})u and f−1
2 {0} = (f−1

1 {0})ℓ.

(d) (f−1
2 {0})uℓ = f−1

2 {0} and f1(x) = supy∈X(d(y, x)−̇f2(y)) whenever x ∈ X.

Proposition 25. Let (X,≤) be a partially ordered set with its natural T0-quasi-

metric d and let FX be the set of all those minimal ample function pairs (f1, f2) on

(X, d) that only attain the values 0 and 1. The map ψ : (FX ,≤D) → (DM(X),⊆)

defined by (f1, f2) 7→ f−1
2 {0} is an order-isomorphism between FX (equipped with

the specialization order ≤D induced on FX by the T0-quasi-metric D of the q-

hyperconvex hull of (X, d)) and the Dedekind-MacNeille completion (DM(X),⊆)

of X. Furthermore for each x ∈ X, ψ(fx) =↓ x.

Remark 26. Given a partially ordered set (X,≤) equipped with its natural T0-

quasi-metric d and its q-hyperconvex hull QX , the subspace S identified above
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with DM(X) in QX is characterized by the property that it is the largest subspace

of QX containing e(X) such that the T0-quasi-metric D restricted to S×S attains

only values in {0, 1}.

6. Conclusion

Note that it follows from the results discussed in this paper that the following two

propositions are closely related.

Proposition 27 (Isbell [10]). A compact injective metric space Y has a smallest

closed subset B such that the hyperconvex hull of B is equal to Y.

Proposition 28 (Davey and Priestley [5]). A lattice L with no infinite chains is

order-isomorphic to the Dedekind-MacNeille completion of the partially ordered set

J (L)∪M(L), where J (L) denotes the set of (completely) join-irreducible elements

of L and M(L) denotes the set of (completely) meet-irreducible elements of L.

Furthermore J (L) ∪ M(L) is the smallest subset of L which is both join- and

meet-dense in L.
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[7] R. Esṕınola and M.A. Khamsi, Introduction to hyperconvex spaces, in: Handbook of

Metric Fixed Point Theory, Kluwer, Dordrecht, 2001, pp. 391–435.

[8] G. Gutierres and D. Hofmann, Approaching metric domains, Appl. Categor. Struct. 21

(2013), 617–650.

[9] H. Hirai and S. Koichi, On tight spans for directed distances, Ann. Comb. 16 (2012),

543–569.

[10] J.R. Isbell, Six theorems about injective metric spaces, Comment. Math. Helvetici 39

(1964), 65–76.

[11] E.M. Jawhari, M. Pouzet, and D. Misane, Retracts: graphs and ordered sets from the

metric point of view, in: Combinatorics and Ordered Sets, Contemp. Math. 57 (1986),

pp. 175–226.

[12] E. Kemajou, H.-P.A. Künzi and O.O. Otafudu, The Isbell-hull of a di-space, Topology

Appl. 159 (2012), 2463–2475.

[13] F.W. Lawvere, Metric spaces, generalized logic, and closed categories, Reprints in Theory

and Applications of Categories 1 (2002), 1–37.

[14] S. Willerton, Tight spans, Isbell completions and semi-tropical modules, Theory and

Applications of Categories, Vol. 28, No. 22, 2013, pp. 696–732.

Appendix

Example 29. Let X = {0, 1} be equipped with the discrete order = .

The natural T0-quasi-metric d on X is the discrete metric.

Furthermore (QX , D) can be identified with the set Y = [0, 1] × [0, 1] equipped

with the T0-quasi-metric

D((α1, α2), (β1, β2)) = (α1−̇β1) ∨ (α2−̇β2)

whenever (α1, α2), (β1, β2) ∈ Y, where 0 is identified with (0, 1) and 1 is identified

with (1, 0) (see Figures below).
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(0,0) (1,0)

(0,1) (1,1)

Figure 1. Unit square equipped with the maximum T0-quasi-

metric; it is QX for the two element subspace X given in Figure

2.

(0,1)

(1,0)

Figure 2. (X, d,=), the two element discrete metric space.

(0,1)

(1,0)

Figure 3. MX as subspace of QX is isometric to the real unit in-

terval; the Dedekind-MacNeille completion of (X, d) consists only

of the four corner points of QX endowed with the induced spe-

cialization order on QX .

(0,1)

(1,0)(0,0)

(1,1)

Figure 4. DM(X,=); drawn by its Hasse Diagram (the orien-

tation is not according to usual convention: (0, 0) is bottom and

(1, 1) is top).

106



ISWAT 2014
Proceedings of the International Summer
Workshop in Applied Topology ISWAT’14
pp. 107 – 117

Recent developments on Mizoguchi-Takahashi’s

fixed point theorem

Gülhan Mınak

Department of Mathematics, Faculty of Science, Cankiri Karatekin University, 18100, Cankiri, Turkey

(g.minak.28@gmail.com)

Abstract

In the present work, we mention the famous Mizoguchi-Takahashi’s
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1. Introduction, preliminaries and fixed point results

Let us begin with some basic definitions and notation that will be needed in this

section. Let (X, d) be metric space. For each x ∈ X and A ⊆ X, let d(x,A) =

infy∈A d(x, y). Denote by P (X) the family of all nonempty subsets of X, K(X)

the family of all nonempty compact subsets of X and CB(X) the family of all

nonempty closed and bounded subsets of X. It is clear that K(X) ⊆ CB(X) ⊆
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P (X). A function H : CB(X)× CB(X) → [0,∞) defined by

H(A,B) = max

{
sup
x∈B

d(x,A), sup
x∈A

d(x,B)

}

is said to be the Pompeiu-Hausdorff metric on CB(X) induced by the metric

d on X. An element x ∈ X is called a fixed point of a multivalued mapping

T : X → P (X) if x ∈ Tx.

It is known that many metric fixed point theorems were motivated from the cele-

brated Banach contraction principle which is a very powerful tool in various fields

of nonlinear analysis.

Theorem B (Banach contraction principle). Let (X, d) be a complete metric space

and T : X → X. Assume that there exists λ ∈ [0, 1) such that

d(Tx, T y) ≤ λd(x, y)

for all x, y ∈ X. Then, T has a unique fixed point in X.

In 1969, Nadler [8] first gave a famous generalization of the Banach contraction

principle for multivalued mapping. Since then, there has been continuous and

intense research activity in multivalued mapping fixed point theory and by now

there are a number of results that extend this result in many different directions.

Theorem N (Nadler multivalued contraction principle). Let (X, d) be a complete

metric space and T : X → CB(X) be a multivalued contraction, that is there exists

L ∈ [0, 1) such that

(1) H(Tx, T y) ≤ Ld(x, y)

for all x, y ∈ X. Then, T has a fixed point in X.

One of the most important generalizations of the result of Nadler’s was given by

Mizoguchi and Takahashi. First, we mention about Mizoguchi-Takahashi function

and features, later, we will give Mizoguchi-Takahashi’s fixed point theorem [6].

Let f be a real-valued function defined on R. For c ∈ R, we recall that

lim sup
x→c

f(x) = inf
ε>0

sup
0<|x−c|<ε

f(x)
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and

lim sup
x→c+

f(x) = inf
ε>0

sup
0<x−c<ε

f(x).

Definition 1 ([12]). A function ϕ : [0,∞) → [0, 1) is said to be an MT -function

if it satisfies

lim sup
s→t+

ϕ(s) < 1

for all t ∈ [0,∞) (Mizoguchi-Takahashi’s condition).

Lemma 2 ([13]). Let ϕ : [0,∞) → [0, 1) be an MT -function, then the function

φ : [0,∞) → [0, 1) defined as φ(t) = 1+ϕ(t)
2 is also an MT -function.

Lemma 3 ([13]). ϕ : [0,∞) → [0, 1) is an MT -function if and only if for each

t ∈ [0,∞), there exist rt ∈ [0, 1) and εt > 0 such that ϕ(s) ≤ rt for all s ∈ [t, t+εt).

Clearly, if ϕ : [0,∞) → [0, 1) is a nondecreasing function or a nonincreasing func-

tion, then ϕ is an MT -function. So the set of MT -functions is a rich class. Also,

ϕ : [0,∞) → [0, 1) be defined by

ϕ(t) =





2t , t ∈
[
0, 12

)

0 ,
[
1
2 ,∞

)

is an MT -function. An example which is not an MT -function is given below. Let

ϕ : [0,∞) → [0, 1) be defined by

ϕ(t) =





e−t , t 6= 0

0 , t = 0

.

Since lim sups→0+ ϕ(s) = 1, ϕ is not an MT -function.

We give some characterizations of MT -functions.
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Lemma 4 ([12]). Let ϕ : [0,∞) → [0, 1) be a function. Then the following

statements are equivalent.

(a) ϕ is an MT -function.

(b) For each t ∈ [0,∞) , there exist r
(1)
t ∈ [0, 1) and ε

(1)
t > 0 such that ϕ(s) ≤ r

(1)
t

for all s ∈
(
t, t+ ε

(1)
t

)
.

(c) For each t ∈ [0,∞) , there exist r
(2)
t ∈ [0, 1) and ε

(2)
t > 0 such that ϕ(s) ≤ r

(2)
t

for all s ∈
[
t, t+ ε

(2)
t

]
.

(d) For each t ∈ [0,∞) , there exist r
(3)
t ∈ [0, 1) and ε

(3)
t > 0 such that ϕ(s) ≤ r

(3)
t

for all s ∈
(
t, t+ ε

(3)
t

]
.

(e) For each t ∈ [0,∞) , there exist r
(4)
t ∈ [0, 1) and ε

(4)
t > 0 such that ϕ(s) ≤ r

(4)
t

for all s ∈
[
t, t+ ε

(4)
t

)
.

(f) For any nonincreasing sequence {xn} ∈ N in [0,∞), we have 0 ≤ supn∈N
ϕ(xn) <

1.

(g) For any strictly decreasing sequence {xn} ∈ N in [0,∞), we have 0 ≤ supn∈N
ϕ(xn) <

1.

In 1972, The following theorem, which generalizes the fixed point result for single

valued mappings that was proved by Boyd and Wong [17], was proved by Reich

[10]:

Theorem R. Let (X, d) be a complete metric space. Suppose that T : X → K(X)

satisfies

H(Tx, T y) ≤ α(d(x, y))d(x, y),

for all x, y ∈ X, x 6= y, where α : (0,∞) → [0, 1) satisfies

lim sup
t→s+

α(t) < 1, for all s > 0.

Then T has a fixed point in X.

In 1974, Reich [16] asked that Can we take CB(X) instead of K(X) in Theorem

R? Then, although a lot of fixed point theorist studied on this problem, it has not

been completely solved. There are some partial affirmative answers to the problem
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and the closest answer was given by Mizoguchi and Takahashi [6], as follows:

Theorem MT (Mizoguchi and Takahashi). Let (X, d) be a complete metric space.

Suppose that T : X → CB(X) satisfies

(2) H(Tx, T y) ≤ ϕ(d(x, y))d(x, y)

for all x, y ∈ X, where ϕ is an MT -function. Then T has a fixed point in X.

In fact, the domain of ϕ is (0,∞) in original statement. However, since d(x, y) = 0

implies H(Tx, T y) = 0, the both are equivalent.

Primitive proof of Theorem MT is difficult. Another proof in [2] is not yet simple.

Recently, Suzuki [14]. gave a very simple proof of Theorem MT and an example

showing that it is a real generalization of Theorem N. Due to the mentioned

example is complicated, here we consider another simple example as follows:

Example 5. Let X = [0,∞) and

d(x, y) =






max {x, y} , x 6= y

0 , x = y

,

then (X, d) is complete metric space. Let T : X → CB(X) be defined by

Tx =

[
0,

x2

x+ 1

]
.

and a function ϕ : [0,∞) → [0, 1) be defined by ϕ(t) = t
t+1 . It is obvious that ϕ is

an MT -function. Then, the all condition of Theorem MT is satisfied. In fact, for

x > y with x 6= y, we have

H(Tx, T y) =
x2

x+ 1
≤ x

x+ 1
.x = ϕ(d(x, y))d(x, y).

Note that if x = y, (2) is clearly satisfied. Thus all conditions of Theorem MT are

satisfied and so T has a fixed point in X .

On the other hand, it is easy to show that Theorem N is not applicable in this case.

Indeed, assume there exists L ∈ [0, 1) such that (1) holds true, then H(Tx, T 0) =
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x2

x+1 ≤ Lx, for all x ≥ 0. This implies

lim
x→∞

H(Tx, T 0)

d(x, 0)
= lim

x→∞

x2

x+1

x
= 1 ≤ L,

which a contradiction.

In 2007, M. Berinde and V. Berinde [15] proved the following interesting fixed

point theorem.

Theorem BB (M. Berinde and V. Berinde). Let (X, d) be a complete metric

space, T : X → CB(X). Suppose that there exist a constant L ≥ 0 such that

H(Tx, T y) ≤ ϕ(d(x, y))d(x, y) + Ld(y, Tx)

for all x, y ∈ X, where ϕ is an MT -function. Then T has a fixed point in X.

It is clear that if L = 0 in Theorem BB, then we can obtain Theorem MT.

In 2012, Samet et al. [11] were first to introduce the concept of α-ψ-contractive and

α admissible mapping self-mappings and they proved some the interesting fixed

point results for such mappings on complete metric spaces (See [3, 7, 9]). They

also gave some examples and applications to ordinary differential equations of the

obtained results. Asl et al [1] characterized these notions to multivalued mappings

by introducing the notions of α∗-ψ-contractive and α∗-admissible mappings and

obtaind some fixed-point results for multivalued mappings. Now, we recall these

definitions and results. Let (X, d) be a metric space, T : X → P (X) and α :

X ×X → [0,∞) be a function. Then, we say that:

• T is an α-admissible mapping whenever for each x ∈ X and y ∈ Tx with

α(x, y) ≥ 1 implies α(y, z) ≥ 1 for all z ∈ Ty,

• T is an α∗-admissible mapping whenever for each x ∈ X and y ∈ Tx with

α(x, y) ≥ 1 implies α∗(Tx, T y) ≥ 1, where α∗(Tx, T y) = inf{α(a, b) : a ∈
Tx, b ∈ Ty},

• α has (B) property whenever {xn} is a sequence inX such that α(xn, xn+1) ≥
1 for all n ∈ N and xn → x, then α(xn, x) ≥ 1 for all n ∈ N.

It is easy to see that α∗-admissible mapping are also α-admissible mapping, but

the converse may not be true as shown in Example 15 of [5] as follows:
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Example 6. Let X = [−1, 1] and α : X ×X → [0,∞) is defined by

α(x, y) =





0 , x = y

1 , x 6= y

.

Define T : X → CB(X) by

Tx =





{−x} , x /∈ {−1, 0}
{0, 1} , x = −1

{1} , x = 0

.

Let x = −1, and y = 0 ∈ Tx = {0, 1}, then α(x, y) ≥ 1, but α∗(Tx, T y) =

α∗({0, 1}, {1}) = 0. Thus T is not α∗-admissible. Now we show that, T is α-

admissible with the following cases:

Case 1. If x = 0, then y = 1 and α(x, y) ≥ 1. Also, α(y, z) ≥ 1 since z = −1 ∈
Ty = {−1}.

Case 2. If x = −1, then y ∈ {0, 1} and α(x, y) ≥ 1. Also α(y, z) ≥ 1 for all z ∈ Ty.

Case 3. If x /∈ {−1, 0}, then y = −x and α(x, y) ≥ 1. Also α(y, z) ≥ 1 since

z = x ∈ Ty = {x}.

Let Ψ be the family of nondecreasing functions ψ : [0,∞) → [0,∞) such that
∞∑

n=1

ψn(t) < ∞ for all t > 0, where ψn is the n th iterate of ψ. It is easily proved

that if ψ ∈ Ψ, then ψ(t) < t for all t > 0 and ψ(0) = 0. Let (X, d) be a metric

space and ψ ∈ Ψ. A multivalued mapping T : X → CB(X) is called multivalued

α-ψ-contractive whenever for all x, y ∈ X

α(x, y)H(Tx, T y) ≤ ψ(d((x, y)),

and multivalued α∗-ψ-contractive whenever for all x, y ∈ X

α∗(Tx, T y)H(Tx, T y) ≤ ψ(d((x, y)).

The fixed point results for these type mappings are given as follows: Theorem

MRS ([7]). Let (X, d) be a complete metric space, ψ ∈ Ψ be a strictly increasing

mapping and T : X → CB(X) be an α-admissible and multivalued α-ψ-contractive

on X. Suppose there exist x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1. If T is
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continuous or α has (B) property, then, T has a fixed point in X.

Theorem ARS ([1]). Let (X, d) be a complete metric space, ψ ∈ Ψ be a strictly

increasing mapping and T : X → CB(X) be an α∗-admissible and multivalued

α∗-ψ-contractive on X. Suppose there exist x0 ∈ X and x1 ∈ Tx0 such that

α(x0, x1) ≥ 1. If T is continuous or α has (B) property, then, T has a fixed point

in X.

Mınak and Altun present some generalizations of Teorem MT using this new idea,

as follows:

Theorem MA1 ([4]). Let (X, d) be a complete metric space and T : X → CB(X)

be an α-admissible multivalued mapping such that

(3) α(x, y)H(Tx, T y) ≤ ϕ(d(x, y))d(x, y)

for all x, y ∈ X, where ϕ is an MT -function. Suppose there exist x0 ∈ X and

x1 ∈ Tx0 such that α(x0, x1) ≥ 1. If T is continuous or α has (B) property, then

T has a fixed point in X.

Although α∗-admissibility implies α-admissibility of T , we will give the following

theorem. Because, the contractive condition is slight different from (3).

Theorem MA2 ([4]). Let (X, d) be a complete metric space and T : X → CB(X)

be an α∗-admissible multivalued mapping such that

α∗(Tx, T y)H(Tx, T y) ≤ ϕ(d(x, y))d(x, y)

for all x, y ∈ X, where ϕ is an MT -function. Suppose there exist x0 ∈ X and

x1 ∈ Tx0 such that α(x0, x1) ≥ 1. If T is continuous or α has (B) property, then

T has a fixed point in X.

Now we give an example to illustrate our result. Note that Theorem MT can not

be applied to this example.
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Example 7 ([4]). Let X = [−1, 1] and d(x, y) = |x− y| . Define T : X → CB(X)

by

Tx =





{2x+ 1} , x ∈
[
−1,− 3

4

)

{2x− 1} , x ∈
(
3
4 , 1

]

[
− 1

2 ,
1
2

]
, x ∈

[
− 3

4 ,
3
4

]

and α : X ×X → [0,∞) by

α(x, y) =





1 , x, y ∈
[
− 1

2 ,
1
2

]

0 , otherwise

.

Then T is an α∗-admissible and

(4) α∗(Tx, T y)H(Tx, T y) ≤ ϕ(d(x, y))d(x, y)

for all x, y ∈ X, where ϕ is any MT -function. Indeed, first, we show that T is an

α∗-admissible. If α(x, y) ≥ 1, then x, y ∈
[
− 1

2 ,
1
2

]
and hence

α∗(Tx, T y) = α∗

([
−1

2
,
1

2

]
,

[
−1

2
,
1

2

])

= inf

{
α (a, b) : a, b ∈

[
−1

2
,
1

2

]}

= 1.

Therefore T is an α∗-admissible.

Now we consider the following cases:

Case 1. Let x, y ∈ X with {x, y}∩
{[
−1,− 3

4

)
∪
(
3
4 , 1

]}
6= ∅, then α∗(Tx, T y) = 0.

Thus (4) is satisfied.

Case 2. Let x, y ∈ X with x, y ∈
[
− 3

4 ,
3
4

]
, then

H(Tx, T y) = H

([
−1

2
,
1

2

]
,

[
−1

2
,
1

2

])

= 0

and so again (4) is satisfied.
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Now, if x, y ∈
(
3
4 , 1

]
with x 6= y we have

H(Tx, T y) = H({2x− 1}, {2y− 1})

= 2d(x, y).

Therefore there is no any MT -function satisfying Theorem MT.

Remark 8. If we take α : X ×X → [0,∞) by α(x, y) = 1, then any multivalued

mappings T : X → CB(X) are α-admissible as well as α∗-admissible. Therefore,

Theorem MT is a special case of Theorem MA1 and Theorem MA2.
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Abstract

In order to obtain extensions of the Banach Contraction Principle to

the fuzzy context, several concepts of (fuzzy) contractivity have been

given in the literature. In this paper we study some fuzzy contractivity

conditions which can be considered as motivated after studying how the

classical condition of contractivity in a metric space (X, d) is adapted

to certain fuzzy metrics deduced from d. Moreover, we introduce a new

notion of contractivity in fuzzy metric spaces which is a particular case

of a previous notion due to Mihet.

1. Introduction

The notion of fuzzy metric space was introduced by Kramosil and Michalek [7] and

the authors observed that this definition can be considered as a reformulation, in

the fuzzy context, of the notion of probabilistic metric space due to Menger [8].

By modifying the previous definition, George and Veeramani [1, 2] introduced and

studied a notion of fuzzy metric space which constitutes a modification of the one
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due to Kramosil and Michalek. From now on by fuzzy metric space we mean a

fuzzy metric space (X,M, ∗) in the sense of George and Veeramani. Several well-

known fuzzy metrics have been defined using a metric in their expression. We will

say that these fuzzy metrics are deduced from a metric.

In order to obtain extensions of the Banach Contraction Principle to the fuzzy

context, several concepts of (fuzzy) contractivity for a self-mapping of X , and sev-

eral concepts of Cauchy sequence, have been given in the literature. In this paper

we focus our attention on contractivity and we relate some different contractivity

conditions which we state in the context of fuzzy metric spaces, although some of

them appeared in the context of probabilistic metric spaces and in particular for

a fuzzy metric space in the sense of Kramosil and Michalek. All fuzzy contrac-

tions studied here can be considered as motivated when considering certain fuzzy

metrics deduced from from a metric. Moreover, we introduce a new notion of

contractivity in fuzzy metric spaces which is a particular case of a previous notion

due to Mihet. So, we have observed the relationship between the contractivity in

the metric space (X, d) and the fuzzy metric space deduced from d.

2. Preliminaries

Definition 1. (George and Veeramani [1]). A fuzzy metric space is an ordered

triple (X,M, ∗) such that X is a (non-empty) set, ∗ is a continuous t-norm and

M is a fuzzy set on X × X×]0,∞[ satisfying the following conditions, for all

x, y, z ∈ X , s, t > 0:

(GV1) M(x, y, t) > 0;

(GV2) M(x, y, t) = 1 if and only if x = y;

(GV3) M(x, y, t) =M(y, x, t);

(GV4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s);

(GV5) M(x, y, ) :]0,∞[→]0, 1] is continuous.

If (X,M, ∗) is a fuzzy metric space, we will say that (M, ∗) (or simply M) is a

fuzzy metric on X .
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In the definition of Kramosil and Michalek, [7], M is a fuzzy set on X2 × [0,∞[

that satisfies (GV3) and (GV4), and where (GV1), (GV2), (GV5) are replaced by

(KM1), (KM2), (KM5), respectively, below:

(KM1) M(x, y, 0) = 0;

(KM2) M(x, y, t) = 1 for all t > 0 if and only if x = y;

(KM5) M(x, y, ) : [0,∞[→ [0, 1] is left continuous.

We will refer to these fuzzy metric spaces as KM -fuzzy metric spaces.

Definition 2. (Gregori and Romaguera [4]). A fuzzy metric M on X is said to

be stationary if M does not depend on t, i.e. if for each x, y ∈ X , the func-

tion Mx,y(t) = M(x, y, t) is constant. In this case we write M(x, y) instead of

M(x, y, t).

3. Fuzzy metrics deduced from a metric

Let (X, d) be a metric space and let (M, ∗) be a fuzzy metric on X . We will

say that M is deduced (explicitly) from d if in the formulation of M it appears

explicitly the metric d that is, M is defined using d.

There are well-known fuzzy metrics deduced from a metric. Next we give two

examples which have been widely used in the literature.

Example 3. (George and Veeramani [1]). Let (X, d) be a metric space and let

Md be a function on X ×X×]0,∞[ defined by

Md(x, y, t) =
t

t+ d(x, y)

Then (X,Md, ·) is a fuzzy metric space andMd is called the standard fuzzy metric

induced by d.

Example 4. (George and Veeramani [1]). Let (X, d) be a metric space and let

M2 be a function on X ×X×]0,∞[ defined by

M2(x, y, t) = e−
d(x,y)

t

Then (X,M2, ·) is a fuzzy metric space.
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The following is a new example of this type of fuzzy metrics.

Example 5. Let (X, d) be a bounded metric space such that d(x, y) < 1 for all

x, y ∈ X and let M1 be the function on X ×X×]0,∞[ defined by

M1(x, y, t) = 1− d(x, y)

1 + t

Then (X,M1L) is a fuzzy metric space.

From now on (X,M, ∗) is a fuzzy metric space and f is a self mapping of X .

4. Contractive conditions in fuzzy metrics deduced from a metric

Recall that a self-mapping f on a metric space (X, d) is contractive if there exists

k ∈]0, 1[ such that the following condition is satisfied for all x, y ∈ X

(1) d(f(x), f(y)) ≤ k d(x, y)

This celebrated notion of contractive mapping introduced by Banach has been

widely extended to the fuzzy metric spaces setting. The following condition was

given by Shegal and Bharucha for PM spaces [16] and it was stated in the fuzzy

metric setting by Grabiec [3].

Definition 6. A mapping f is said to be G-contractive if there exists k ∈]0, 1[
such that for all x, y ∈ X , t > 0

(2) M(f(x), f(y), kt) ≥M(x, y, t)

Notice that this definition is not appropriate when M is a stationary fuzzy metric

because in this case it becomes

(3) M(f(x), f(y)) ≥M(x, y) for all x, y ∈ X

In [6] the authors have studied several contraction conditions in fuzzy metric

spaces. Now, we are interested in finding the expressions of the conditions of

contractivity for a self-mapping f when it is considered on a fuzzy metric space
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(X,M, ∗) whereM is one of the above fuzzy metrics deduced from a metric. These

expressions will motivate some of the well-known fuzzy contractive conditions ap-

peared in the literature. We also study some aspects of this fuzzy contractive

conditions.

The following concept was introduced in [5] and it was motivated by considering

the standard fuzzy metric space deduced from a metric space. The constant k is

called the constant of contractivity for f .

Definition 7. A self mapping f on a fuzzy metric space (X,M, ∗) isGS-contractive
if there exists k ∈]0, 1[ satisfying for all x, y ∈ X and t > 0

(4)
1

M(f(x), f(y), t)
− 1 ≤ k

(
1

M(x, y, t)
− 1

)

The authors showed that ifMd is the standard fuzzy metric deduced from a metric

d on X then f is GS-contractive if and only if f is d-contractive for the same

constant of contractivity k.

Proposition 8. Let (X, d) be a metric space and consider the corresponding stan-

dard fuzzy metric space (X,Md, ·). Let f : X → X be a mapping. The following

are equivalent:

(i) f is contractive in (X, d) with constant k.

(ii) f is G-contractive in (X,Md, ·) with constant k.

(iii) f is GS-contractive in (X,Md, ·) with constant k.

Proof. It is well-known that (i) and (iii) are equivalent. We will see that (i) and

(ii) are equivalent.

Suppose there exists k ∈]0, 1[ such that d(f(x), f(y)) ≤ k d(x, y) for each x, y ∈ X .

Then we have

M(f(x), f(y), k t) =
k t

k t+ d(f(x), f(y))
=

t

t+ 1
k
d(f(x), f(y))

≥

≥ t

t+ d(x, y)
=M(x, y, t)
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Conversely, suppose there exists k ∈]0, 1[ such that M(f(x), f(y), k t) ≥M(x, y, t)

for each x, y ∈ X and t > 0. Then we have
k t

k t+ d(f(x), f(y))
≥ t

t+ d(x, y)

that is
t

t+ 1
k
d(f(x), f(y))

≥ t

t+ d(x, y)
and so

1

k
d(f(x), f(y)) ≤ d(x, y) for all

x, y ∈ X .

�

Radu [13] rewrote the expression (4) in the equivalent form

(5) M(f(x), f(y), t) ≥ M(x, y, t)

M(x, y, t) + k(1−M(x, y, t))

This condition is more convenient that (4) because it remains valid in the context

of KM -fuzzy metric spaces in which the value 0 for M(x, y, t) is possible.

The following contractive condition was introduced by Radu in [13] in order to

obtain a Banach fixed point theorem in the context of KM -fuzzy metric spaces

Definition 9. A self mapping f on a fuzzy metric space (X,M, ∗) is called strict

GS-contractive if there exists k ∈]0, 1[ such that:

(6) M(f(x), f(y), kt) ≥ M(x, y, t)

M(x, y, t) + k(1−M(x, y, t))

for all x, y ∈ X .

It is clear that Radu’s strict GS-contractivity implies GS-contractivity. Now,

in a standard fuzzy metric space they are equivalent. Indeed, we have the next

proposition.

Proposition 10. Let (X,Md, ·) be the standard fuzzy metric space induced by

(X, d). A mapping f : X → X is GS-contractive if and only if it is strict GS-

contractive.

Proof. We see the direct implication. Suppose there exists k ∈]0, 1[ such that

d(f(x), f(y)) ≤ k d(x, y) for each x, y ∈ X then
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Md(f(x), f(y),
√
k t) =

√
k t√

k t+ d(f(x), f(y))
=

t

t+ d(f(x),f(y))√
k

≥

≥ t

t+
√
k d(x,y)

t

=
1

1 +
√
k d(f(x),f(y))

t

=
1

1 +
√
k
(

1
Md(x,y,t)

− 1
) =

=
1

Md(x,y,t)+
√
k(1−Md(x,y,t))

Md(x,y,t)

=
Md(x, y, t)

Md(x, y, t) +
√
k(1 −Md(x, y, t))

.

The converse is proved in an analogous way. �

Recently, Romaguera and Tirado [14, 19] have introduced a new concept in the

fuzzy quasi-metric spaces setting which remains valid for fuzzy metric spaces.

This condition, as we will see later, can be considered motivated by considering

the fuzzy metric space (X,M1,L).

Definition 11. A self-mapping f on a fuzzy quasi-metric space (X,M, ∗) is RT -
contractive if there exists k ∈]0, 1[ such that for all x, y ∈ X and t > 0 it is

satisfied

(7) M(f(x), f(y), t) ≥ 1− k + kM(x, y, t)

Proposition 12. Let f : X → X be a mapping. Then f is contractive in (X, d)

with constant k if and only if f is RT -contractive in (X,M1,L) with constant k.

Proof. Suppose d(f(x), f(y)) < k d(x, y). We have

M(f(x), f(y), t)) = 1− d(f(x), f(y))

1 + t
≥ 1− k d(x, y)

1 + t
=

= 1− k +
k d(x, y)

1 + t
= 1− k + k

(
1− d(x, y)

1 + t

)
= 1− k + kM(x, y, t)

The converse is proved in the same way. �

Tirado proved that an RT -contractive mapping is GS-contractive and we have

recently proved that the converse is false.
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Before, in [17], Sherwood introduced a concept of contractivity in the context of

PM -spaces that in our terminology should be called strict RT -contractive condi-

tion. This concept is the following.

Definition 13. A self-mapping f on a fuzzy metric space (X,M, ∗) is strict RT -
contractive if there exists k ∈]0, 1[ such that for all x, y ∈ X and t > 0 the following

inequality holds for all x, y ∈ X

(8) M(f(x), f(y), kt) ≥ 1− k + kM(x, y, t)

Proposition 14. Let f : X → X be a mapping. Then f is RT -contractive in

(X,M1,L) (with constant k) if and only if f is strict RT -contractive (with constant√
k).

Proof. Suppose that f is RT -contractive with constant k. Recall that the RT -

contractive condition implies the d-contractive condition. We have that

M1(f(x), f(y),
√
kt) = 1− d(f(x), f(y))

1 +
√
kt

≥ 1− k d(x, y)

1 +
√
kt

≥

≥ 1−
√
k d(x, y)
1√
k
+ t

≥ 1−
√
k d(x, y)

1 + t
= 1−

√
k +

√
k −

√
k d(x, y)

1 + t
=

= 1−
√
k +

√
k

(
1− d(x, y)

1 + t

)
= 1−

√
k +

√
kM1(x, y, t)

�

It has been proved that an RT -contractive mapping is GS-contractive. Moreover,

the RT -contraction is weaker than the given by Sherwood. In this case we have

the next proposition.

Proposition 15. Let (X, d) be a metric space and consider the fuzzy metric space

(X,M1,L). Then a mapping f : X → X is RT -contractive if and only if it is

contractive in the sense of Sherwood.

Now we will see a contractive condition given by D. Mihet. In this case the

contractive condition was given under the assumption that M(x, y, t) > 0 for

x, y ∈ X, t > 0, since it was defined in the context of KM -fuzzy metric spaces.

126



Contractivity in fuzzy metric spaces deduced from metrics

Definition 16. Let Ψ be the class of continuous increasing functions ϕ : [0, 1] →
[0, 1] such that ϕ(z) > z for all z ∈]0, 1[. A mapping f is said to be D1-contractive

for ϕ if there exists ϕ ∈ Ψ such that for all x, y ∈ X and t > 0 it is satisfied

(9) M(f(x), f(y), t) ≥ ϕ (M(x, y, t))

Notice that the class of GS-contractions and RT -contractions belong to this class

of D1-contractions. In fact, if f is GS-contractive for a constant k ∈]0, 1[ then it

is D1-contractive by taking

ϕk(z) =
z

z + k(1− z)
, z ∈ [0, 1].

Also, if f is RT -contractive it is D1-contractive by taking

ϕk(z) = 1− k + kz, z ∈ [0, 1].

It is easy to see that ϕk ≥ ϕk.

The following concept of contractivity is motivated when considering the fuzzy

metric space (X,M2, ·).

Definition 17. Let (X,M, ∗) be a fuzzy metric space and let f : X → X be a

mapping. We will say that f is GM -contractive if there exists k ∈]0, 1[ such that

the following holds for all x, y ∈ X :

M(f(x), f(y), t) ≥ (M(x, y, t))
k

In the same way f is said to be strict GM -contractive if

M(f(x), f(y), k t) ≥ (M(x, y, t))k

Notice that this is a particular case of Mihet’s D1-contractivity with ϕ(t) = tk.

Proposition 18. Let (X, d) be a metric space and consider the fuzzy metric space

(X,M2, ·) given by M2(x, y, t) = e−
d(x,y)

t . Let f : X → X be a mapping. Then:

(i) f is d-contractive if and only if it is GM -contractive.

(ii) f is d-contractive for the constant k < 1 then it is strict GM -contractive

for the constant
√
k.

127



S. Morillas and A. Sapena

Proof. (i) Suppose that f is d-contractive. We have

M2(f(x), f(y), t) = e−
d(f(x),f(y))

t ≥ e−k
d(x,y)

t =
(
e−

d(x,y)
t

)k

Conversely, suppose M2(f(x), f(y), t) ≥
(
e−

d(x,y)
t

)k

= e−k
d(x,y)

t . Then

is is satisfied e−
d(f(x),f(y)

t ≥ e−k
d(x,y)

t and consequently d(f(x), f(y)) ≤
k d(x, y).

(ii) M2(f(x), f(y),
√
k t) = e

− d(f(x),f(y))√
k t ≥ e

−k
d(x,y)√

k t = e−
√
k

d(x,y)
t =

=
(
e−

d(x,y)
t

)√
k

=M2(x, y, t)
√
k

�
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