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Proceedings of the Workshop on Applied

Topological Structures

WATS'16

Editorial Universitat Politècnica de València
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Óscar Valero (Universitat de les Illes Balears, Spain)

Organizing Committee
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Preface

General Topology has become one of the fundamental parts of mathematics. Nowa-

days, as a consequence of an intensive research activity, this mathematical branch

has been shown to be very useful in modeling several problems which arise in

some branches of applied sciences as Economics, Artificial Intelligence and Com-

puter Science. Due to this increasing interaction between applied and topological

problems, we have promoted the creation of an annual or biennial workshop to

encourage the collaboration between different national and international research

groups in the area of General Topology and its Applications. This year it has been

given the name of Workshop on Applied Topological Structures (WATS).

This book contains a collection of papers presented by the participants in this

workshop which took place in Valencia (Spain) from June 22 to 23, 2016.

All the papers of the book have been strictly refereed.

We would like to thank all participants, the plenary speakers and the regular ones,

for their excellent contributions.

We express our gratitude to the Instituto Universitario de Matemática Pura y

Aplicada for its financial support without which this workshop would not have

been possible.

We are certain of all participants have established fruitful scientific relations during

the Workshop.

The Organizing Committee of WATS’16
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Luis Miguel Garćıa-Raffi (Universitat Politècnica de València, Spain)

Valent́ın Gregori (Universitat Politècnica de València, Spain)
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Samuel Morillas (Universitat Politècnica de València, Spain)
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Salvador Romaguera (Universitat Politècnica de València, Spain)
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Some results on weak fuzzy normed spaces

Carmen Alegre 1

Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, 46022 Valencia, Spain

(calegre@mat.upv.es)

Abstract

The notion of weak fuzzy norm appears in the theory of fuzzy normed

spaces when dealing with duality in this framework. We present cano-

nical examples of weak fuzzy norms and sumarize some results about

the topological structure of the weak fuzzy normed spaces.

1. Introduction

The study of fuzzy normed spaces is relatively recent in the field of fuzzy functional

analysis. The first definition of fuzzy norm on a linear space was given by Katsaras

[9] in 1984 while studying topological vector spaces. Following this work, Felbin [7]

offered in 1992 an alternative definition of a fuzzy norm on a linear space with an

associated metric of Kaleva and Seikkala’s type [8]. In 1994 Cheng and Mordeson

[6] gave another definition of fuzzy norm that corresponds with the notion of a

fuzzy metric as defined by Kramosil and Michalek in [10].

1This research is supported under grant MTM2015-64373-P (MINECO/FEDER, UE).
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C. Alegre

The notion of weak fuzzy norm on a real vector space generalizes the notion of

fuzzy norm. Weak fuzzy norms appear in the theory of fuzzy normed spaces when

dealing with the duality in this context (see [2]). Indeed, if (X,N) is a fuzzy

normed space in the sense of Cheng and Mordeson ([6]) then its topological dual

X∗ can be equipped with a weak fuzzy norm N∗ that plays a similar role to that

the dual norm on the classical theory of normed spaces ([2]). On the other hand,

there is in the last years a growing interest in the theory of extended normed

spaces ([3, 4, 5]) and this class of spaces, as we shall see in this paper, provides

a natural class of examples of weak fuzzy normed spaces. These facts motivate a

fully exploration of the weak fuzzy normed spaces. In this direction we here study

some aspects of the topological structure of these spaces and its relation with the

classical topological vector spaces.

Let X be a linear space and let a function ‖ · ‖ : X → R+ ∪ {∞}. If ‖ · ‖ satisfies

the conditions of a norm we say that ‖ · ‖ is an extended norm. The pair (X, ‖ · ‖)

is called an extended normed space (see [3, 5]).

According to [13] a binary operation ∗ : [0, 1]×[0, 1]→ [0, 1] is a continuous t-norm

if ∗ satisfies the following conditions: (i) ∗ is associative and commutative; (ii) ∗

is continuous; (iii) a ∗ 1 = a for every a ∈ [0, 1]; (iv) a ∗ b ≤ c ∗ d whenever a ≤ c

and b ≤ d, with a, b, c, d ∈ [0, 1].

Three paradigmatic examples of continuous t-norms are ∧, · and ∗L (the Lukasiewicz

t-norm), which are defined by a ∧ b = min{a, b}, a · b = ab and a ∗L b = max{a+

b− 1, 0}, respectively. Recall that ∗L ≤ · ≤ ∧. In fact, ∗ ≤ ∧ for every continuous

t-norm ∗.

2. Weak fuzzy normed spaces

Definition 1 ([2]). If X be a real vector space, a weak fuzzy norm on X is a

pair (N, ∗) such that, ∗ is a continuous t-norm and N is a fuzzy set in X × [0,∞)

satisfying the following conditions for every x, y ∈ X, and t, s ≥ 0:

(FN1) N(x, 0) = 0.

(FN2) N(x, t) = 1 for all t > 0⇔ x = 0.

This work is licensed under a Creative Commons License CC BY-NC-ND 4.0
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(FN3) N(cx, t) = N(x, t/ | c |) for every c ∈ R\{0}.

(FN4) N(x+ y, t+ s) ≥ N(x, t) ∗N(y, s).

(FN5) N(x, ·) : [0,∞)→ [0, 1] is left continuous.

The triple (X,N, ∗) is called a weak fuzzy normed space.

If (N, ∗) is a weak fuzzy norm on X satisfying:

(FN6) limt→∞N(x, t) = 1 for all x ∈ X

then (N, ∗) is a fuzzy norm on X.

If, in addition, ∗ = ∧, then one has the notion of a fuzzy norm as given by Cheng

and Morderson [6].

Example 2. Let (X, ‖ · ‖) be an extended normed space.

(a) Let N : X × [0,∞)→ [0, 1] given by N(x, 0) = 0 for all x ∈ X and

N(x, t) =
t

t+ ‖x‖
,

for all x ∈ X and t > 0. Then (N, ∗) is a weak fuzzy norm on X, where

∗ is any continuous t-norm. Note that if there exists x ∈ X such that

‖x‖ =∞, then (N, ∗) is not a fuzzy norm because limt→∞N(x, t) = 0.

(b) Let N : X× [0,∞)→ [0, 1] given by N(x, t) = 0 if t ≤ ‖x‖ and N(x, t) = 1

if t > ‖x‖. Then (N, ∗) is a fuzzy norm on X, where ∗ is any continuous

t-norm. As above, if ‖x‖ =∞, then limt→∞N(x, t) = 0.

If (X,N, ∗) is a weak fuzzy normed space, the open ball BN (x, r, t) with center x,

radius r, 0 < r < 1, and t > 0 is defined as follows:

BN (x, r, t) = {y ∈ X : N(y − x, t) > 1− r}.

We note that BN (x, r, t) = x + BN (0, r, t), for all x ∈ X and 0 < r < 1, t > 0.

The closed ball B̄N (x, r, t) with center x, radius r, 0 < r < 1, and t > 0 is defined

as follows:

This work is licensed under a Creative Commons License CC BY-NC-ND 4.0
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C. Alegre

B̄N (x, r, t) = {y ∈ X : N(y − x, t) ≥ 1− r}.

It is clear that if (X,N, ∗) is a weak fuzzy normed space, the fuzzy set MN in

X ×X × [0,∞) given by MN(x, y, t) = N(y − x, t) is a fuzzy metric on X in the

sense of Kramosil and Michalek [10]. This fuzzy metric induces a topology τN

on X, which has as a base the collection {BN(x, r, t) : x ∈ X, 0 < r < 1, t > 0}.

Moreover τN is metrizable and the countable collection of balls {BN (x, 1/n, 1/n) :

n = 2, 3, ...} forms a fundamental system of neighborhoods of x, for all x ∈ X.

It is easy to see that if (X, ‖ · ‖) is an extended normed space, then the topology

τN agrees with the topology induced by the extended norm ‖·‖ where (N, ∗) is one

of the weak fuzzy norms of Example 1. Therefore, the extended normed spaces

are included in the class of weak fuzzy normed spaces.

In the same way that the subspace of an extended norm space consisting of all

vectors with finite norm is a normed space, the subspace of a weak fuzzy normed

space consisting of all vectors that satisfy condition (FN6) is a fuzzy normed space.

If (X,N, ∗) is a weak fuzzy normed space, from Proposition 1 and 3 of [1], we

obtain the following properties of the open balls with center in the origin.

Proposition 3. Let (X,N, ∗) be a weak fuzzy normed space and let B the family

of open balls with center in the origin. Then

(a) BN (0, r, t) is balanced for all t > 0 and 0 < r < 1.

(b) λBN (0, r, t) = BN (0, r, λt), for every λ > 0, t > 0 and 0 < r < 1.

(c) If U ∈ B there is V ∈ B such that V + V ⊂ U.

(d) If U, V ∈ B there is W ∈ B. such that W ⊂ U ∩ V.

e) If ∗ = ∧, then BN (0, r, t) is convex for all t > 0 and 0 < r < 1.

In the following proposition we show the closed relationship between the ab-

sorbency of the open balls and condition (FN6).

Proposition 4. A weak fuzzy normed space (X,N, ∗) is a fuzzy normed space if

and only if B(0, r, t) is an absorbent set for all t > 0 and 0 < r < 1.

This work is licensed under a Creative Commons License CC BY-NC-ND 4.0

Editorial Universitat Politècnica de València
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Proof. The ’only if’ part follows from [1, Proposition 1]. For the converse, suppose

that there exists x0 ∈ X such that limt→∞N(x0, t) 6= 1. Then there exists 0 <

ε < 1 such that N(x0, t) < 1 − ǫ for all t > 0. So that N(x0, λt) < 1 − ǫ, for all

λ > 0, i.e., x0

λ /∈ B(0, ε, t). Therefore B(0, ε, t) is not an absorbent set. �

It is well known that if (X,N, ∗) is a fuzzy normed space, then (X, τN ) is a topo-

logical vector space. This is not the case in general if (N, ∗) a weak fuzzy norm on

X. Indeed, by Proposition 4, if there exists x ∈ X such that limt→∞N(x, t) 6= 1,

there exist neighborhoods of 0 that are not absorbent sets. Consequently, (X, τN )

is not a topological vector space.

If (X, τ) is a topological vector space and (N, ∗) is a weak fuzzy norm on X, we

say that (N, ∗) is compatible with τ if τN = τ.

Proposition 5. If (X, τ) is a topological vector space and (N, ∗) is a weak fuzzy

norm on X compatible with τ, then (N, ∗) is a fuzzy norm.

Proof. If τN = τ, then BN (0, r, t) is neighborhood of 0 in (X, τ) for all t > 0 and

0 < r < 1. Since (X, τ) is a topological vector space, we have that BN (0, r, t) is

an absorbent set for all t > 0 and 0 < r < 1 and so, by Proposition 4, (N, ∗) is a

fuzzy norm on X. �

Then, we can obtain the following characterizations of metrizable topological vec-

tor spaces in terms of weak fuzzy norms.

Theorem 6. For a topological vector space (X, τ) the following conditions are

equivalent:

(1) (X, τ) is metrizable;

(2) there is a fuzzy norm (N, ∗) on X compatible with τ ;

(3) there is a weak fuzzy norm (N, ∗) on X compatible with τ .

Proof. (1) ⇒ (2) If (X, τ) is metrizable then there is a fuzzy norm (N, ∗L) on X

compatible with τ (see [11] or Theorem 2 of [1] ).

(2)⇒ (1) If (N, ∗) is a fuzzy norm on X then (X, τN ) is a metrizable topological

vector space (see [12] or Theorem 1 (A) of [1]). Since τN = τ, (X, τ) is metrizable.

This work is licensed under a Creative Commons License CC BY-NC-ND 4.0
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(2)⇔ (3) This follows from Proposition 5. �

Theorem 7. For a topological vector space (X, τ) the following conditions are

equivalent:

(1) (X, τ) is metrizable and locally convex;

(2) there is a fuzzy norm (N,∧) on X compatible with τ ;

(3) there is a weak fuzzy norm (N,∧) on X compatible with τ .

Proof. (1)⇔ (2) This is Theorem 4 of [1].

(2)⇔ (3) This follows from Proposition 5.

�

From Proposition 5 and Theorems 5 and 7 of [1], we can also obtain characteriza-

tions of those topological vector spaces that are locally bounded and normable in

terms of weak fuzzy norms.

Theorem 8. For a topological vector space (X, τ) the following conditions are

equivalent:

(1) (X, τ) is locally bounded;

(2) there is a fuzzy norm (N, ∗) on X compatible with τ such that limt→∞N(x, t) =

1 uniformly on an open ball centered at origin;

(3) there is a weak fuzzy norm (N, ∗) on X compatible with τ such that limt→∞N(x, t) =

1 uniformly on an open ball centered at origin.

Theorem 9. For a topological vector space (X, τ) the following conditions are

equivalent:

(1) (X, τ) is normable;

(2) there is a fuzzy norm (N,∧) on X compatible with τ such that limt→∞N(x, t) =

1 uniformly on an open ball centered at origin;

(3) there is a weak fuzzy norm (N,∧) on X compatible with τ such that

limt→∞N(x, t) = 1 uniformly on an open ball centered at origin.

This work is licensed under a Creative Commons License CC BY-NC-ND 4.0
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3. The dual of a fuzzy normed space

As mentioned at the beginning of this paper the notion of weak fuzzy norm appears

in the study of fuzzy normed spaces when it comes to constructing the dual space of

a fuzzy normed spaces. In Section 4 of [2], after an extensive research on structural

properties of the fuzzy normed spaces, the authors constructed an appropriate

weak fuzzy norm on the topological dual of a fuzzy normed space (X,N,∧) and

then they proved a theorem of Hahn-Banach type in the frame of fuzzy normed

spaces which generalizes the classical one for normed spaces.

Let (X,N,∧) a fuzzy normed space and let (Ns,∧) be the standard fuzzy norm

on R, i.e., Ns(x, 0) = 0 for x ∈ R and Ns(x, t) = t/(t+ |x|) for all x ∈ R and t > 0.

Denote by X∗ the set of all continuous linear mappings from (X, τN ) to (R, τNs
).

(Note that τNs
is the usual topology of R.)

The weak fuzzy norm of X∗ is defined by N∗(f, 0) = 0 for all f ∈ X∗, and

N∗(f, t) = sup{α ∈ [0, 1) : ‖f‖∗α < t},

for all f ∈ X∗, where

‖f‖∗α = sup{|f(x)| : ‖x‖1−α ≤ 1},

and

‖x‖1−α = inf{t > 0 : N(x, t) ≥ 1− α}.

The following example shows that (N∗,∧) is not in general a fuzzy norm on X∗.

Example 10. (See Example 19 of [2]) Let X be the linear space of all sequences

x := (xn)n of real scalars and let (N,∧) be the fuzzy norm induced on X by the

ascending family of separating seminorms {‖ · ‖α : α ∈ (0, 1)} given by ‖x‖α =

qn(x) if α ∈ (n−1
n , n

n+1 ], for all n ∈ N, where qn(x) = max{|x1|, . . . , |xn|}.

Let f : X → R be the linear function given by f(x) = x1 + x2 + x3. Then, f ∈ X∗

and ‖f‖∗1/2 =∞. Since ‖f‖
∗
α ≤ ‖f‖

∗
β whenever α ≤ β, we have that

N∗(f, t) = sup{α ∈ [0, 1) : ‖f‖∗α < t} < 1/2,

for all t > 0, therefore limt→∞N∗(f, t) ≤ 1/2.

This work is licensed under a Creative Commons License CC BY-NC-ND 4.0
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Kannan mappings vs. Caristi mappings: An easy
example

Carmen Alegre and Salvador Romaguera1

Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, 46022 Valencia, Spain

(calegre@mat.upv.es, sromague@mat.upv.es)

Abstract

We give an easy example of a Kannan mapping T on a complete metric

space (X, d) for which the function x → d(x, Tx) is not lower semicon-

tinuous on X.

MSC: 54H25; 54E50; 47H10.

In 1922, Banach published his famous fixed point theorem which is stated as

follows.

Theorem 1 (Banach [1]). Let (X, d) be a complete metric space. If T is a self-

mapping of X such that there is a constant c ∈ [0, 1) satisfying

(1) d(Tx, T y) ≤ cd(x, y),

for all x, y ∈ X, then T has a unique fixed point.

1This research is supported under grant MTM2015-64373-P (MINECO/FEDER, UE).
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In [4], Kannan proved the following fixed point theorem which is independent from

Banach’s fixed point theorem.

Theorem 2 (Kannan [4]). Let (X, d) be a complete metric space. If T is a self-

mapping of X such that there is a constant c ∈ [0, 1/2) satisfying

(2) d(Tx, T y) ≤ c(d(x, Tx) + d(y, T y)),

for all x, y ∈ X, then T has a unique fixed point.

Later on, Chatterjea [3] obtained the following variant of Kannan’s fixed point

theorem.

Theorem 3 (Chatterjea [3]). Let (X, d) be a complete metric space. If T is a

self-mapping of X such that there is a constant c ∈ [0, 1/2) satisfying

(3) d(Tx, T y) ≤ c(d(x, T y) + d(y, Tx)),

for all x, y ∈ X, then T has a unique fixed point.

The above results suggest the following well-established notion.

Definition 4. Let T be a self-map of a metric space (X, d). Then T is called a

Banach contraction (resp. a Kannan mapping, a Chatterjea mapping) if T satisfies

condition (1) (resp. condition (2), condition (3)) for all x, y ∈ X.

Contrarily to the Banach contractions, not every Kannan mapping is a continuous

mapping and not every Chatterjea mapping is a continuous mapping.

On the other hand, Banach’s fixed point theorem does not characterize metric

completeness. Indeed, there exist examples of non complete metric spaces for

which every Banach contraction has a fixed point (see e.g. [9, 10]). However, both

Kannan’s fixed point theorem and Chatterjea’s fixed point theorem characterize

metric completeness, which was showed by Subrahmanyam in [9] as follows.

Theorem 5 (Subrahmanyam [9]). For a metric space (X, d) the following condi-

tions are equivalent.

(1) (X, d) is complete.
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(2) Every Kannan mapping on X has a fixed point.

(3) Every Chatterjea mapping on X has a fixed point.

In his well-known paper [2], Caristi proved the following important fixed point

theorem that also allows to characterize metric completeness and is “equivalent”

to the Ekeland Variational Principle.

Theorem 6 (Caristi [2]). Let (X, d) be a complete metric space. If T is a self-

mapping of X such that there is a lower semicontinuous function ϕ : X → [0,∞)

satisfying

(4) d(x, Tx) ≤ ϕ(x) − ϕ(Tx),

for all x ∈ X, then T has a fixed point.

A self-mapping T on a metric space (X, d) for which there is a lower semicontinuous

function ϕ : X → [0,∞) satisfying condition (4) for all x ∈ X is called a Caristi

mapping.

In [5] Kirk proved the “if” part of the following characterization.

Theorem 7 (Kirk [5]). A metric space (X, d) is complete if and only if every

Caristi mapping on X has a fixed point.

The relationship between Banach mappings and Caristi mappins, as well as be-

tween Kannan mappings (resp. Chatterjea mappings) and Caristi mappings has

been considered by several authors. Thus, following a construction suggested by

Weston (see [11, p. 188]), Park asserted in [6, p. 24] that if T is a Chatterjea

mapping on a metric space (X, d), with constant c ∈ [0, 1/2), then the function

ϕ : X → [0,∞) defined as

(5) ϕ(x) =
1− c

1− 2c
d(x, Tx),

for all x ∈ X, is a Caristi mapping, and, hence, every Chatterjea mapping is a

Caristi mapping.

In this direction, Shioji, Suzuki and Takahashi [8, p. 3118], and [7, p. 118] claim

that every Banach contraction and every Kannan mapping on a metric space is
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a Caristi mapping. In fact (see e.g. [7, p. 118]) if T is a self-mapping on a

metric space (X, d) the following facts are asserted (actually, they are obvious

consequences of a more general claimed facts):

(A) If T is a Banach contraction, with constant c ∈ [0, 1), then the function

ϕ : X → [0,∞) defined as

(6) ϕ(x) =
1

1− c
d(x, Tx),

for all x ∈ X, is a Caristi mapping on X.

(B) If T is a Kannan mapping, with constant c ∈ [0, 1/2), then the function

ϕ : X → [0,∞) defined as in (5) for all x ∈ X, is a Caristi mapping on X.

It is easy to check that assertion (A) is correct. However, in the case that T is a

Kannan mapping, or a Chatterjea mapping, on a metric space (X, d), the function

ϕ given by (5) indeed satisfies d(x, Tx) ≤ ϕ(x) − ϕ(Tx) for all x ∈ X, but,

unfortunately, the function x → d(x, Tx) is not lower semicontinuous in general,

as Example 8 below shows. Therefore, it seems that the following question still is

open: Is every Kannan mapping on a metric space X a Caristi mapping on X?

Example 8. Let X = [0,∞) and let d be the usual metric on X. Fix δ ∈ (0, 1)

and define T : X → X as

Tx = 0 if x ∈ [0, 1− δ);

Tx = x/4 if x ∈ [1− δ, 1), and

Tx = (1− δ)/4 if x ≥ 1.

We show that T is both a Kannan mapping and a Chatterjea mapping on (X, d).

Indeed, let x, y ∈ X.

If x, y ∈ [0, 1− δ) or x, y ≥ 1, then d(Tx, T y) = 0.
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If x, y ∈ [1− δ, 1), then

d(Tx, T y) = d
(x
4
,
y

4

)
=
|x− y|

4
≤

1

4
(x+ y) =

1

3

(
x−

x

4
+ y −

y

4

)

=
1

3
[d(x, Tx) + d(y, T y)] =

1

3
[d(x, T y) + d(y, Tx)].

If x ∈ [0, 1− δ) and y ∈ [1− δ, 1), then

d(Tx, T y) = d
(
0,
y

4

)
=
y

4
≤

1

3

(
x+ y −

y

4

)

=
1

3
[d(x, Tx) + d(y, T y)] =

1

3
[d(x, T y) + d(y, Tx)].

If x ∈ [0, 1− δ) and y ≥ 1, then

d(Tx, T y) = d

(
0,

1− δ

4

)
=

1− δ

4
≤

1

3

(
x+ y −

1− δ

4

)

=
1

3
[d(x, Tx) + d(y, T y)] ≤

1

3
[d(x, T y) + d(y, Tx)].

If x ∈ [1 − δ, 1) and y ≥ 1, then

d(Tx, T y) = d

(
x

4
,
1− δ

4

)
=
x− (1 − δ)

4
<
δ

4
<

1

3

(
x−

x

4
+ y −

1− δ

4

)

=
1

3
[d(x, Tx) + d(y, T y)] =

1

3
[d(x, T y) + d(y, Tx)].

We have shown that T is both a Kannan mapping and a Chatterjea mapping on

(X, d) with constant c = 1/3.

Finally, define f : X → [0,∞) as f(x) = d(x, Tx). We show that f is not lower

semicontinuous at x = 1.

Indeed, choose a sequence (xn)n in X such that xn ∈ (1 − δ, 1) and d(1, xn)→ 0.

We have

f(1)− f(xn) = d

(
1,

1− δ

4

)
− d

(
xn,

xn
4

)
=

3 + δ

4
−

3xn
4

>
3 + δ

4
−

3

4
=
δ

4
,

for all n, so f is not lower semicontinuous at x = 1.We conclude that the function

ϕ as defined by (5) is not a Caristi mapping on (X, d).
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Abstract

Asymmetric norms can be used in the mathematical development of specific tools for

visualization of multi-objective optimization problems. The canonical asymmetric

norm on a finite dimensional Banach lattice provides a topology that make compatible

the arguments based on Euclidean distances and the notion of domination, that is

often used in the study of Pareto sets in optimization problems. We show how this tool

can be used for helping the decision maker to understand the information provided

by a multi-objective optimization program.

Keywords: asymmetric normed space; visualization; level diagram; optimization.
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1. Introduction

Visualization of the set of solutions of a multi-objective problem provided by com-

puter calculations is sometimes the key step for finding the correct answer to

the original problem. In the recent paper [3], a new mathematical tool based on

asymmetric distances has been introduced. It provides a new way of measuring

the (non-symmetric) distance in the finite dimensional space to which the set of

solution belongs. These ideas start from the simple assumption that the distance

with respect to which the optimal solution is searched is not symmetric, in the

sense that the distance from x to y does not coincide with the distance from y to

x. From this point of view, two points in the Pareto set of suitable solutions to the

problem can be compared using a non classical criterion, mixing the key concept

of domination and the Euclidean distance in the definition of the topology. In

the context of mathematical optimization, a point in a lattice is said to dominate

other point if the first one is less or equal than the second one in the lattice order.

This represent the idea that the first one is closer to the optimal point 0 than the

second one.

The proposed mathematical structured can be used for analyzing the approxima-

tion of a set of solutions of the problem to a particular “ideal solution point” with

respect to a (what is called) “lattice asymmetric norm”. If the associated non-

symmetric distance d given by the asymmetric norm is performed in a particular

way, this problem is equivalent to the one of finding the best approximation with

respect to an Euclidean norm from a set of points to a convex cone.

The theory of asymmetric normed spaces is the foundation of the technique ex-

plained here. It started to be systematically developed at the beginning of the

nineties of the XX century (see for example [2, 8, 10, 11]). The reader can find a

complete presentation of this theory in [4] and the references therein.

We recall that an asymmetric norm q is a real function q : X → [0,∞) satisfying

(1) q(tx) = tq(x) for t ≥ 0, x ∈ X ,

(2) q(x + y) ≤ q(x) + q(y),

(3) q(x) = 0 = q(−x) if and only if x = −x = 0.
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A couple (X, q) is called an asymmetric normed linear space; it can be considered

as a topological space with a non-symmetric topology onX that is generated by the

(non symmetric) open balls Bq(x, ε) = {y ∈ X | q(y−x) < ε}. This topology is not

Hausdorff in the general case (see [4, §1, §2]). However, it is always T0. The non-

Hausdorff case is the one that is used in the present paper, when the asymmetric

norm is given by a lattice norm. That is, the mathematical structure is given by

what is called an asymmetric Euclidean lattice, that are Banach spaces with a

norm ‖ · ‖ endowed with an ordering ≤ such that if 0 ≤ x ≤ y, then ‖x‖ ≤ ‖y‖.

The asymmetric topology in the space is defined then by the asymmetric norm

given by

q(x) := ‖x ∨ 0‖, x ∈ R
n.

The reader can find a lot of information on this particular class of asymmetric

norms in [2, 5, 6, 7, 8, 14].

Concretely, we are concerned with the finite dimensional case. Suppose that we

have the canonical Euclidean lattice norm on Rn given by

‖(x1, ..., xn)‖2 =

√√√√
n∑

i=1

|xi|2, (x1, ..., xn) ∈ R
n.

Consider the canonical lattice order ≤ that is provided by the pointwise order.

The norm ‖ · ‖ is a lattice norm, since if we have two ordered positive elements,

(0, ..., 0) ≤ (x1, ..., xn) ≤ (y1, ..., yn),

we also have that ‖(x1, ..., xn)‖2 ≤ ‖(y1, ..., yn)‖2. The asymmetric normed linear

lattice that is then considered in our model is

q(x) := ‖(x1, ..., xn) ∨ (0, ..., 0)‖2 =

√√√√
n∑

i=1

|max{xi, 0}|2, (x1, ..., xn) ∈ R
n.

In the next section we will show that this can be slightly improved by better

adapting our geometric arguments to a broader class of domination relations.

From the point of view of the convergence of the optimization algorithms, com-

pactness and convexity of the Pareto sets are fundamental properties to be studied.

These properties for asymmetric normed spaces and asymmetric lattices have been
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analyzed in recent years. The reader can find the corresponding information in

[1, 5, 6, 7, 9, 12, 13] and the references therein; for a complete survey on the

fundamental questions in this topic, see also [4, §1.2, §2.5] and [14].

2. Domination relations, preference directions and asymmetric

norms

Let us fix now the abstract framework of the multi-objective optimization prob-

lems. Suppose that there is a function Φ : Ω → R
n with a set of values A ⊂ R

n,

that is, Φ(Ω) = A. Suppose that the set A is already giving a set of solutions of a

problem and we are interested in finding a “better” subset of A adding some new

optimization requirement. Our technique is given by the following scheme.

• Choose first a point x0 not belonging to A that would give “an ideal

solution to the problem” because of its good properties.

• Choose a set of directions D in Rn satisfying that, if a ∈ A is an optimal

solution to the problem and v ∈ D, a+v then it is still an optimal solution

to the problem if it belongs to A. That is, if we move the optimal solutions

in the directions defined by the set D, there is no loss of accuracy in the

solution obtained.

• In this setting, the optimization argument is based on the domination

relation: a point x dominates other point y whenever y ∈ x + C+, where

C+ is the positive cone of a lattice that must coincide with the set of

directions D.

For the aim of this work, we assume that the set of directions is given by the

canonical basic vectors of Rn. However, this can be modified in order to define a

different sets of preference directions by giving a different basis B := {b1, ..., bn} of

Rn and constructing the suitable norm in order to be compatible with the order

generated by the cone

C+ := {
n∑

i=1

λibi : λ1, ..., λn ≥ 0}.
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A classical geometric argument provides the formula

‖(x1, ..., xn)‖ :=

√√√√√√√(x1, ..., xn)(M−1)T · (M−1)




x1
...

xn


 =

√√√√
n∑

i=1

α2
i ,

where (x1, ..., xn) ∈ Rn. The matrix M is defined by the coordinates of the

vectors b1, ..., bn as columns, and so (α1, ..., αn) are the coordinates of the vector

(x1, ..., xn) with respect to the basis B. Figure 2 shows the Euclidean unit ball of

a non-canonical Euclidean norm.

Figure 1. Euclidean unit ball of an Euclidean norm defined ac-

cording to a non-canonical basis B.

The corresponding asymmetric norm is then given by

(1) q(((x1, ..., xn)) =

√√√√
n∑

i=1

(max{αi, 0})2.

3. Visualizing the domination relations and decision making

Using these tools we obtain the next mathematical structure that may help the

decision maker to find his best solution to the problem by providing adequate

visualization tools.
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• First, the decision maker must define a new domination order in the space

given by the convex cone D of preference directions.

• This is the positive cone of a new lattice Euclidean norm generated by

the new basis B. This cone —that may be the canonical positive cone—

defines the asymmetric norm given in (1).

• Consider the quasi-distance d(w, v) := q(v−w), v, w ∈ Rn. It is compatible

with the ordering and has the meaning that, if ≤ x d(x0, x), it gives an

Euclidean distance, and if x ≤ x0, then d(x0, x) = 0.

• The optimization with respect to this new distance implies that there is a

gain in minimizing the distance d from x0 whenever the point x ∈ A is as

close as possible of satisfying x ≤ x0.

Figure 3 illustrates the algorithm when the cone considered is the one generated

by a basis B := {b1, b2}. The vectors v1 = −b1 and v2 = −b2 show the (opposite

to the) preference directions. All the vectors in the cone E generated by v1 and

v2 are “better” than x0 with respect to the optimization criterion fixed by the

preference directions. Therefore, when this cone is translated to the points of the

set A, all the points that satisfy that x0 ∈ a + E has an asymmetric distance to

x0 that coincides with the corresponding Euclidean distance. However, the points

of A that do not satisfy this property has an asymmetric distance that measures

“how much the point must be moved in order to dominate the point x0”. This

gives the interpretation key to the decision maker.

Figure 2. Optimal point x0 and the opposite vectors v1 and v2
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Instituto Universitario de Matemáticas y Aplicaciones (IMAC), Universidad Jaume I, E-12071, Castellón, Spain.

(jgalindo@mat.uji.es)

Abstract

We describe how Arens products can be used to introduce an algebraic

structure on compactifications of semigroups. We then survey known

results around Arens regularity, and especially around the extreme non-

Arens regularity of the group algebra L1(G), with particular emphasis

on tools from Topological Algebra.

1. Densely defined multiplications

Enlarging a topological space to get a compact one, compactifying a topological

space, is one of the best known procedures in General Topology. In the context of

Topological Algebra, topological spaces often carry an algebraic structure and it

is only natural to seek for a way to extend this structure to the compactification.

1.1. Compactifications of semigroups. We start with a semigroup S equipped

with a topology and a compactification SX induced by a unital C∗-algebra of

1This extended abstract is based on work carried out jointly with Mahmoud Filali over the

last years. I would like to thank him for letting me reproduce here some samples of this work.
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continuous and bounded functions X ⊂ CB(S). The compactification SX is then

the spectrum of X (the set of nonzero multiplicative elements of the dual space

X∗) and evaluations define a continuous map with dense range ǫX : G→ GX.

The best known example of such a compactification is probably the Stone-C̆ech

compactification βS of S with S discrete. It is well known that addition in N and Z

may be extended to a binary operation in βN or βZ and that subtle combinatorial

properties are encoded in the algebraic properties of this operation, see [13] for a

wide assortment of examples.

Other examples of compactifications of this sort are the Bohr (or almost peri-

odic) compactification, the weakly almost periodic compactification or the LUC-

compactification induced, respectively, by the algebras AP(G), WAP(G) and

LUC (G)(G), see [3] for more information on these algebras.

As a matter of fact, the first extension of semigroup multiplications to compacti-

fications appeared in [1] in the context of Banach algebras. The unit ball A1 of a

Banach algebra A is a multiplicative semigroup. The unit ball A∗∗
1 of the bidual

of A with the weak∗-topology is then a compactification of A1. The embedding

given by the usual evaluation map: ǫA : A→ A∗∗.

1.2. Extending the semigroup operation. Näıve approach. Let (S, ·) be a

semigroup with a topology and let SX be a compactification of S. We would like to

extend the operation · to SX. If Φ,Ψ ∈ SX and Φ = limα ǫX(aα), Ψ = limβ ǫX(bβ),

with (aα)α and (bβ)β nets in S, we could define:

(1) Φ�Ψ = lim
α

lim
β
ǫ
X
(aα)ǫX(bβ).

This definition is clearly problematic, it is not even clear whether Φ�Ψ is uniquely

determined. There is also an arbitrary choice of sides that should be clarified.

When S = A is a Banach algebra and T = A
∗∗, Arens [1] proved that it is possible

to define a product on A∗∗ that satisfies (1), makes A∗∗ into a Banach algebra and

the morphism A→ A
∗∗ into a Banach algebra homomorphism.

If S is a discrete semigroup and X = LUC (G)(S) = ℓ∞(S), then SX = βS, the

Stone-C̆ech compactification of S. In this case SX is a subsemigroup of ℓ1(S)
∗∗ =
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M(βS) under �. Hence, � defines an operation on SX. The same idea of Arens

can be used to extend the group operation to other compactifications in such a

way that ǫX is a semigroup homomorphism. The relation between the resulting

algebraic structure and the topology varies depending on the algebra and the kind

of group.

2. Defining the Arens product

Arens rigorous definition of product applied to compactifications of semigroups

follows.

Definition 1. Let S be a semigroup with a topology and let X ⊆ CB(S) be a

C∗-algebra. Let p, q ∈ SX and φ ∈ X:

(1) First, define Tq,φ : S→ C, by Tq,φ(g) = q(Lgφ)

(2) If Tq,φ ∈ X, define ρq : S
X → SX by ρq(p)(φ) = p (Tq,φ).

(3) Finally, p�q = ρq(p).

This product is not defined for every C∗-subalgebra of CB(S), it works only for

those satisfying the condition in (2). When G is, e.g., a nondiscrete locally com-

pact group and X = CB(G), that condition is not satisfied. When X is, in the

terminology of [3, Definition 2.10] m-admissible, then Tq,φ ∈ X and (SX,�) is a

semigroup; it is actually a right topological semigroup.

With � thus defined, SX satisfies the limit property in (1).

Banach algebras. The Arens product was originally introduced in [1] as a way to

extend a bilinear operation to the bidual of a Banach space. The definition of �

in Definition 1 reduces to the original Arens product when S = A1, the unit ball

of a Banach algebra A, X = A
∗ (restricted to A1) and the bilinear operation is

multiplication on A. In that case, given Φ,Ψ ∈ A∗∗, f ∈ A∗ and a, b ∈ A the above

product can be read as follows.

(1) First, a right action of A on A∗ is defined by 〈f · a, b〉 = 〈f, a b〉 .

(2) Then a left action of A∗∗ on A∗ by 〈Ψ · f, a〉 = 〈Ψ, f · a〉 (Ψ ∈ A
∗∗).

(3) Finally: 〈Φ�Ψ, f〉 = 〈Φ,Ψ · f〉 .
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Observe that, in this case, Tψ,f = f · a. It is easily checked that f · a ∈ A∗, hence

the Condition in (2) of Definition 1 holds.

3. Properties of �

We summarize here some of the properties of �:

Theorem 2. Let S be a semitopological semigroup and let A be a Banach algebra

(1) (A∗∗,�) is a Banach algebra and the map Ψ 7→ Ψ�Φ is weak∗-continuous

for every Φ ∈ A∗∗.

(2) If S is discrete, (βS,�) is a right topological semigroup.

(3) If X ⊂ CB(S), (SX,�) is a semitopological semigroup if and only if

X ⊂ WAP(S), where WAP(S) is the algebra of weakly almost periodic

functions. (SX,�) is a topological group if and only if X ⊂ AP(S), where

AP(S) is the algebra of almost periodic functions.

4. Taking sides

Arens noticed that the order in the limits in (1) is important. We could actually

have swapped the order in the definitions of Section 2 and obtain another product

on A∗∗ or GX. If we denote this product as ♦, then

(2) Φ♦Ψ = lim
β

lim
α
ǫ
X
(aα)ǫX(bβ).

We see next that � and ♦ are sometimes different, and sometimes equal, and that

this does not depend only on the Banach space structure.

Example 3. Consider the Banach algebras A1 = (ℓ1(Z), ·) and A2 = (ℓ1(Z), ∗)

where · and ∗ denote, respectively, the pointwise and convolution products. Then:

(1) Φ♦Ψ = Φ�Ψ, for every Φ, Ψ ∈ A
∗∗
1

(2) There are p, q ∈ βZ ⊂ A∗∗
2 such that p♦q 6= p�q.

Proof. (1) Pointwise Product. Consider the usual duality c0(Z)
∗ ∼= ℓ1(Z),

ℓ1(Z)
∗ ∼= ℓ∞(Z). If R = c0(Z)

⊥ ⊂ ℓ1(Z)
∗∗, then it is not difficult to see that

A∗∗
1 = A1 ⊕R.
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One can deduce then from (1) and (2) that

Ψ�Φ = Ψ♦Φ = 0, if either Ψ or Φ belong to R.(3)

This, together with the equality A∗∗
1 = A1 ⊕ R, shows that Ψ�Φ = Ψ♦Φ for

every Ψ,Φ ∈ ℓ1(Z)
∗∗ and that, actually, all the action takes place in A1. (2)

Convolution Product. Consider for each z ∈ Z, the element δz ∈ ℓ1(Z) = A2

taking the value 1 at z and 0 for the remaining integers. Then δz1 ∗ δz2 = δz1+z2 .

Identifying δz with a point-mass measure, the map z 7→ δz sends Z into M(βZ),

the measure algebra of βZ. Observe that βZ ⊂M(βZ) = A∗∗
2 .

Let p ∈ βZ \Z be an accumulation point of N, that is p ∈ A∗∗
2 is an accumulation

point of {δn : n ∈ N} ⊂ A2, and let q ∈ βZ \ Z be an accumulation point of

−N. Then p = limα δnα
and q = limβ δ−mβ

, with nα,mβ ∈ N. Then p�q =

limα limβ δnα−mβ
∈ −N, while p♦q ∈ N . Denoting by χ

N
∈ A

∗
2 the characteristic

function of N, we see that 〈p�q, χ
N
〉 6= 〈p♦q, χ

N
〉. �

Theorem 4. Let S be a commutative semigroup and let SX be a compactification

of S. Let � and ♦ be operations on SX that, respectively, satisfy conditions (1)

and (2), then (SX,�) is commutative if and only if � = ♦.

We see as a consequence of Example 3 that βZ (and hence ℓ1(Z)
∗∗ with convolu-

tion) are not commutative.

5. Arens regularity and the center

We start by naming those Banach algebras for which both Arens products coincide.

Definition 5. We say that a semigroup S with compactification SX is Arens-

regular if p�q = p♦q for any p, q ∈ SX. In the case of a Banach algebra A the

term is applied to every Ψ,Φ ∈ A∗∗.

Example 3 already shows that ℓ1(Z) is Arens regular under pointwise product, and

that, under convolution it is not.

Once we have seen that even for algebras as simple as ℓ1(Z), the two Arens products

may be different, we wonder for what kind of elements this may happen. We then

define:
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Definition 6. Let (S, ·) be a semigroup with compactification SX. We define the

left and right topological center of SX as:

Z(ℓ)(SX) =
{
Φ ∈ SX : Φ�Ψ = Φ♦Ψ, for all Ψ ∈ SX

}
(4)

Z(r)(SX) =
{
Φ ∈ SX : Ψ�Φ = Ψ♦Φ, for all Ψ ∈ SX

}
(5)

Particularizing to the case of Banach algebras, it is not difficult to see that:

Proposition 7. Let A be a Banach algebra. Then:

(1) A ⊂ Z(ℓ)(A) ∩ Z(r)(A).

(2) Φ ∈ Z(ℓ)(A) if and only if the map Ψ 7→ Φ�Ψ is weak∗-continuous.

Theorem 8 (Some basic facts around regularity). We collect here a few general

results on Arens-regularity that constitute the core of what is known on the subject.

(1) (Takeda, 1954; Civin and Yood, 1961) C∗-algebras are Arens-regular.

(2) (Pym, 1965) A Banach algebra A is Arens-regular if and only if A∗ =

WAP(A), where

WAP(A) =
{
f ∈ A

∗ : lim
n

lim
m
f(an · bm) = lim

m
lim
n
f(an · bm), ∀ (an)n, (bm)m ⊂ A

}
.

(3) (Ülger, 1986) WAP(L1(G)) = WAP(G).

(4) (Young 1973) L1(G) is Arens-regular if and only if G is finite.

6. Irregularity

Since the main algebras of Harmonic Analysis are not regular it comes into question

how irregular they may be. Two ways of measuring when irregularity is as strong

as possible can be found in the literature: when the center is as small as possible

and when the quotienty A/WAP(A) is as large as possible.

Definition 9. Let A be a Banach algebra.

(1) (Dales and Lau [6]) A is strongly Arens irregular (SAI) if Z(ℓ)(A) = Z(r)(A) = A.

(2) (Granirer [11]) A is extremely non Arens-regular (ENAR) if there is a

closed linear subspace J ⊂
A

∗

WAP(A)
that has A∗ as linear quotient.
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Before the term had been coined Lau and Losert had already proved that L1(G)

is SAI for every locally compact group.

Theorem 10 (Lau and Losert, [15]). Let G be a locally compact group. L1(G) is

SAI if and only if G is finite.

7. L1(G) is ENAR

We outline in this section how to prove that L∞(G)/CB(G) contains an isometric

copy of L∞(G) for every locally compact group G. This means that L1(G) is

ENAR. We start with a useful observation.

Proposition 11 ([10, 7]). If κ = max{κ(G), χ(G)}, then there is a linear isometry

Ψ: L∞(G)→ ℓ∞(κ) .

7.1. Quotients. The focus is now on finding copies of ℓ∞(κ), with κ as large as

possible, in the quotients L∞(G)/WAP(G).

The concepts of X-interpolation set and approximable X-interpolation set proved

to be very helpful to find copies of ℓ∞(κ) in quotients. We address the reader to

[9] for the definitions of these terms and an in-length study of these concepts. In

[8] we found a fairly general method to find such quotients, based on a technique

first introduced by C. Chou:

Theorem 12 (Filali and Galindo, [8]). Let G be a locally compact group and

let X ⊂ Y ⊂ LUC (G)(G) be two C∗-subalgebras of CB(G). Let U be a compact

neighborhood of e such that T is right U -uniformly discrete. If G contains a family

of pairwise disjoint sets {Tη : η < κ} with:

(1) Tη is not an X-interpolation set for any η < κ.

(2)
⋃

η<κ

Tη is an approximable Y-interpolation set.

Then, there is a linear isometry Ψ: ℓ∞(κ)→ Y/X.

In a more or less explicit way, this approach is present in all the following results:
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Theorem 13. Let G be a locally compact group. In the following cases there exists

a linear isometry Ξ.

(1) ([8]) ΞΞΞ: ℓ∞
(
κ(G)

)
→

CB(G)

LUC (G)(G)
, if G is noncompact and nondiscrete.

(2) ([8]) ΞΞΞ: ℓ∞
(
κ(G)

)
→

WAP(G)

B(G)
, if G has small invariant neighbourhood.

(3) ([4]) ΞΞΞ: ℓ∞
(
κ(G)

)
→

LUC (G)(G)

WAP(G)
, if G is not compact.

It follows from (3) above and Proposition 11 that groups that are far from being

compact are ENAR. Let κ(G) denote the compact covering number of G and χ(G)

the local character:

Theorem 14 (Fong and Neufang, [10]; Bouziad and Filali [4]). If κ(G) ≥ χ(G),

then L1(G) is ENAR.

7.2. The compact case. After Theorem 14, it is clear that the case of compact

groups is the obviously outstanding one. For small groups this was solved by

Bouziad and Filali:

Theorem 15 (Bouziad and Filali, [4]). If G is compact, then there is a linear

isometry ψψψ : ℓ∞ →
L∞(G)

CB(G)
=

L∞(G)

WAP(G)
. Therefore L1(G) is ENAR if G is com-

pact and metrizable.

The proof of Theorem 15 is based on constructing an infinite collection of open

disjoint subsets of G to embed ℓ∞ in the quotient L∞(G)/CB(G) and then apply

Proposition 11. For nonmetrizable G we would need an uncountable family of

open disjoint subsets of G to be able to replace ℓ∞ by ℓ∞(κ). But compact groups

have countable cellularity, see [2, Corollary 4.18], and no such family exists.

To work with larger compact groups it was useful to understand that compact

groups are much like products.

Theorem 16 (Adapted from Grekas and Merkourakis, [12]). If G is a compact

group, there are two metrizable groups M1 and M2, two compact groups K1 and

K2 and two Haar measure preserving quotient maps:

φ1 : M1 ×K1 → G and φ2 : G→M2 ×K2.
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Theorem 16 reduces the compact case to the case of a product G =M×K withM

metrizable. We can then adapt the construction of Theorem 12 to this situation:

Theorem 17 (Filali and Galindo [7]). Let H andM be locally compact σ-compact

groups with M nondiscrete and metrizable. Then there exists a linear isometry

ΞΞΞ0 : ℓ∞(L∞(H)) −−−−→
L∞(M ×H)

CB(M ×H)
.

L∞(M ×H)

CB(M ×H)
.

L∞(M ×H)

CB(M ×H)
.

With this theorem providing the isometry Ξ0, it is possible to put together a family

of linear isometries like the following one that ultimately leads to Theorem 18.

L∞(G)

CB(G)

Ξ3←−−−−
L∞(M1 ×K1)
CB(M1 ×K1)

Ξ0←−−−− ℓ∞ (L∞(K1))

Ξ4

x

L∞(G)
Ξ2−−−−→ L∞ (M2 ×K2)

Ξ1−−−−→ ℓ∞ (L∞(K2)) .

Theorem 18 (Filali and Galindo [7]). If G is a compact group, there is a linear

isometry ψψψ : L∞(G)→
L∞(G)

CB(G)
. L1(G) is therefore ENAR.

A classical theorem of Davis to the effect that any locally compact groupG contains

an open subgroup that is Haar-homeomorphic (i.e. admits a homeomorpism that

preserves Haar measure) to Rn × K with K compact together with Theorem 18

and Theorem 15 finally gives:

Theorem 19 (Filali and Galindo [7]). If G is any locally compact group, then

L1(G) is ENAR.

8. Concluding Remarks

I would like to add that the study of Arens regularity in the algebras of Fourier

Analysis is by no means closed. While it is known that L1(G) is SAI and ENAR for

every infinite locally compact group, it is not known whether the Fourier algebra

is irregular for every such group. If κ(G) ≤ χ(G), Hu [14] proved that A(G) is

ENAR. Observe that, for Abelian G, A(G) is isometrically isomorphic to L1(Ĝ)

and that κ(G) = χ(Ĝ), so in the Abelian case, this would follow from Theorem 15.

Losert [16] recently posted a preprint showing that A(F (a, b)) is not SAI, proving

therefore that the analog of Theorem 10 is not true for the Fourier algebra of a
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nonAbelian group. On the other hand the algebra M(G) was recently shown to

be SAI for every locally compact group [17].
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Abstract

In this paper we improve several results presented in [2] and in [4] related

to characterize several kind of pseudocompleteness and compactness

properties in spaces of continuous functions of the form Cp(X,Y ). In

particular, we prove that for every space X and every separable metri-

zable topological group G for which Cp(X,G) is dense in GX , Cp(X,G)

is weakly α-favorable if and only if X is uG-discrete. This result helps

us to obtain two generalizations of a theorem due to V.V. Tkachuk in

[14]. Besides, we obtain several applications to weakly pseudocompact

spaces.

1. Notations, basic definitions and introduction

Throughout this article all topological spaces are considered Tychonoff and with

more than one point if the contrary is not specified.

1This research is supported by CONACyT and PASPA-DGAPA-UNAM.
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We are going to denote by Cp(X,Y ) the space of continuous functions fromX to Y

with the topology inherited by the product topology in Y X ; that is, the topology

in Cp(X,Y ) is the topology generated by all the sets of the form:

[x1, . . . , xn;B1, . . . , Bn] = {f ∈ Cp(X,Y ) : f(xi) ∈ Bi, i = 1, . . . , n}

where n ∈ ω, {x1, . . . , xn} ⊆ X, and B1, . . . , Bn are open subsets of Y. When Y

is the real line with its usual topology, we write Cp(X) instead of Cp(X,R). For

every space of the form Cp(X,Y ) considered in this article, the spaces X and Y

are such that Cp(X,Y ) is dense in Y X .

A compactification of a space X is a compact space K containing X as a dense

subspace. The statement “X ⊆ Y is Gδ-dense in Y ” means that each nonempty

Gδ-set in Y contains at least one point in X.

Pseudocompactness and the Baire property are outstanding classes of spaces, but

they are not productive. Efforts have been made to define classes of spaces which

contain all pseudocompact spaces, satisfy the Baire Category Theorem and are

closed under arbitrary topological products. One of the first successful achieve-

ment in this direction was the introduction of the class of pseudocomplete spaces

defined by J.C. Oxtoby in [11]. This paper was followed by that of A.R. Todd [15]

where he modified the definition given by Oxtoby and proved that his new class

of pseudocomplete spaces also satisfies the required conditions. We are going to

call these spaces Oxtoby complete and Todd complete, respectively, following the

terminology used in [2]. Whether the two properties are equivalent remains an

open question.

D.J. Lutzer and R.A. McCoy in [10] and V.V. Tkachuk in [13] analyzed Oxtoby

pseudocompleteness in spaces of real-valued continuous functions with the point-

wise covergence topology. They proved:

Theorem 1 ([10, Theorem 8.3]). Let X be a pseudonormal space. Then the fol-

lowing are equivalent: (1) Cp(X) is Oxtoby complete; (2) Cp(X) is weakly α-

favorable; (3) Player II has a winning strategy in the game Γ(X); (4) X is ω-

discrete; (5) Cp(X) is Gδ-dense in R
X .
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Theorem 2 ([13, Theorem 4.1]). The following conditions are equivalent for

every space X: (1) X is a Cω-discrete space; (2) Cp(X) is Oxtoby complete;

(3) υCp(X) = RX .

Another class of spaces which remains between pseudocompact spaces and Baire

spaces and is productive is the class of the so called weakly pseudocompact spaces

introduced in [7]. A space X is weakly pseudocompact if it is Gδ-dense in one of

its compactifications. F.W. Eckertson asked in [5] if the spaces Rω1 or Zω1 are

weakly pseudocompact. A more general problem is to characterize spaces X and

Y for which the space of continuous functions from X to Y with the pointwise

convergence topology, Cp(X,Y ), is weakly pseudocompact. Some contributions in

the direction of solving this problem are made in [2], [3] and [4].

In this article, we are going to continue the study of when a space Cp(X,Y ) satisfies

one of the three pseudocompleteness properties described above for Tychonoff

spaces X and Y such that Cp(X,Y ) is dense in Y X . Throughout this paper, we

improve some of the results obtained in [2] and [4], and we generalize a classic

result by V.V. Tkachuk.

2. Weakly α-favorable spaces

Definition 3. (1) A family B of sets in a topological space X is called π-base

(respectively, π-pseudobase) if every element of B is open (respectively,

has a nonempty interior) and every nonempty open set in X contains an

element of B.

(2) A space is Oxtoby complete (respectively, Todd complete, Telgarsky com-

plete) if there is a sequence {Bn : n < ω} of π-bases, (respectively, π-

pseudobases, bases) in X such that for any sequence {Un : n < ω} where

Un ∈ Bn and clXUn+1 ⊆ intUn for all n, then
⋂
n<ω Un 6= ∅. A se-

quence {Bn : n < ω} of π-bases, (respectively, π-pseudobases, bases) in X

which testifies that X is Oxtoby complete (resp., Todd complete, Telgar-

sky complete) is called Oxtoby sequence (resp., Todd sequence, Telgarsky

sequence).
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J.C. Oxtoby in [11] proved that all Oxtoby complete spaces have the Baire pro-

perty, and arbitrary products of Oxtoby complete spaces are Oxtoby complete.

A.R. Todd in [15] came up with a modification of the Oxtoby completeness prop-

erty: the Todd completeness. Of course, every Oxtoby complete space is Todd

complete. In [15], A.R. Todd observed that using similar argumentations to those

given by Oxtoby, it happens that every completely metrizable topological space

and every locally compact T2 space is Oxtoby complete, every Todd complete

space is a Baire space, and the arbitrary product of Todd complete spaces is Todd

complete. Moreover, he proved that every pseudocompact space is Oxtoby com-

plete (Proposition 2.4 in [15]). If X contains a dense Oxtoby complete subspace,

then X is Oxtoby complete [1]. For Telgarsky and Todd completeness:

Proposition 4. If X is dense in Y and X is Todd (resp., Telgarsky) complete,

then Y is Todd (resp., Telgarsky) complete.

The classical Banach-Mazur game BM(X) in a topological space X is defined as

follows: There are two players I and II. Player I starts the game by choosing a

nonempty open set B0 ⊆ X , and II responds by choosing a nonempty open set

B1 ⊆ B0. In the (n+ 1)st inning I chooses a nonempty open set B2n+2 ⊆ B2n+1,

and II responds with a nonempty open set B2n+3 ⊆ B2n+2, and so on. In this way

the two players produce a play

B0, B1, . . . , B2n, B2n+1, . . . (n < ω).

Player II wins this play if
⋂
n<ω Bn 6= ∅, and I wins otherwise. We will say that a

space X is weakly α-favorable if Player II has a winning strategy in the Banach-

Mazur game on X . (Choquet terminology: the Players I and II are called β and

α respectively). A space X is α-favorable if Player II has a stationary winning

strategy (a strategy which depends on the opponent’s last move only) in BM(X).

In [4] it was proved that every Todd complete space is weakly α-favorable; but

that proof shows, indeed, that every Todd complete space is α-favorable.

As it is well known, the open continuous image of a Baire space is a Baire space.

Whether such mappings also preserve Oxtoby completeness is an open problem. In

[1] the authors prove that the metrizable continuous image of an Oxtoby complete
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space is Oxtoby complete. The following theorem is a corollary of item (11) of

the Theorem in [16] where X is asked to be T0 and with a countable order base.

However, we would like to include a proof of this result with some modifications

to the original one given in [16] .

Theorem 5. Every weakly α-favorable metrizable space X contains a dense zero-

dimensional Gδ completely metrizable subspace.

Corollary 6. If X is weakly α-favorable, Y is metrizable and f : X → Y is

an onto open and continuous function, then Y contains a dense subset which is

completely metrizable.

Lemma 7. Every completely metrizable space is Telgarsky complete.

Corollary 8. A metrizable space Y is weakly α-favorable if and only if Y contains

a dense completely metrizable subspace.

Let P be the set of the following properties considered and defined in [2]: Oxtoby

countable compactness, Todd countable compactness, strong Sánchez-Okunev com-

pleteness, strong Oxtoby completeness, strong Todd completeness, Sánchez-Okunev

countable compactness and Sánchez-Okunev completeness. And let Q be the pro-

perties considered in [4]: α-favorability, weak α-favorability, having a Markov

winning strategy in the Choquet game. Diagram 2 in [2] shows the relations of

properties in P . This diagram can be completed adding the properties in Q by

taking into account that every Todd complete space is α-favorable [4], and in

every Telgarsky complete space Z Player II has a Markov winning strategy in the

Choquet game Ch(Z) [12, Theorem 2.2]. And Player II having a Markov winning

strategy in the Choquet game Ch(Z) implies that Player II has a Markov win-

ning strategy in the Banach-Mazur game BM(Z). Finally, Galvin and Telgarsky

in [8], Corollary 9, proved that a Markov winning strategy made by Player II in

BM(Z) can be reduced to a stationary winning strategy; that is, when Player II

has a Markov winning strategy in the Choquet game Ch(Z) it implies that Z is

α-favorable. Next theorem adds properties of Q to Theorem 4.1 in [2].

Theorem 9. If X is metrizable, then the following claims are equivalent: (1) X

contains a dense completely metrizable subspace; (2) X has property P ∈ P; (3)
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X has property Q ∈ Q; (4) X is Telgarsky complete; (5) X is Oxtoby complete;

(6) X is Todd complete.

3. Weakly pseudocompact spaces

A well known result by E. Hewitt [9] states that a space X is pseudocompact if

and only if X is Gδ-dense in βX. Then, every pseudocompact space is weakly

pseudocompact. In [7], S. Garćıa-Ferreira and A. Garćıa-Máynez introduced the

concept of weakly pseudocompact space, and proved the following theorems:

Theorem 10. (1) Every weakly pseudocompact space is Baire. (2) If X is weakly

pseudocompact and Lindelöf, then X is compact. (3) Weakly pseudocompactness

is productive.

Theorem 11 ([5]). (1) Weak pseudocompactness is not an inverse invariant of

perfect maps. (2) Weak pseudocompactness is not a direct invariant of open con-

tinuous maps with compact fibers. (3) Every zero set in a pseudocompact space is

weakly pseudocompact.

The following spaces are weakly pseudocompact: (1) Every locally compact non

Lindelöf space; (2) The completely metrizable hedgehog J(κ) with κ 6= ω spines.

Problem 12 ([5]). Are the uncountable products Zω1 ,Rω1 and Sω1 , where S is the

Sorgenfrey line, weakly pseudocompact spaces?

We have the following result which says that weak pseudocompactness can be

reflected from a ”big” power to certain ”small” power of a separable space.

Theorem 13. Let X be a separable space. If Xκ is weakly pseudocompact for

some cardinal κ, then Xc is weakly pseudocompact.

Proof. If κ ≤ c, there is nothing to prove since weak pseudocompactness is a

productive property. Assume that c < κ, and choose a compactification K of Xκ

such that Xκ is Gδ-dense in K. Fix x0 ∈ X . Let Z = Σx0
Xκ and ZA = {f ∈

Xκ : f ↾(κ\A)≡ x0}, for each A ⊆ κ. We will recursively construct a sequence

{Aα : α < c} of subsets of κ of cardinality at most c such that A =
⋃
α<c

Aα
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satisfies that ZA is Gδ-dense in clKZA. Let A0 be an arbitrary subset of κ of

cardinality c. Assume that α < c and that we have constructed Aβ for each β < α.

If α is a limit, we choose Aα =
⋃
{Aβ : β < α}. Assume now that α = β + 1. By

the Hewitt-Marczewski-Pondiczery Theorem, the space ZAβ
is separable. Since

any Tychonof separable space has weight at most c, we can choose a base Bβ for

the space clKZAβ
of cardinality at most c. Let Gβ = {

⋂
B : B ⊆ Bβ and |B| ≤ ω}.

Observe that |Gβ | ≤ c. Since Z is Gδ-dense in X
κ and Xκ is Gδ-dense inK, the set

Z is Gδ-dense in K. For each nonempty set G ∈ Gβ , fix a map fG ∈ G∩Z. Finally,

let Aα = Aβ ∪
⋃
{supp(fG) : G ∈ Gβ}, where supp(fG) = {x ∈ κ : fG(x) 6= x0}. It

is clear that the cardinality of Aα is at most c. We have finished our construction.

Now, let A =
⋃
{Aα : α < c} and observe that |A| ≤ c.

Claim. The set ZA is Gδ-dense in clKZA.

Proof of the Claim. Let G be a nonempty closed Gδ-set in clKZA. We may

assume that there exists a sequence {Un : n ∈ ω} of open sets in clKZA such that

G =
⋂
{Un : n ∈ ω} =

⋂
{clUn : n ∈ ω}. The compactness of G and clKZA implies

that χ(G, clKZA) = ψ(G, clKZA) ≤ ω. Then we may assume that, in addition,

{Un : n ∈ ω} is a base for the set G in clKZA. We will prove that G∩ clKZAα
6= ∅

for some α < c. Assume the contrary, that G∩ clKZAα
= ∅ for each α < κ. Given

α < κ, fix nα ∈ ω such that G ⊆ Unα
and Unα

∩ clKZα = ∅. Since the cofinality of

c is uncountable, there exists k < ω and a cofinal subset B of c such that nα = k

for each α ∈ B. Since the family {ZAα
: α < c} is increasing, we must have that

Uk ∩
⋃
{clKZAα

: α < c} = ∅. The fact that
⋃
{ZAα

: α < c} is dense in ZA

implies that Uk ∩ ZA = ∅. It follows from G ⊆ Uk that G = G ∩ clKZA = ∅;

which is a contradiction. Then we can fix α < c such that G ∩ clKZAα
6= ∅.

Fix f ∈ G ∩ clKZAα
. Since Bα is a base for clKZAα

, for each n < ω we can

choose Bn ∈ Bα such that f ∈ Bn ⊆ Un. Set H =
⋂
{Bn : n ∈ ω}. Note that

H ∈ Gα and f ∈ H ⊆ G. We know that fH ∈ H ⊆ G. On the other hand,

supp(fH) ∈ Aα+1 ⊆ A and so fH ∈ ZA. Therefore, fH ∈ G ∩ ZA.

Since XA is homeomorphic to ZA, the claim implies that XA is weakly pseudo-

compact. Finally, since |A| ≤ c and weak pseudocompactness is productive, Xc is

weakly pseudocompact. �

This work is licensed under a Creative Commons License CC BY-NC-ND 4.0

Editorial Universitat Politècnica de València
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4. Completeness type properties on Cp(X)

Now, we give some notions which will relate the completeness properties in function

spaces Cp(X,Y ) with properties on X and Y .

Definition 14. (1) A space X is ω-discrete if all countable subspaces of X

are discrete (or equivalently, are closed) in X .

(2) A subspace N of a space X is CY -embedded (resp., C-embedded) in X if

every continuous function f : N → Y (resp., every continuous function

f : N → R) has a continuous extension to all of X .

(3) A space X is uY -discrete (resp., u-discrete, b-discrete) if every countable

subset ofX is discrete and CY -embedded (resp., discrete and C-embedded)

in X.

(4) A space X is CYω -discrete if each one of its countable subsets is CY -

embedded.

Lemma 15. For every topological group and its dense subgroup H ⊆ G we have

H = G in case that H has a dense Čech-complete subspace.

Theorem 16. If Cp(X) is weakly α-favorable, then X is u-discrete. In particular

if Cp(X) is weakly pseudocompact, then X is u-discrete.

Proof. If Cp(X) is weakly α-favorable, then X is ω-discrete (see the proof of (b)⇒

(c) ⇒ (d) of Theorem 8.4 in [10], in which the extra hypothesis “X is pseudonor-

mal” required in the initial conditions of that theorem was not used). Let A be a

countable subset of X . Since X is ω-discrete, A is closed. Then, πA : Cp(X)→ RA

is open and continuous. The set πA[Cp(X)] is a dense topological subgroup of RA.

Because of Corollary 6 and Lemma 15, πA[Cp(X)] = Cp(A) = RA. This means

that A is C-embedded in X ; that is, X is u-discrete. �

The following result includes the properties in Q as giving before Theorem 9, and

the list of equivalences of Theorem 5.2 in [2] for G = R.

Theorem 17. The following conditions are equivalent. (1) X is u-discrete; (2)

Cp(X) is Todd complete; (3) Cp(X) is Oxtoby complete; (4) Cp(X) is Telgarsky

This work is licensed under a Creative Commons License CC BY-NC-ND 4.0

Editorial Universitat Politècnica de València
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complete; (5) Cp(X) satisfies P ∈ P; (6) Cp(X) satisfies Q ∈ Q; (7) Cp(X) is

Gδ-dense in RX ; (8) υCp(X) = RX .

Proof. By Proposition 16, the weaker property in Q, weak α-favorability, implies

that (1) holds. The equivalence of the conditions in (3), (4), (5) and (7) was

proved in [2, Th. 5.2]. Telgarsky completeness implies having a Markov winning

strategy in the Choquet game, and this last property implies α-favorability; so (4)

implies one of the properties in (6) which any one of them implies (1). Oxtoby

completeness implies Todd completeness and this implies α-favorability, hence (3)

⇒ (2) ⇒ one of the properties in (6). Finally, (1) ⇔ (3) ⇔ (8) is the Tkachuk

Theorem ([13, Theorem 4.1]; see Theorem 2, above). �

With respect to weak pseudocompactness and Problem 12, we have:

Corollary 18. The space Rκ is weakly pseudocompact if and only if Cp(X) is

weakly pseudocompact for every u-discrete space X with min{c, κ} ≤ |X |.

Proof. If Rκ is weakly pseudocompact, then Rc is weakly pseudocompact (Theo-

rem 13). Then R
X is weakly pseudocompact because this property is productive.

Let K be a compactification of RX in which RX is Gδ-dense. If X is u-discrete,

then Cp(X) is Gδ-dense in RX . Then K is a compactification of Cp(X) in which

Cp(X) is Gδ-dense. �

5. An application to separable metrizable topological groups

Lemma 19. Let G be a separable metrizable topological group and let D be a

dense subspace of GX . If φ : D → GY is a continuous map, then there exists a

subset A of X and a continuous map ψ : πA(D)→ GY such that |A| ≤ |Y | ·ω and

φ = ψ ◦ πA ↾D, where πA is the canonical projection from GX onto GA.

Lemma 20. Let G be a separable metrizable topological group and let φ : GX →

GX be an embedding with dense image. Then for every A ⊆ X there exists E ⊆ X

and an embedding φE : GE → GE such that A ⊆ E, |E| ≤ |A| · ω and φE ◦ πE =

πE ◦ φ.
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Lemma 21. Let G be a separable metrizable topological group and let φ : GX →

GX be an embedding. Then, (1) If G is Čech complete and φ(GX) is a dense

subgroup of GX , then φ(GX) is Gδ-dense in GX ; and (2) If φ(GX) is Gδ-dense

in GX , then φ(GX) = GX .

Lemma 22. Let G be a space. If H is a dense subset of GX , then |X | ≤ χ(H).

The following theorem is a generalization of the Theorem in [14].

Theorem 23. Let G be a separable completely metrizable topological group. If H

is a dense subgroup of GX and H is homeomorphic to GY for some set Y , then

H = GX .

Proof. By Lemma 22 we know that |X | ≤ χ(H). Let φ : GY → H be a homeomor-

phism. Note that |Y | = w(GY ) = w(H) ≤ w(GX ) = |X | ≤ χ(H) = χ(GY ) = |Y |

and hence |Y | = |X |. As a consequence, we can assume that Y = X . In virtue of

Lemma 21 we must have that H = φ(GX) = GX . �
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In this paper, we do some observations about the order defined on a

real Banach space, in order to revise the concept of cone metric space.
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1. Introduction

The aim of this paper and its continuation (Some remarks on cone metric spaces,

in this same issue) is to revise some concepts and results appeared in the notion

of cone metric space given in [1] by L. Huang and X. Zhang. Here we will do some

observations on the order that formally is given in a real Banach space.

1This research is supported under grant MTM2015-64373-P (MINECO/FEDER, UE).
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2. Order on a real Banach space

Regarding to the appearance of cone metric spaces, at the end of [2] the authors

suggest to replace Banach spaces by certain topological groups in the construction

of new spaces. So, we begin stating, for groups and for topological vector spaces,

a similar order to the given for Banach spaces.

In this section (E,+) is an additive group and θ denotes the zero of E.

Definition 1. Let H be a non-trivial monoid of the additive group (E,+). We

will say that H is strict if H ∩ (−H) = {θ} (i.e. h,−h ∈ H implies h = θ), where

−H = {e ∈ E : −e ∈ H}.

Obviously, if H is a strict monoid then −H is also a strict monoid.

We can define a partial order ≤H in E as follows:

For all x, y ∈ E we define x ≤H y if and only if y − x ∈ H . As usual x <H y

denotes x ≤H y with x 6= y.

For simplicity, if confusion is not possible, the order ≤H defied by H on E will be

denoted by .. The notation ≤ will be used for the usual order of R.

Example 2. (a) Take E = R with the usual addition +. Consider the strict

monoid H = [0,∞[. The order . defined by H on H is the following.

For all x, y ∈ E we have that x . if and only if y − x ∈ H if and only

if y − x ≥ 0 if and only if y ≥ x. So, in this case, . is the usual order

on R. So (E,.) is a totally ordered set. If we take the strict monoid

−H =]−∞, 0] then we obtain the converse order, that is x . y if and only

if x ≥ y.

(b) Take E = Z with the usual addition +. Consider the strict monoid H =

{0, 2, 4, ...}. The order . defined by H on E is the following.

For all x, y ∈ E we have that x . y if and only if x ≤ y and both x

and y are even or both are odd. In this case (E,.) is not totally ordered;

nevertheless (H,.) is well-ordered.
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54



Some comments to cone metric spaces

(c) Take E = R2 with the usual addition of vectors. Consider the strict

monoid H = {(x, y) : x ≥ 0, y ≥ 0}. The order . defined by H on E is

the following.

For each (x1, y1), (x2, y2) ∈ R2 we have that (x1, y1) . (x2, y2) if and

only x1 ≤ x2 and y1 ≤ y2. Clearly (E,.) is not totally ordered, but it

is a lattice. Indeed, denote by M = max{x1, x2}, N = max{y1, y2},m =

min{x1, x2}, n = min{y1, y2}. Then (x1, y1)∨(x2, y2) = (M,N) and (x1, y1)∧

(x2, y2) = (m,n), where ∨ and ∧ denotes supremum and infimum, respec-

tively.

Also, (H,.) is a lattice and not totally ordered.

(d) Take E = R
2 with the usual addition of vectors. Consider the strict

monoid H = {(x, y) ∈ R2 : x > 0, y > 0} ∪ {(0, 0)}. The order . defined

by H on Eis the following.

For each (x1, y1), (x2, y2) ∈ R2 we have that (x1, y1) . (x2, y2) if and

only x1 < x2 and y1 < y2, whenever (x1, y1) 6= (x2, y2). Clearly (E,.) is

not totally ordered. Further, (E,.) is not a lattice. Indeed, for instance,

the set of upper bounds of {(−3, 5), (4, 2)} is U = {(m,n) : m > 4, n > 5}

and U has not a least element.

Also, (H,.) is not totally ordered and it is not a lattice neither.

For achieving the cone metric space’s concept and some of its properties we will

need some richer structures on E and on H . So, in the rest of this section (E,+)

will be a real vector space.

Definition 3. A subset H 6= {θ} of the real vector space (E,+) will be called a

hemispace if αx+ βy ∈ H whenever α, β ≥ 0, x, y ∈ H , and H ∩ (−H) = {θ}.

Clearly, a hemispace is a strict monoid.

Let B = {v1, . . . , vr} a linearly independent system of vectors in E. We define the

following subset generated by B:

< B >= {v ∈ E : v =
r∑

i=1

λivi, λi ≥ 0, i = 1, . . . , r}.
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The scalars λi, i = 1, . . . , r, are called coordinates of v (with respect to B), and

obviously they are unique.

Proposition 4. < B > is a hemispace of E.

Proof. If x, y ∈< B > and α, β ≥ 0 it is obvious that αx+ βy ∈< B >.

Now, suppose that h ∈< B > and h ∈ − < B >. Note that it means that

−h ∈< B > and so there exist λi, µi ≥ 0, i = 1, . . . , r, such that h =
r∑
i=1

λivi

and −h =
r∑
i=1

µivi. Then, θ = h − h =
r∑
i=1

λivi +
r∑
i=1

µivi =
r∑
i=1

(λi + µi)vi, thus

λi + µi = 0 for each i = 1, . . . , r and consequently λi = µi for each i = 1, . . . , r.

Hence, h = θ. �

We will say that B is a (finite) base for < B > and it is easy to observe that

if B is not a linearly independent system of vectors then < B > could not be a

hemispace.

Example 5. (a) The strict monoid H of (c) in Example 2, is a hemispace of

(R2,+). Clearly, {(1, 0), (0, 1)} is a base for H .

(b) The strict monoid H of (d) in Example 2 is a hemispace of (R2,+), but

there not exists any base that generates that hemispace. Indeed, suppose

that {(x1, y1), (x2, y2)} is a base for H = {(x, y ∈ R2 : x > 0, y > 0} ∪

{(0, 0)}. Necessarily it is satisfied xi > 0 and yi > 0, i = 1, 2. Suppose,

without lose of generality, that y2
x2
> y1

x1
.

Take (x, y) ∈ H , with x > 0, y > 0. Suppose that (x, y) cannot be

written as α(x1, y1) with α ≥ 0, neither β(x2, y2) with β ≥ 0. Then,

(x, y) = α(x1, y1) + β(x2, y2).

Now, from βy2
βx2

> αy1
αx1

we have that

y

x
=
αy1 + βy2
αx1 + βx2

>
αy1
αx1

=
y1
x1
.

In particular, (x1,
1
2y1) ∈ H , should satisfy the last inequality but it is not

fulfilled since
1
2
y1
x1

= y1
2x1

< y1
x1
. So, (x1,

1
2y1) cannot be written as a linear

expression of {(x1, y1), (x2, y2)}
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At the light of the last example it raises the following question.

Question 6. Let (E,+) be a Hausdorff topological vector space. If the hemispace

H of E has a finite base then, is H closed?

Next we recall the concept of cone in a real Banach space.

Definition 7 (Huang and Zhang [1]). Let (E,+) be a real Banach space and let

P a non-empty subset of E. Then P is called a cone of E if it satisfies the following

(i) P is closed and P 6= {θ}.

(ii) x, y ∈ P , α, β ≥ 0 implies αx+ βy ∈ P .

(iii) P ∩ (−P ) = {θ}.

So, P is a cone of E if P is a closed (non-trivial) hemispace of (E,+).

Then, for a given cone P ⊂ E we can define the above partial order . on E, with

respect ot P , given by

x, y ∈ E then x . y if and only if y − x ∈ P.

Notice that θ . x, for each x ∈ E, is equivalent to write x ∈ P .

For x, y ∈ E it is denoted x≪ y whenever y − x ∈ intP , where intP denotes the

interior of P . Then θ ≪ x is equivalent to say that x ∈ intP .

Next we give an example of a cone of R2, which is related with Example 5 and

Question 6.

Example 8. Let E = R2 with the Euclidean norm. Then P = {(x, y) ∈ R2 : x ≥

0, y ≥ 0} is closed in E and in addition it is a cone of R2, but H = {(x, y)R2 : x >

0, y > 0} ∪ {(0, 0)} is not a cone since H is not closed.
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57



V. Gregori and J. J. Miñana

3. Regular and normal cones

In this section (E,+) is a real Banach space.

Definition 9 (Huang and Zhang [1]). A cone P of E is called normal if there

exists M > 0 such that for all x, y ∈ P it is satisfied

(1) x . y implies ||x|| ≤M · ||y||.

In [4] the authors have proved that there are not normal cones with M < 1 in (1).

Example 10. Let E = R with the usual norm | · |. Then, P = [0,∞[ is a cone of

E and it is normal. Indeed, for every x, y ∈ P with x . y we have that y−x ∈ P ,

that is y − x ≥ 0 or equivalently x . y and so |x| ≤ |y|, since y ≥ x.

Then (1) is fulfilled by M = 1, and by the result mentioned above of [4], 1 is the

least number satisfying (1).

The following definition appeared in [1] (and it was reproduced in [4] and [3]).

Definition 11. The least positive number satisfying (1) in a normal cone P is

called the normal constant of P .

We have just seen that 1 is the normal constant in Example 10. Nevertheless, the

following is an immediate question.

Question 12. There exists a normal constant for each cone? (That is, there exists

a least value M satisfying condition (1)?).

In Proposition 2.2 of [4] the authors write: “For each K > 1 there is a normal cone

with normal constant M > K”. In the proof the authors constructed a family of

normed spaces {EK : K > 1} and for each one they find a normal cone PK such

that (1) is fulfilled for someM > K. Now, the authors did not prove the existence

of the least value M satisfying condition (1).

Remark 13. We notice that the authors of [5] call normal constant of P simply to

any number M ≥ 1 satisfying condition (1).
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Definition 14. A cone P of E is called regular if every increasing sequence which

is bounded from above is convergent, that is if {xn} is a sequence in P such that

x1 . x2 . · · · . xn . · · · . y,

for some y ∈ E, then there is x ∈ E such that ||xn − x|| → 0 as n→∞.

Equivalently, P is regular if and only if every decreasing sequence which is bounded

from below is convergent.

Remark 15. The concept of regular cone appeared in [1] is reproduced in [4, 5];

nevertheless this concept is not used in [1] neither in [5]. In these three cases one

should suppose that, in general, the sequence {xn} of Definition 14 is in E. In

fact, it is in [2] where it is explicitly written that xn ∈ E, for each n ∈ N.

Now, Proposition 2.2 of [4], in which this concept is used, sheds no light on the

belonging of xn, and on the other hand, in the proof, by contradiction, that regular

implies normal (Lemma 1.1 [4]) it shows (implicitly) that the following weaker

version also implies normality:

A cone P of E is regular if for every sequence {xn} ∈ P satisfying θ . x1 . x2 .

· · · . xn . · · · . y, for some y ∈ P , there exits x ∈ P such that limn ||xn−x|| = 0.

The authors have observed that both definitions are equivalent.
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In this paper we continue our “Some comments to cone metric spaces”.

We revise the concept of cone metric space and some results related to

it. We also observe some controversies appeared on that concept.
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1. Introduction

As we have said in the first part (Some comments to cone metric spaces, in this

same issue), recently, Huang and Zhang [3] have introduced the concept of cone

metric space (Definition 1). Basically, a cone metric space is a structure regarding

the theory of metric spaces but replacing the set of non-negative real numbers

by an ordered Banach space, and so, obviously, the class of cone metric spaces

contains the class of metric spaces. The aim of the authors were to obtain fixed

point theorems that generalize the Banach Contraction Principle and fixed point

1This research is supported under grant MTM2015-64373-P (MINECO/FEDER, UE).
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theorems given for other notions of contractive mappings in metric spaces. The

above study was continued in [7] (where some results on fixed point theory were

generalized) and in [3] (where the authors proved that a Hausdorff topology is

deduced from a cone metric). Later in [5] the authors have proved that cone

metric spaces are metrizable. Recently in [6] the authors have extended the theory

to fuzzy setting.

In this paper, continuing our first part, we do some comments and analyse some

ideas which arise in the reading of the mentioned papers. At the end, a section

devoted to some controversies appeared on that concept, is included

2. Cone metric spaces

In this section (E,+) is a real Banach space, P is a cone in E with intP 6= ∅ and

. the partial order on E with respect to P .

Definition 1 (Huang and Zhang [3]). A cone metric space is an ordered quadruple

(X, d,E, P ), where X is non-empty set, E is a real Banach space, P is a cone of

E with intP 6= ∅ and d : X ×X → P is a mapping satisfying

(d1) d(x, y) = θ if and only if x = y;

(d2) d(x, y) = d(y, x) for all x, y ∈ X ;

(d3) d(x, z) . d(x, y) + d(y, z) for all x, y, z ∈ X .

In this case, we will say that d is a cone metric on (X,E, P ).

If confusion is not possible, we will say that (X, d) is a cone metric space or d is

a cone metric on X .

Remark 2. Clearly, a classical metric space (X, d) is a cone metric space. (Indeed,

notice that P = [0,∞[ is a cone with intP 6= ∅ in the real Banach space (R, | · |)

of Example 10 in the first part.

Definition 3 (Huang and Zhang [3]). Let {xn} be a sequence in the cone metric

space (X, d) and let x ∈ X . Then:
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(i) {xn} is called convergent to x if for any c ∈ P with c ≫ θ there exists

n0 ∈ N such that d(xn, x)≪ c for all n ≥ n0.

(ii) {xn} is called Cauchy if for any c ∈ P with c≫ θ there exists n0 ∈ N such

that d(xn, xm)≪ c for all n,m ≥ n0.

(iii) a cone metric (X, d) is called complete if every Cauchy sequence is con-

vergent.

Remark 4. As the reader can observe, the last two definitions regard the corre-

sponding concepts in classical metric space, and formally, they only differ from

the classical concepts on slight changes in the notations.

It is easy to observe the possibility of continuing this theory generalizing classical

concepts or extending this theory to other fields, for instance, to fuzzy setting.

In fact, the concept of fuzzy cone metric space, that we could say in the sense of

George and Veeramani, has recently appeared [6].

But, what about the proofs? As the reader has been noted the role of the positive

ǫ ∈ R+, is taken by c ∈ intP . In the case that for a given positive ǫ ∈ R+ one

should need c ≫ θ with ||c|| < ǫ, a way for obtaining a such c is the following.

Since intP 6= ∅ we can take e ∈ intP with e 6= θ, and we also can choose λ > 0

such that λ||e|| < ǫ. If we call c = λe, clearly c ∈ intP and ||c|| = λ||e|| < ǫ.

In the case that P is a normal cone satisfying (1) in the first part for someM > 0,

and if one is interested in obtaining c ∈ intP with M · ||c|| < ǫ, then, attending to

the last paragraph it is enough to choose λ > 0 such that λ
M ||e|| < ǫ.

In the next lemma we have compiled some results used in [3, 6, 7, 9], for obtaining

the proofs of their results.

Lemma 5. Let P be a cone of E. Then:

(i) intP + intP ⊂ intP , [7].

(ii) λ · intP ⊂ intP , [7].

(iii) For each c≫ θ there exists δ > 0 such that (c− x) ∈ intP for each x ∈ X

satisfying ||x|| < δ (i.e. x≪ c whenever ||x|| < δ, x ∈ E), [3, 9].

(iv) For each c1, c2 ≫ θ there exists θ ≪ c such that c≪ c1 and c≪ c2, [9].
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For proving the metrizability of cone metric spaces the authors proved (Lemma

3.1, 3.2, 3.3 of [5]):

Lemma 6. Let (X, d) be a cone metric space. Then:

(i) For x ∈ P and y ∈ intP there exists n ∈ N such that x≪ ny.

(ii) If y ∈ intP then x & y implies x ∈ intP .

(iii) x . y ≪ z implies x≪ z.

Definition 7 ([9]). A cone P of E is called minihedral if for each x, y ∈ E there

exists sup{x, y}, and strongly minihedral if every subset of E which is bounded

from above has a supremum.

In [3] the fixed point theorems are stated for normal cones. For instance the

Banach Contraction Principle is written as follows.

Theorem 8. Let (X, d,E, P ) be a complete cone metric space, where P is a normal

cone with normal constant M ≥ 1. Suppose that the mapping T : X → X satisfies

the contractive condition

d(Tx, T y) . K · d(x, y), for each x, y ∈ X,

where K ∈]0, 1[. Then, T has a unique fixed point in X and for each x ∈ X the

iterative sequence {T nx} converges to the fixed point.

This theorem is a generalization of the Banach Contraction Principle since, at-

tending to Remark 2, every metric space is a cone metric space, when considering

the cone P = [0,∞[ of (R, | · |). For this cone we have just seen in Example 10 in

the first part that 1 is the normal constant of P .

Other three fixed point theorems are given in [3] for complete cone metric space

assuming the existence of the normal constant. Now, it is easy to observe in

the proofs of these theorems that it is only required the existence of a value M

satisfying condition (1) in the first part. Further, in [7] the authors have generalized

these theorems removing in all of them the condition of normality of P .
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3. Some controversies on cone metric spaces

After the authors in [3] defined the concept of cone metric space, many authors

are working on this concept. But, some of them wonder if cone metric spaces

are really a generalization of metric spaces. Other authors ensure that some fixed

point generalizations given for cone metric spaces are not so.

In this sense, in [1] the authors assert that by renorming an ordered Banach Space,

every cone P can be converted to a normal cone with normal constant M = 1

and consequently due to this approach every cone metric space is really a metric

space and every theorem given in metric spaces is valid for cone metric spaces,

automatically.

Now, the authors in [8] show that content of the last paper is not true. We note

that the quote is not exactly [1], since they referenced it as [M. Asadi, S. M.

Vaezpour, H. Soleimani, Metrizability of cone metric spaces via renorming teh

BAnach space, arXiv:1102.2040v1[math.FA] 10 Feb 2011.].

In [4] the author discusses the concept of cone metric space and he shows that many

of the new results are merely copies of the classical ones. He basis his assertion

proving that cone metric spaces have a metric type structure [4, Theorem 2.6].

Finally, in the abstract of [2] (See the tittle of the paper) the author writes: “In

this short note we present a different proof of the known fact that the notion of a

cone metric space is not more general than that of a metric space”. Its assertion

is based on his next result:

Theorem 9 (Z. Ercan [2, Theorem 1.4]). Let X be a non-empty set, E be an

ordered vector space with cone P and e ∈ int(P ). For a function d : X ×X → P ,

define d̄ : X ×X → R+ by d̄(x, y) = inf{λ ∈ R+ : d(x, y) ≤ λe}.

(i) If d is a cone metric, then d̄ is a metric.

(ii) If ρ : X×X → R+ is a metric, then there exists a cone metric p : X×X →

P such that ρ = p̄.

This work is licensed under a Creative Commons License CC BY-NC-ND 4.0

Editorial Universitat Politècnica de València
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Abstract

A space is called ultracomplete (cofinally Čech-complete) if its remain-

der in some compactification is hemicompact. A space is called almost

locally compact if its remainder in some compactification is locally com-

pact and Lindelof. In this work we summarize several known results

about ultracomplete and almost locally compact spaces.

1. Introduction and preliminaries

Romaguera introduced in [14] the class of cofinally Čech-complete spaces in or-

der to characterize metrizable spaces which admits cofinally complete metric, he

proved that a metrizable space has a cofinally complete metric if and only if it

is cofinally Čech-complete. In [13] Ponomarev and Tkachuk defined a space X

to be strongly complete, if χ(X, βX) ≤ ω. Buhagiar and Yoshioka proved in [4]

that cofinal Čech-completeness is equivalent to strong completeness and renamed

it as ultracompleteness. In [8] a space X is said to be almost locally compact if

1This work was supported by UACM and Conacyt grant 261983.
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there is a compact K ⊂ X such that χ(K,X) ≤ ω and nlc(X) = {x ∈ X : X is

not locally compact at x} ⊂ K. In this work we summarize several properties of

ultracomplete and almost locally compact spaces obtained in [2]–[16].

All spaces under consideration are assumed to be Tychonoff. The space R is the

set of real numbers with its natural topology. For any space X let Cp(X) be the

space of continuous functions from X to R endowed with the topology of pointwise

convergence. The Stone-Čech compactification of a space X is denoted by βX .

The character of X at its subspace A ⊂ X , denoted by χ(A,X), is the minimal of

the cardinalities of all outer bases of A in X . A space X is Čech-complete if it is

a Gδ-set in some compactification cX (equivalently in any compactification kX).

A space X is called hemicompact if there is a countable family {Kn : n ∈ N} of

compact subsets of X such that for any compact K ⊂ X there exists n ∈ N for

which K ⊂ Kn. A space X is of (pointwise) countable type if for any compact

F ⊂ X (x ∈ X) there exists a compact K ⊂ X such that F ⊂ K (x ∈ K)

and χ(K,X) ≤ ω. Every Čech-complete space if of countable type. A sequence

{xn : n ∈ N} in a metric space (X, d) is called cofinally Cauchy if ∀ǫ > 0 there

exists an infinite set Nǫ ⊂ N such that for any i, j ∈ Nǫ we have d(xi, xj) < ǫ. A

metric space is called cofinally complete if any cofinally Cauchy sequence has a

cluster point.

2. Ultracomplete spaces and their properties.

Definition 1. A space X is called cofinally Čech-complete ([14]) if there is a

countable collection {Gn : n ∈ N} of open covers of X satisfying the property that

whenever F is filter on X such that for each n ∈ N there is some Gn ∈ Gn which

meets all the members of F , then F has a cluster point.

Romaguera introduced the previous definition in order to characterize those metri-

zable spaces which admit cofinally complete metric.

Theorem 2 ([14], Theorem 2). A metrizable space admits a cofinally complete

metric if and only if it is cofinally Čech-complete.
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Theorem 3. For any Tychonoff space X, the following conditions are equivalent:

i) χ(X, cX) ≤ ω for some compactification cX of X;

ii) χ(X, kX) ≤ ω for every compactification kX of X;

iii) cX \X is hemicompact for some compactification cX of X;

iv) kX \X is hemicompact for every compactification kX of X.

Definition 4 ([13]). A space X is called ultracomplete if it satisfies one of the

conditions of the previous proposition.

Buhagiar and Yoshioka proved in Theorem 2.2 of [5] that a space is ultracomplete

if and only if it is cofinally Čech-complete. From definition it follows that any

locally compact space is ultracomplete and that any ultracomplete space is Čech-

complete. For a given space X , denote by nlc(X) the set of all the points of non

local compactness of X . In [6] and [13] it was proved the next fact about nlc(X).

Proposition 5. If X is an ultracomplete space, then nlc(X) is bounded in X.

From the previous fact it follows that an ultracomplete space without points of

local compactness is pseudocompact.

Example 6. i) The set of all irrationals numbers with its natural topology induced

from R is a non-ultracomplete Čech-complete space.

ii) The spaceX = [0, 1]\{ 1n : n ∈ N} is ultracomplete and it is not locally compact.

It was proved independently in [6] and [13] that a paracompact space X is ultra-

complete if and only if the subspace nlc(X) is contained in a compact subset of

countable outer character. The following definition was motivated by the last fact.

Definition 7 ([8], Definition 2.2). Call a space X almost locally compact if there

is a compact K ⊂ X such that χ(K,X) ≤ ω and nlc(X) ⊂ K. It is worth

mentioning that in [16] an almost locally compact space is called c-ultracomplete.

Thus a paracompact space is ultracomplete if and only if it is almost locally com-

pact. If X is a Čech-complete space and nlc(X) is compact, then X is almost
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locally compact, because it is of countable type. From definitions we have the

implications:

locally compact ⇒ almost locally compact ⇒ ultracomplete ⇒ Čech-complete

Proposition 8 ([16], Theorem 1.8). For any space X, the following conditions

are equivalent:

i) X is almost locally compact;

ii) cX \X is locally compact and Lindelöf for some compactification cX of X;

iii) kX \X is locally compact and Lindelöf for every compactification kX of X.

Buhagiar and Yoshioka proved in [4] that ωω1 is an ultracomplete space without

points of local compactness, hence it is not almost locally compact. The follow-

ing proposition provides a family of ultracomplete spaces without points of local

compactness, these spaces are not almost locally compact.

Proposition 9 ([8], Theorem 2.10). Let X be an infinite compact space. If F (X)

is the Markov free topological group of X, then Y = β(F (X)) \ F (X) is an ultra-

complete space without points of local compactness.

The examples given above, of ultracomplete spaces without points of local com-

pactes, are countably compact. In contrast we have the following

Example 10. In Theorem 3.15 of [9] it was stablished the existence a dense

countable subspace of {0, 1}c without nontrivial convergent sequences. If D is

such subspace, then it was proved in Example 3.16 of [9] that X = {0, 1}c \D is

ultracomplete non-countably compact and has no points of local compactness.

Buhagiar and Yoshioka asked, in Problem 5.3 of [4], whether a countably compact

Čech-complete space is ultracomplete. In [10] we can find the answer to this

question.

Example 11. In Lemma 3.10 of [10] it was proved the existence of an open set

U ⊂ N∗ = βN \N such that U is countably compact and N∗ \U is not σ-compact.

The authors proved in Theorem 3.11 of [10] that Y = (N∗ \ A) ∪ U , where A
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is a countably infinite discrete subspace of N∗, is a non-ultracomplete countably

compact Čech-complete space.

From definitions it easily follows that if X is ultracomplete (almost locally com-

pact) and Y ⊂ X is closed, then Y is ultracomplete (almost locally compact).

It is well known that a Gδ subset of a Čech-complete space is Čech-complete, in

contrast we have the following

Example 12 ([4], Example 2.3). If A = {xn : n ∈ N} ⊂ βN \ N, let X ⊂ βN

be defined by X = βN \ A. Then X is a countably compact, ultracomplete, non-

locally compact space. The space X × βN is ultracomplete, X × N is open in

X × βN and it is not ultracomplete.

Example 13 ([4], Example 3.3). Let p : R → R/Z be the natural quotient func-

tion. The space R is ultracomplete and p is a closed function, because Z is closed

in R. The space R/Z is not of pointwise countable type and so it cannot be

Čech-complete.

An open continuous image of a Čech-complete space is not necessarily Čech-

complete. Perfect images and perfect preimages of Čech-complete spaces are Čech-

complete.

Proposition 14. i) ([6], Proposition 2) The open continuous image of an ultra-

complete space is ultracomplete.

ii) ([6], Theorem 1) Let f be a perfect function from a space X onto a space Y .

Then X is ultracomplete if and only if Y is ultracomplete.

Proposition 15. i) ([8], Proposition 2.3) An open continuous image of an almost

locally compact space is also almost locally compact.

ii) ([16], Theorem 2.3) Let f be a perfect function from a space X onto a space

Y . Then X is almost locally compact if and only if Y is almost locally compact.

It was proved the equivalence of ultracompleteness and almost local compactness

in some classes of topological spaces. Yoshioka proved in [16] the equivalence of

these concepts in the classes of normal γ-spaces and ks-spaces. Buhagiar proved

in [3] the same result in the class of GO spaces.
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3. Products and hyperspaces of ultracomplete spaces.

Proposition 16 ([4], Theorem 4.12). Let X and Y be two ultracomplete spaces.

Then X × Y is ultracomplete if, and only if, one of the following conditions holds:

i) X and Y are locally compact,

ii) either X or Y is countably compact, locally compact,

iii) both X and Y are countably compact.

Proposition 17 ([4], Theorem 4.16). Let Xn be an ultracomplete, countably com-

pact space for every n ∈ N, then X =
∏
n∈N

Xn is ultracomplete countably compact.

The space X = ([0, 1] \ { 1n : n ∈ N})×N = ({0} × N) ∪ ((0, 1] \ { 1n : n ∈ N})×N)

is the union of two locally compact spaces, and it is not almost locally compact,

because nlc(X) = {0} × N is not compact.

Proposition 18 ([12], Theorem 2.7). If X is a metrizable space, n ∈ N and Xn =

X1 ∪X2 ∪ · · · ∪Xn, where every Xk is ultracomplete then X is also ultracomplete.

Proposition 19 ([12], Theorem 2.8). If Xω is a union of countably many of its

ultracomplete subspaces, then the space Xω is ultracomplete.

Proposition 20 ([10], Theorem 3.15). For any space X and n ∈ N, if Xn =

X1 ∪ X2 ∪ · · · ∪ Xn and every Xk is almost locally compact, then X is almost

locally compact.

For any space X let K(X) ( KC(X)) be the hyperspace of all nonempty compact

(compact connected) subsets of X endowed with the Vietoris topology. For any

n ∈ N we denote by Fn(X) the hyperspace of all non empty subsets of cardinality

≤ n endowed with the topology induced by K(X). It is well known that X is

Čech-complete (locally compact) if and only if K(X) is Čech-complete (locally

compact). If (Y, d) is a metric space, let dH denote the Hausdorff metric induced

by d in the hyperspace K(Y ).

Example 21 ([7], Example 2.12). If X = [0, 1] \ { 1n : n ∈ N}, then:

i) X and KC(X) are almost locally compact,
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ii) K(X) and Fn(X) are not almost locally compact for all n > 1,

Proposition 22 ([7], Proposition 2.11). The space K(X) is almost locally com-

pact if and only if X is locally compact.

From propositions 14 and 16 it follows the next proposition.

Proposition 23. If the hyperspace K(X) is ultracomplete, then X is ultracomplete

and either countably compact or locally compact. If in addition K(X) has no

points of local compactness, then X is countably compact and has no points of

local compactness.

Example 24. The space X defined in Example 10 is ultracomplete non-countably

compact and has no points of local compactness. From Proposition 23 it follows

that K(X) is not ultracomplete.

Proposition 25 ([7], Proposition 3.7). If X is a countably compact ultracomplete

space, then Fn(X) is ultracomplete countably compact for any n ∈ N.

Künzi and Romaguera proved the next

Proposition 26 ([11], Corollary 3.5). A metric space (X, d) is uniformly locally

compact if and only if (K(X), dH) is cofinally complete.

Beer has also worked on cofinal completeness in [2]. He obtained, among other

things, the next two propositions.

Proposition 27 ([2], Theorem 4.1). If X is a metrizable space, then X is ultra-

complete if and only if whenever A is a closed subset of nlc(X) we have χ(A,X) ≤

ω.

If (X, d) is a metric space, x0 ∈ X and ǫ > 0, we denote Sǫ(x0) (resp. Sǫ[x0]) the

open (resp. closed) ǫ-ball with center in x0. If x ∈ X has compact neighborhood,

set ν(x) = sup{ǫ > 0 : Sǫ[x0] is compact}, otherwise set ν(x) = 0 (see [2]).

Proposition 28 ([2], Theorem 3.2). If (X, d) is a metric space, then (X, d) is

cofinally complete if and only if either X is uniformly locally compact or nlc(X)

is nonempty and compact and {x ∈ X : ν(x) ≤ 1
n} converges to nlc(X) in the

Hausdorff metric dH .
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4. Ultracompleteness in Cp(X).

Romaguera and Sanchis analized in [15] ultracompleteness of topological groups.

Proposition 29 ([15], Theorem 2.1). If X is a Hausdorff topological group, then

X is ultracomplete if and only if it is locally compact.

This fact implies that Cp(X) is ultracomplete if and only if X is finite. It is

well known that Cp(X) has a dense Čech-complete subspace if and only if X is

countable and discrete (see [1], Theorem I.3.1). It is important to observe that ωω1

is a non-locally compact homogeneous ultracomplete space.

Proposition 30 ([8], Proposition 2.11). A function space Cp(X) has a dense

ultracomplete subspace if and only if X is finite.

A space X is called Eberlein-Grothendieck if it is homeomorphic to a subspace of

Cp(Y ) for some compact space Y . Jardón and Tkachuk proved in [8] that every

ultracomplete Eberlein-Grothendieck space is Fréchet-Urysohn and has points of

local compactness.

Proposition 31 ([8], Theorem 2.9). An Eberlein-Grothendieck space is ultracom-

plete if and only if it is almost locally compact.

The previous fact was generalized for a wider class of spaces. A compact space

X is called Corson compact if Cp(X) is primarily Lindelöf. A space X is called

splittable if, for each f ∈ RX , there exists a countable set A ⊂ Cp(X) such

that f ∈ A (the closure is taken in R
X). Recall that the topology of pointwise

convergence defined on Cp(X) ⊂ RX coincides with the topology induced from

the product topology of RX .

Proposition 32 ([9], Corollary 3.9). Suppose that the space X is Lindelöf Σ or

pseudocompact. Then a subspace Y ⊂ Cp(X) is ultracomplete if and only if it is

almost locally compact.

Proposition 33 ([9], Corollary 3.10 and Proposition 3.12). If X is splittable

or a subspace of a Corson compact space, then X is ultracomplete if and only if it

is almost locally compact.
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IfX is a metrizable space and nlc(X) is compact, thenX is almost locally compact.

This fact cannot be extended to the class of Eberlein-Grothendieck spaces.

Example 34 ([8], Example 2.17). There exists a countable closed subspace X ⊂

Cp([0, 1]) without non-trivial convergent sequences which has a unique non-isolated

point x0. The space X is not Fréchet-Urysohn. Thus X is a non-ultracomplete

Eberlein-Grothendieck space which is non-locally compact only at the point x0.

5. Problems

We finish this work with some problems related to ultracomplete spaces.

Problem 35. Suppose that X is an ultracomplete homogeneous space without

points of local compactness. Must X have a dense countably compact subspace?

Problem 36. Suppose that the closure of any countably compact subspace of X

is compact. If X is ultracomplete, must X have points of local compactness?

Problem 37. Let X be a scattered compact space. Is it true that every ultracom-

plete Y ⊂ X is almost locally compact?

Problem 38. Let X be a scattered compact space of countable tightness. Is it true

that every ultracomplete Y ⊂ X is almost locally compact?

Problem 39. Is it true that K(ωω1 ) is an ultracomplete space? Let X be an

infinite compact space. If F (X) is the Markov free topological group of X and

define Y = β(F (X)) \ F (X). Is it true that K(Y ) is an ultracomplete space?

Problem 40. Suppose that X is a countably compact ultracomplete space with-

out points of local compactness. Must K(X) be countably compact, or at least

pseudocompact?

Problem 41. Suppose that X2 = X1 ∪X2 where Xi is ultracomplete for i = 1, 2.

Must X be ultracomplete?
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75



D. Jardón

References

[1] A.V. Arkhangel’skii, Topological Function Spaces, Kluwer Academic Publishers, Dordretcht

(1979).

[2] G. Beer, Between compactness and completeness, Topology Appl. 155 (2008), 503–514.

[3] D. Buhagiar, Non locally compact points in ultracomplete topological spaces, Questions and

Answers Gen. Topology 19 (2001), 125–170.

[4] D. Buhagiar, I. Yoshioka, Sums and products of ultracomplete topological spaces, Topology

Appl. 122 (2002), 77–86.

[5] D. Buhagiar, I. Yoshioka, Ultracomplete topological spaces, Acta Math. Hungar. 92, no. 1-2

(2001), 19–26.
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Abstract

In this talk we will present some results concerning the existence of ex-

treme points in compact convex subsets of asymmetric normed spaces.

We focus our attention in the finite dimensional case, giving a geomet-

ric description of all compact convex subsets of a finite dimensional

asymmetric normed space.

1. Introduction

An asymmetric normed space is a real vector space X equipped with a so called

asymmetric norm q. This means that q : X → [0,∞) is a function satisfying

(1) q(tx) = tq(x) for every t ≥ 0 and x ∈ X ,

(2) q(x + y) ≤ q(x) + q(y) and

(3) q(x) = 0 = q(−x) if and only if x = −x = 0.
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Each asymmetric norm q in an vector space X defines a (symmetric) norm qs :

X → [0,∞) defined by the following rule

qs(x) = max{q(x), q(−x)}.

Any asymmetric norm induces a non symmetric topology on X that is generated

by the asymmetric open balls Bq(x, ε) = {y ∈ X | q(y − x) < ε}.

This topology is a T0 topology in X for which the vector sum on X is continuous.

Furthermore, the topology is T1 if and only if the set

θ(0) := {x | q(x) = 0}

coincides with the singleton {0}. However, in most cases this topology is not even

Hausdorff and the scalar multiplication is not continuous. Thus (X, q) fails to

be a topological vector space. Nevertheless, asymmetric normed spaces are still

interesting, mainly because of the many application they have (e.g. in theoretical

computer science and particularly in complexity theory).

2. Krein-Milman theorem on asymmetric normed spaces

The well known theorem of Krein-Milman states that every compact convex subset

of a locally convex (Hausdorff) space is the closure of the convex hull of its extreme

points. If the compact convex set is finite dimensional, then Caratéodory’s Theo-

rem says that in that case it is the convex hull of its extreme points. However, in

the asymmetric case, neither Krein-Milman nor Caratéodory’s Theorem is true,

as we can see in the following easy example:

Example 1. Let u : R→ [0,∞) be the asymmetric norm defined by the rule

u(x) = max{x, 0}.

The compact convex set (0, 1] has only one extreme point, the {1}. However, the

convex hull of {1} is exactly {1} and the closure of {1} is not the set (0, 1], but

the interval [1,∞).

However, if the topology of the asymmetric normed space is Hausdorff, then we

have the following:
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Theorem 2 (Cobzaç [1]). Let (X, q) be an asymmetric normed space such that

the topology τq is Hausdorff. Then any nonempty q-compact convex subset of X

is the q-closed convex hull of the set of its extreme points.

In [3] we studied the existence of extreme points in the non-Hausdorff case obtain-

ing the following results:

Theorem 3. Let (X, q) be an asymmetric normed space. Suppose that K ⊂ X

is a q-compact convex subset of X. Then the set of extreme points of K + θ(0) is

contained in K.

Theorem 4. Let K be a q-compact convex subset of an asymmetric normed space

(X, q) with the property that K + θ(0) is qs-locally compact. Then K has at least

one extreme point. In particular, if K + θ(0) has finite dimension, then K has at

least one extreme point.

In contrast with the normed case, let us observe that Theorem 4 is the best we

can say about extreme points in q-compact convex sets. For instance, in any

asymmetric normed space (X, q), the set θ(x) = x + θ(0) is a q-compact convex

set for whom its only extreme point is x itself.

For a compact convex set K let us denote by S(K) the convex hull of its extreme

points. Then we have the following

Theorem 5. Let (X, q) be an asymmetric normed space and K a q-compact convex

subset of X such that K + θ(0) has finite dimension (for example, if X is finite

dimensional). Then

S(K) ⊂ K ⊂ S(K) + θ(0) = K + θ(0).

Furthermore, as a corollary we have the following property for the set S(K).

Corollary 6. Let K be a q-compact convex subset in an asymmetric normed space

(X, q) such that K+ θ(0) has finite dimension. If K0 ⊂ X is any subset satisfying

S(K) ⊂ K0 ⊂ S(K) + θ(0)

then K0 is q-compact.
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3. Strong compactness in finite dimensional compact convex subsets

Corollary 6 is somehow related with the notion of strong compactness in asym-

metric normed spaces.

Let us recall that a subset K in an asymmetric normed space (X, q) is strongly

compact iff there exist a qs-compact subset S ⊂ X satisfying the following con-

tentions

S ⊂ K ⊂ S + θ(0).

Is not difficult to prove that every strongly compact set is always compact. If (X, q)

is a 2-dimensional asymmetric normed lattice, then for every compact convex

subset K, the set S(K) is always qs-compact and therefore we have the following

corollary

Corollary 7 ([2]). Let q be an asymmetric lattice norm in R2. Then every q-

compact convex set K in (R2, q) is strongly q-compact.

However, the previous result can not be generalized in higher dimensions as we

can see in the following example

Example 8. Consider the asymmetric normed lattice (R3, q), where q : R3 →

[0,∞) is the asymmetric lattice norm defined by the rule:

q(x) = max{max{xi, 0} | i = 1, 2, 3} x = (x1, x2, x3) ∈ R
3.

Let K = co(A ∪ {(0, 0, 0), (0, 1, 1)}) where A is the set defined as

A = {(x1, 0, x3) | x
2
1 + x23 = 1, x1 ∈ (0, 1], x3 ≥ 0}.

For any q-open cover U ofK, there exists an element U ∈ U such that (0, 1, 1) ∈ U .

This implies that

(0, 1, 1) + θ0 ⊂ U + θ0 = U,

and therefore the cover U is a q-open (and qs-open) cover for K
qs

which is qs-

compact. Thus, we can extract a finite subcover V ⊂ U for K
qs

. This cover V is

a finite subcover for K too, and then we can conclude that K is q-compact.
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To finish this example, let us note that K is not strongly q-compact. For this,

simply observe that any set K0 satisfying K0 ⊂ K ⊂ K0 + θ0, must contain the

set A. If K0 is additionally qs-compact, then it is qs-closed too and then

A
qs

⊂ K0
qs

= K0 ⊂ K,

which is impossible.
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1. Preliminaries

For concepts from asymmetric topology we refer the reader to [8, 11]. In order to

fix our terminology we recall the following notions.

Let X be a set and let d : X × X → [0,∞) be a function mapping into the set

[0,∞) of the nonnegative reals. Then d is called a quasi-pseudometric on X if

(a) d(x, x) = 0 whenever x ∈ X, and

(b) d(x, z) ≤ d(x, y) + d(y, z) whenever x, y, z ∈ X. We shall say that d is a T0-

quasi-metric provided that d also satisfies the following T0-condition: For each

x, y ∈ X, d(x, y) = 0 = d(y, x) implies that x = y.

Remark 1. Let d be a quasi-pseudometric on a set X , then d−1 : X ×X → [0,∞)

defined by d−1(x, y) = d(y, x) whenever x, y ∈ X is also a quasi-pseudometric,

called the conjugate or dual quasi-pseudometric of d. As usual, a quasi-pseudometric

d on X such that d = d−1 is called a pseudometric. Note that for any quasi-

pseudometric d (T0-quasi-metric), ds = sup{d, d−1} = d ∨ d−1 is a pseudometric

(metric).

Given a subset A of a quasi-pseudometric space (X, d) we call δ(A) = sup{d(a, a′) :

a, a′ ∈ A} the diameter of A. The set A is called bounded if δ(A) <∞.

For each x, y ∈ R we set x−̇y = max{x − y, 0}. Letting u(x, y) = x−̇y whenever

x, y ∈ R we obtain a natural example of a T0-quasi-metric space (R, u). In the

following let I = [0, 1] be the set of the real unit interval.

Given a quasi-pseudometric d on a set X, the set of open balls Bd(x, ǫ) = {y ∈

X : d(x, y) < ǫ} with ǫ > 0 and x ∈ X yields a base of the so-called quasi-

pseudometric topology τ(d) on X. Note that for each x ∈ X and ǫ ≥ 0 the “closed”

ball Cd(x, ǫ) = {y ∈ X : d(x, y) ≤ ǫ} is indeed τ(d−1)-closed, but may not be

τ(d)-closed.

We consider a T0-quasi-metric space (X, d) equipped with a Takahashi convexity

structure (briefly TCS). According to our definition, this is a mapping W from

X ×X × I to X (that is, W (x, y, λ) defined for all pairs (x, y) ∈ X ×X and λ ∈ I
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and valued in X) satisfying the two conditions (called (1) and (2) in the following):

d(u,W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y)

whenever u ∈ X (1) and

d(W (x, y, λ), u) ≤ λd(x, u) + (1− λ)d(y, u)

whenever u ∈ X (2).

Evidently the second condition is just the first condition formulated for the dual

T0-quasi-metric. So, by definition, if W is a TCS for (X, d), then it is also a TCS

for (X, d−1). Obviously in a metric space our definition yields the concept of a

convexity structure in the sense of Takahashi [15]. (We note that in the literature

convexity structures are usually studied in the metric setting, see e.g. [4, 14]; the

paper [9] seems to be an exception.)

Remark 2. If W is a TCS on a T0-quasi-metric space (X, d), then W is also a

TCS for the metrics d+ = d+ d−1 and ds on X.

Equip (R, u) with its standard TCS S(x, y, λ) = λx+ (1− λ)y whenever x, y ∈ R

and λ ∈ I. Fix α > 0. For each x, y ∈ R and λ ∈ I set H(x, y, λ) = S(x, y, λ)− α.

Then H satisfies condition (2) on (R, u), but it does not satisfy condition (1). Thus

H is not a TCS on (R, u).

The notation W (x, y, λ) for a TCS on (X, d) is convenient, although the notation

W (x, y, λ, 1 − λ) would be more appropriate, in particular if one is interested

in n-dimensional analogues W : Xn × In → X (with n ∈ N and n > 2) of

convexity structure functions and their properties. Similarly, as in the metric

case, for instance such higher dimensional functions Hn can be obtained from an

ordinary TCS W by iterations as follows: For x1, . . . , xn ∈ X and α1, . . . , αn ∈ I

with
∑n
i=1 αi = 1 set

Hn(x1, ..., xn, α1, . . . , αn) =W (Hn−1(x1, . . . , xn−1,
α1

1− αn
, . . . ,

αn−1

1− αn
), xn, 1−αn)

if αn 6= 1 and Hn(x1, . . . , xn, 0, . . . , 0, 1) = xn otherwise.

Many conditions studied in this note have obvious analogues to such higher di-

mensional functions; for instance we can study the conditions that for any n ∈ N,
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u ∈ X, x1, . . . , xn ∈ X and λ1, . . . , λn ∈ I (i = 1, . . . , n) such that
∑n

i=1 λi = 1 we

have that

d(u, Tn(x1, x2, . . . , xn, λ1, λ2, . . . , λn)) ≤
n∑

i=1

λid(u, xi)

as well as

d−1(u, Tn(x1, x2, . . . , xn, λ1, λ2, . . . , λn)) ≤
n∑

i=1

λid
−1(u, xi).

In this note however we shall concentrate on the case n = 2.

Remark 3. Let W (x, y, λ) be a TCS on a T0-quasi-metric space (X, d). Then

W−1(x, y, λ) :=W (y, x, 1− λ) whenever x, y ∈ X and λ ∈ I is a TCS on (X, d).

A TCS W on a T0-quasi-metric space (X, d) will be called synchronized ifW−1(x, y, λ) =

W (x, y, λ) whenever x, y ∈ X and λ ∈ I.

Let us mention that the analogous condition is called condition (C) in the metric

setting.

Proposition 4. Let (X, d) be a T0-quasi-metric space with a TCS W . Then

W (x, x, λ) = x whenever x ∈ X and λ ∈ I. Furthermore we have W (y, x, 0) =

x and W (y, x, 1) = y whenever x, y ∈ X. For x, y ∈ X and λ ∈ I we have

d(x,W (x, y, λ)) = (1 − λ)d(x, y) and d(W (x, y, λ), y) = λd(x, y). Furthermore

d(y,W (x, y, λ)) = λd(y, x) and d(W (x, y, λ), x) = (1 − λ)d(y, x).

Remark 5. Let (X, d) be a T0-quasi-metric space and W (x, y, λ) and W ′(x, y, λ)

be two convexity structures in (X, d).

(a) Suppose that x, y ∈ X and λ′, λ ∈ I with λ′ ≤ λ. Then (λ − λ′)d(x, y) ≤

d(W (x, y, λ),W (x, y, λ′)).

A dual argument yields that if x, y ∈ X and λ′, λ ∈ I with λ′ ≥ λ, then

(λ′ − λ)d(y, x) ≤ d(W (x, y, λ),W (x, y, λ′)).

(b) We also have

d(W (x, y, λ),W (x, y, λ′)) ≤ λ′(1− λ)d(y, x) + (1− λ′)λd(x, y)

whenever x, y ∈ X and λ, λ′ ∈ I.
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(c) Similarly as in (b) we obtain the following result: For any x, y ∈ X and λ ∈ I

we have that d(W (x, y, λ),W ′(x, y, λ)) ≤ λ(1− λ)(d(y, x) + d(x, y)). In particular

d(W (x, y, λ),W ′(x, y, λ)) ≤ 1
4 (d(y, x) + d(x, y)) whenever x, y ∈ X and λ ∈ I.

Takahashi does not require any continuity property in his definition of a convexity

structure for metric spaces. However it is often natural to make the assumption

that W satisfies some additional continuity conditions. For instance in the metric

case it is assumed in the literature that W is continuous in the third variable.

We next state a result for general convexity structures of T0-quasi-metric spaces

that is analogous to a known result for metric spaces.

Proposition 6. Let W be a TCS on a T0-quasi-metric space (X, d). Then for

each x ∈ X and λ ∈ I, W is continuous at (x, x, λ) where X carries the topology

τ(d) (or τ(d−1)). (It does not matter which topology I carries.)

2. Asymmetrically normed real vector spaces

Let X be a real vector space and let ‖ · | : X → [0,∞) be a map such that

(1) ‖0| = 0.

(2) ‖x+ y| ≤ ‖x|+ ‖y| whenever x, y ∈ X.

(3) ‖αx| = α‖x| whenever x ∈ X and α ≥ 0.

Furthermore suppose that ‖x| = ‖ − x| = 0 implies that x = 0.

The function ‖ · | is called an asymmetric norm on X . Obviously each asym-

metrically normed vector space X induces a T0-quasi-metric d on X by setting

d(x, y) = ‖x− y| whenever x, y ∈ X (compare for instance [6]).

Example 7. Let R be equipped with its usual real vector space structure. Then

‖x|u = x if x ≥ 0 and ‖x|u = 0 otherwise, defines an asymmetric norm on R with

the induced T0-quasi-metric u, as defined above. (We shall often write ‖ · | instead

of ‖ · |u in the following.)

Proposition 8. Let C be a convex subset (in the usual linear sense) of a real vector

space X equipped with the asymmetric norm ‖ · |. Then S(x, y, λ) = λx+ (1− λ)y
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whenever x, y ∈ C and λ ∈ I defines a synchronized convexity structure for the

T0-quasi-metric space (C, d) where d(x, y) = ‖x− y| whenever x, y ∈ C :

Proof. For any x, y, u ∈ C and λ ∈ I we have that

d(S(x, y, λ), u) = ‖S(x, y, λ)− u| =

‖S(x− u, y − u, λ)| ≤ λ‖x− u|+ (1− λ)‖y − u| = λd(x, u) + (1− λ)d(y, u).

Similarly for each x, y, u ∈ C and λ ∈ I, d(u, (S(x, y, λ)) = ‖u− S(x, y, λ)| =

‖S(u− x, u − y, λ)| ≤ λ‖u− x|+ (1− λ)‖u− y| = λd(u, x) + (1− λ)d(u, y).

✷

Remark 9. If W (x, y, λ) and W ′(x, y, λ) are convexity structures in an asymmet-

rically normed real vector space (X, ‖ · |), then for each α ∈ I, Wα(x, y, λ) =

αW (x, y, λ) + (1 − α)W ′(x, y, λ) is also a convexity structure on X (with respect

to the induced T0-quasi-metric).

3. T0-quasi-metric spaces with a unique convexity structure

This section is motivated by the investigations in [16] in the case of metric spaces.

Let (X, d) be a T0-quasi-metric space. Then (X, d) will be called strictly convex

provided that for each x, y ∈ X and λ ∈ I there is a unique w(x, y, λ) ∈ X such

that

d(x,w(x, y, λ)) = (1− λ)d(x, y),

d(w(x, y, λ), y) = λd(x, y),

d(y, w(x, y, λ)) = λd(y, x)

and

d(w(x, y, λ), x) = (1− λ)d(y, x).

Remark 10. Note that in the terminology of [1] it follows that for any x, y ∈ X ,

we have that (x,w(x, y, λ), y) is collinear in (X, d) as well as in (X, d−1).
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Since any TCS W (x, y, λ) on (X, d) satisfies the afore-mentioned system of equa-

tions, we see that each strictly convex T0-quasi-metric space admits at most one

convexity structure.

Example 11. There exists an example of a T0-quasi-metric space (X, d) and a

TCS W for (X, ds), which is not a TCS for (X, d).

Let W be a TCS on a T0-quasi-metric space (X, d). We shall say that (X, d) has

a unique TCS if for any w ∈ X such that there exists (x, y, λ) ∈ X ×X × I with

d(z, w) ≤ λd(z, x)+ (1−λ)d(z, y) and d(w, z) ≤ λd(x, z)+ (1−λ)d(y, z) whenever

z ∈ X , then w =W (x, y, λ).

Obviously the condition means exactly that W is the unique TCS on (X, d). Of

course for any T0-quasi-metric space (X, d) if (X, ds) has a unique TCS, then

(X, d) has a unique TCS. Recall also that if (X, d) is a T0-quasi-metric space with

a TCS W and (X, d) is strictly convex in the above mentioned sense, then W is

necessarily the unique TCS on (X, d).

Example 12. Let n ∈ N and X = R
n be equipped with its usual real vector

space structure and its supremum asymmetric norm ‖(xi)| = maxi≤n ‖xi| and d

its associated T0-quasi-metric. Then the standard convexity structure S(x, y, λ) =

λx+ (1− λ)y is the unique TCS on (X, d).

Proposition 13. Let (X, d) be a T0-quasi-metric space with a unique TCS W such

that τ(ds) is compact. Then W : (X, τ(ds))× (X, τ(ds))× (I, τ(us))→ (X, τ(ds))

is a continuous function.

Lemma 14. Let W be the unique TCS on a T0-quasi-metric space (X, d). Then

for every x, y ∈ X and α, β ∈ I, we have

W (W (x, y, β), y, α) =W (x, y, αβ).

We observe that a convexity structureW in a metric space is said to have property

(J) if it satisfies the property that

W (W (x, y, β), y, α) = W (x, y, αβ) whenever x, y ∈ X and α, β ∈ I. We shall use

the same name for this property in a T0-quasi-metric space.
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If the convexity structure W on a T0-quasi-metric space (X, d) is unique, then it

satisfies condition (C), that is, W (y, x, 1−λ) =W (x, y, λ) whenever x, y ∈ X and

λ ∈ I.

Example 15. Let X = I. Choose α, β ∈ [0,∞) such that α + β 6= 0. For

λ1, λ2 ∈ I set dαβ(λ1, λ2) = (λ1 − λ2)α if λ1 ≥ λ2 and dαβ(λ1, λ2) = (λ2 − λ1)β if

λ2 > λ1. Then (I, dαβ) is a T0-quasi-metric space (called the quasi-metric segment

Iαβ) induced by the restriction of the asymmetric norm nαβ on R defined for

λ ∈ R by nαβ(λ) = λα if λ ≥ 0 and nαβ(λ) = −λβ if λ < 0. Obviously on R

the asymmetric norm nαβ induces the T0-quasi-metric uαβ defined for x, y ∈ R by

uαβ(x, y) = (x − y)α if x ≥ y and uαβ(x, y) = (y − x)β if y > x. Note that in

particular u10 = u with the T0-quasi-metric u as introduced above.

We remark that a TCS W in a metric space (X, d) is said to satisfy condition (I)

provided that

d(W (x, y, λ1),W (x, y, λ2)) = |λ1 − λ2|d(x, y)

whenever x, y ∈ X and λ1, λ2 ∈ I.

The given formulation of condition (I) is unsuitable for a T0-quasi-metric space

(X, d) that is not metric: If d is a T0-quasi-metric with properties (C) and (I),

then it satisfies

|1−0|d(x, y) = d(W (x, y, 1),W (x, y, 0)) = d(W (y, x, 0),W (y, x, 1)) = |0−1|d(y, x)

whenever x, y ∈ X and thus d would be a metric. Hence for a T0-quasi-metric

space (X, d) we suggest that condition (I) is reformulated as condition (I ′) in the

following way:

A T0-quasi-metric space (X, d) satisfies condition (I ′) provided that for any x, y ∈

X and λ1, λ2 ∈ I, d(W (x, y, λ1),W (x, y, λ2)) = (λ1 − λ2)d(x, y) if λ1 ≥ λ2 and

d(W (x, y, λ1),W (x, y, λ2)) = (λ2 − λ1)d(y, x) if λ1 < λ2.

Note that a metric space satisfies condition (I) if and only if it satisfies condition

(I ′).
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If a TCS W on a T0-quasi-metric space (X, d) is unique, then for every a, b ∈ X

with a 6= b the function h : I → X defined by h(λ) =W (a, b, λ) whenever λ ∈ I is

an isometric embedding of Id(a,b)d(b,a) into X. (Hence W satisfies condition (I ′).)

4. Collections of convex subsets in T0-quasi-metric spaces

A subset K of a T0-quasi-metric space (X, d) with TCS W will be said to be

(W -)convex provided that W (x, y, λ) ∈ K whenever x, y ∈ K and λ ∈ I. Note

that in particularX is a convex set and that each convex subset C of (X, d) carries

a natural TCS, namely the restriction of W to C × C × I.

The intersection of any family of convex sets is obviously convex.

Given a subset A of X we can construct the smallest convex subset containing A

by iterations as
⋃
n∈N

Cn(A) where C(A) = {W (x, y, λ) : x, y ∈ A, λ ∈ I} and

Cn+1(A) = C(Cn(A)) whenever n ∈ N.

Proposition 16. Let (X, d) be a T0-quasi-metric space with a TCS W. Then for

any x ∈ X and r > 0 the open balls Bd(x, r) and Bd−1(x, r), and the closed balls

Cd(x, r) and Cd−1(x, r) in X are convex subsets of X.

We say that a TCS W in a T0-quasi-metric space (X, d) has property (S) provided

that

d(W (x, y, λ),W (x′, y′, λ)) ≤ λd(x, x′) + (1− λ)d(y, y′)

whenever x, y, x′, y′ ∈ X and λ ∈ I.

Remark 17. (a) Clearly condition (S) together with the condition that for any

x ∈ X and λ ∈ I, W (x, x, λ) = x imply conditions (1) and (2).

(b) Observe that if we replace d by d−1 in condition (S), then we obtain a condition

which is equivalent to condition (S).

(c) We note that the standard convexity structure on a convex set of an asymmet-

rically normed real vector space X has property (S).

(d) Condition (S) together with condition (I ′) for a TCS W on a T0-quasi-metric

space (X, d) imply continuity ofW : (X, τ(d))×(X, τ(d))×(I, τ(us))→ (X, τ(d)).

(The result also holds for τ(d−1) instead of τ(d).)
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A TCS W on a T0-quasi-metric space (X, d) satisfies property (S′) if

d(W (x, y, λ),W (x, z, λ)) ≤ (1 − λ)d(y, z)

whenever x, y, z ∈ X and λ ∈ I.

Remark 18. Let W be a TCS on a T0-quasi-metric space (X, d) having properties

(C) and (S′). Then it satisfies property (S).

Let (X, d) be a T0-quasi-metric space. Furthermore let P0(X) be the set of all

nonempty subsets of X. Equip P0(X) with the Hausdorff quasi-pseudometric dH ,

which is defined as follows:

As usual, for any nonempty subset A ⊆ X and x ∈ X we set d(A, x) = inf{d(a, x) :

a ∈ A} and d(x,A) = inf{d(x, a) : a ∈ A}. For any A,B ∈ P0(X) set dH− (A,B) =

supa∈A d(a,B) and dH+(A,B) = supb∈B d(A, b). Furthermore set dH = dH+∨dH− .

It is well known that dH is an (extended) quasi-pseudometric on the set P0(X)

of nonempty subsets of X . (Here extended means that dH may attain the value

∞, where the triangle inequality is interpreted in the obvious way.) The reader is

referred to [5, 12] for further information on this hyperspace construction.

Now we shall assume that the T0-quasi-metric space (X, d) is equipped with a TCS

W that satisfies condition (S). Furthermore we shall work on the subcollection

CB0(X) of bounded convex elements of P0(X). In this case dH is indeed a quasi-

pseudometric: One proves that dH(A,B) < ∞ if A,B ⊆ X are bounded, that is,

the diameters δ(A) and δ(B) are less than infinity.

For any A,B ∈ CB0(X) and λ ∈ I set W (A,B, λ) = {W (a, b, λ) : a ∈ A, b ∈ B}.

One observes that the (nonempty) set W (A,B, λ) is bounded by condition (S).

Suppose that the TCS W satisfies the condition that for any a, a′, b, b′ ∈ X and

any δ, ǫ ∈ I there are ǫ1, ǫ2 ∈ I such that

W (W (a, b, δ),W (a′, b′, δ), ǫ) =W (W (a, a′, ǫ1),W (b, b′, ǫ2), δ).

We shall call this condition of a TCS W “condition (∗)”. If W is a TCS satisfying

condition (∗) in a T0-quasi-metric space (X, d), then obviously for any δ ∈ I and
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A,B ∈ CB0(X) the set W (A,B, δ) is also convex because of the convexity of A

and B.

The condition (∗) introduced above is satisfied by the standard linear convexity

structure S(x, y, λ) = λx+(1− λ)y discussed above of an asymmetrically normed

real vector space X.

We say that a TCS W on a T0-quasi-metric space (X, d) has property (M) if

W (W (x, y, α), z, β) = W (W (y, z, β(1−α)1−αβ ), x, 1 − αβ) whenever x, y, z ∈ X and

α, β ∈ I with αβ 6= 1. (Note that the latter equation for points also holds in the

case αβ = 1, that is, α = 1 = β, if it is interpreted in the obvious sense that x = x,

although the fraction remains undefined in this case.)

Each convex subset C of an asymmetrically normed real vector space X with its

standard convexity structure satisfies property (M).

Lemma 19. (a) Condition (M) in a T0-quasi-metric space implies condition (C)

and condition (J).

(b) Let (X, d) be a T0-quasi-metric space equipped with a TCS W that satisfies

condition (M). Then W satisfies condition (∗) introduced above.

Let (X, d) be a T0-quasi-metric space. Given a subset A of X we shall call clτ(d)A∩

clτ(d−1)A the double closure of A. Furthermore we shall say A ⊆ X is doubly closed

if it coincides with its double closure.

Let (X, d) be a T0-quasi-metric space with a TCS W satisfying condition (S)

and let DCB0(X) be the set of all nonempty doubly closed convex bounded sub-

sets of X. If A ∈ CB0(X), then its double closure clτ(d)A ∩ clτ(d−1)A also be-

longs to CB0(X). Furthermore the T0-quotient of the quasi-pseudometric space

(CB0(X), dH) can be identified with its subspace (DCB0(X), dH).

Proposition 20. Let W be a TCS on a T0-quasi-metric space (X, d) satisfying

conditions (S) and (M). For any A,B ∈ DCB0(X) and λ ∈ I set

P (A,B, λ) = clτ(d)W (A,B, λ) ∩ clτ(d−1)W (A,B, λ).
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Then P is a TCS on the T0-quasi-metric space (DCB0(X), dH). (Identifying the

points of X with singleton subsets we can interpret P as an extension of W , since

for each a, b ∈ X and λ ∈ I we have P ({a}, {b}, λ) = {W (a, b, λ)}.)

5. Convexity structures in q-hyperconvex spaces

Our presentation in this section will follow the construction of the q-hyperconvex

hull of a T0-quasi-metric space given in [10].

Let (X, d) be a T0-quasi-metric space. A function pair f = (f1, f2) on (X, d) where

fi : X → [0,∞) (i = 1, 2) is called ample provided that d(x, y) ≤ f2(x) + f1(y)

whenever x, y ∈ X. Let PX denote the set of all ample function pairs on (X, d).

For each f, g ∈ PX we set

D(f, g) = sup
x∈X

(f1(x)−̇g1(x)) ∨ sup
x∈X

(g2(x)−̇f2(x)).

Then D is an extended quasi-pseudometric on PX .

We shall call a function pair f minimal on (X, d) (among the ample function pairs

on (X, d)) if it is ample and whenever g is ample on (X, d) and for each x ∈ X we

have g1(x) ≤ f1(x) and g2(x) ≤ f2(x) (if this holds we briefly write g ≤ f), then

g = f. Zorn’s Lemma implies that for each ample function pair f there exists a (in

general not unique) minimal ample pair g on (X, d) such that g ≤ f. By QX we

shall denote the set of all minimal ample function pairs on (X, d) equipped with

the restriction of D to QX ×QX , which we shall also denote by D. Then D is a

(real-valued) T0-quasi-metric on QX ×QX .

For each x ∈ X we can define the minimal function pair

fx(y) = (d(x, y), d(y, x))

(whenever y ∈ X) on (X, d). The map e defined by x 7→ fx whenever x ∈ X

defines an isometric embedding of (X, d) into (QX , D). Then (QX , D) is called the

q-hyperconvex hull of (X, d).

We have f = (f1, f2) ∈ QX if and only if the following equations are satisfied:

f1(x) = sup{d(y, x)−̇f2(y) : y ∈ X}
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and

f2(x) = sup{d(x, y)−̇f1(y) : y ∈ X}

whenever x ∈ X . In particular pairs satisfying these equations are ample on (X, d).

Some important properties of functions pairs in QX are listed next:

(a) f = (f1, f2) ∈ QX implies that f1(x) − f1(y) ≤ d−1(x, y) and f2(x) − f2(y) ≤

d(x, y) whenever x, y ∈ X.

(b) supx∈X(f1(x)−̇g1(x)) = supx∈X(g2(x)−̇f2(x)) whenever f = (f1, f2) and g =

(g1, g2) belong to QX .

(c) D(f, fx) = f1(x) and D(fx, f) = f2(x) whenever x ∈ X and f = (f1, f2) ∈ QX .

A T0-quasi-metric space (X, d) is called q-hyperconvex provided that for each f ∈

QX there is x ∈ X such that f = fx. Equivalently, for each family (xi)i∈I of points

in X and families of nonnegative real numbers (ri)i∈I and (si)i∈I the following

condition holds: If d(xi, xj) ≤ ri + sj whenever i, j ∈ I then
⋂
i∈I(Cd(xi, ri) ∩

Cd−1(xi, si)) 6= ∅.

Let f, g ∈ X and λ ∈ I. For any u ∈ X let r2(f, g, λ)(u) = λd(u, f)+(1−λ)d(u, g)

and r1(f, g, λ)(u) = λd(f, u) + (1− λ)d(g, u). Then each function pair r(f, g, λ) =

(r1(f, g, λ), r2(f, g, λ)) is ample on (X, d).

The following result was established in [2] (for the metric case, see [7]):

Let (X, d) be a T0-quasi-metric space. There exists a retraction map p : PX → QX

that satisfies the conditions

(a) D(p(f), p(g)) ≤ D(f, g) whenever f, g ∈ PX .

(b) p(f) ≤ f whenever f ∈ PX .

Using the result above we can make the choice of minimal pairs below ample

pairs in such a way that condition (a) is satisfied, which allows us to establish
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various properties of constructed convexity structures analogous to those obtained

for hyperconvex metric spaces (compare [3]).

Indeed let (X, d) be a q-hyperconvex T0-quasi-metric space. (Hence we can identify

(X, d) with (QX , D) via the isometric bijection x 7→ fx.) Take any retraction

p : PX → QX as described in the previous result.

We define a TCS W on (X, d) as follows: Fix f, g ∈ X and t ∈ I. Now we

set W (f, g, t) ∈ X equal to the unique point in X that satisfies e(W (f, g, t)) =

w(f, g, t) := p(te(f) + (1 − t)e(g)). The so defined W is a TCS on (X, d) that

evidently has property (C), that is, W (y, x, 1−λ) =W (x, y, λ) whenever x, y ∈ X

and λ ∈ I. One computes that W as a TCS satisfies d(W (f, g, t),W (f, g, s)) =

(t−s)d(f, g) if t ≥ s and d(W (f, g, t),W (f, g, s)) = (s−t)d(g, f) if t < s. Hence we

conclude thatW satisfies property (I ′). One also checks that W satisfies condition

(S). It follows that the map W : (X, τ(d)) × (X, τ(d)) × (I, τ(us))→ (X, τ(d)) is

continuous.

References

[1] C. A. Agyingi, P. Haihambo and H.-P. A. Künzi, Endpoints in T0-quasi-metric spaces,

Topology Appl. 168 (2014), 82–93.

[2] C. A. Agyingi, P. Haihambo and H.-P. A. Künzi, Tight extensions of T0-quasi-metric

spaces, in: V. Brattka, H. Diener, D. Spreen (Eds.), Logic, Computation, Hierarchies,

Festschrift in Honour of V.L. Selivanov’s 60th Birthday, Ontos Verlag, De Gruyter Berlin,

Boston, 2014, pp. 9–22.

[3] M. A. Alghamdi, W. A. Kirk and N. Shahzad, Locally nonexpansive mappings in geodesic

and length spaces, Topology Appl. 173 (2014), 59–73.

[4] K. Aoyama, K. Eshita and W. Takahashi, Iteration processes for nonexpansive mappings

in convex metric spaces, Proc. of the International Conference on Nonlinear Analysis and

Convex Analysis (Okinawa, 2005), 31–39.

[5] G. Berthiaume, On quasi-uniformities in hyperspaces, Proc. Amer. Math. Soc. 66 (1977),

335–343.
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Abstract

In this paper we propose an application of fuzzy metrics to the problem

of measuring the similarity between two colour images. This problem

is of paramount importance in many applications of the computer vi-

sion field. The commonly used pixelwise similarity measures such as

Mean Absolute Error, Peak Signal to Noise Ratio, Mean Squared Er-

ror or Normalized Color Difference do not match well with perceptual

similarity. From another point of view, we propose a method using

fuzzy metrics between small image patches of the images. Experimen-

tal results employing a survey of observations show that the global

performance of our proposal is competitive with best state of the art

methods and that it shows some advantages in performance for images

with low correlation among some image channels.

1This author is supported under grant MTM2015-64373-P (MINECO/FEDER,UE)
2This author acknowledges the support of Spanish Ministry of Economy and Competitiveness

under Grant TEC2013-45492-R.
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1. Introduction

Many applications in the fields of image processing and computer vision use image

similarity measures for different purposes [2]. In some cases the objective is the

very measurement of the similarity itself globally or partially in the images, but

other times the similarity is used to assess the performance of an image processing

method. For instance, in image filtering, the common process to measure the

performance of a filtering method is the following: an original image is corrupted

artificially with noise, then it is filtered with the method under study and it is

measured how similar is the filtered image to the original one. This allows to

properly adjust filter parameters for optimal performance, to assess different filter

configurations as well as to compare the performance of different filtering methods.

An analogous approach is used in other image processing procedures such as image

compression, image demosaicing or video de-interlacing. Therefore, the similarity

measure used highly influences the whole process.

The most common similarity measures used in this context are based on a pixelwise

approach, such as the Mean Absolute Error (MAE), the Mean Squared Error

(MSE), the Peak Signal to Noise Ratio (PSNR) or the Normalized Color Difference

(NCD) (which is the MSE in the Lab color space). However, these measures do

not match well with perceptual observations and, as the MSE, some of them have

other concerns [3].

Recently, in [4, 5] a similarity measure for gray-scale images that matches well

with perceptual similarity has been introduced (UQI-Universal Quality Index and

SSIM-Single-scale Structural Similarity Index). This method could be applied

in color images in a componentwise fashion, that is, independently in each color

channel and then averaged. However, it is well-known that the correlation among

the color image channels should be taken into account and this approach cannot

provide optimal performance [2], as we show in this paper.

In this paper, we introduce a method for color image similarity that matches per-

ceptual similarity. Our method follows a procedure inspired in [4, 5] as follows:

the images are processed with sliding patches so that a number of small image por-

tions are compared and the similarity between two images is obtained by averaging
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the similarities of all portions. In each pair of patches three different factors are

compared separately and then combined: contrast, structure and luminance. The

particular expressions used in [4, 5] for these three factors cannot be directly gen-

eralized from gray-scale images to color images, so we propose our own expressions

to measure them. Experimental results employing perceptual similarity observa-

tions show that our approach is able to outperform classical similarity measures,

is competitive with best state-of-the-art methods, and shows some advantages in

performance for images with low correlation among some image channels.

In the following section we detail the proposed method. Section 3 contains the

experimental results and discussion. Finally, Section 4 presents the conclusions.

2. Proposed image similarity measure

Let X denote a RGB image andW be the sliding patch of finite size q×q = n used

to process the image. The image pixels inW , XW , are denoted as xi(l), i = 1, ..., n

where l = 1, 2, 3 denotes the R, G, and B channels, respectively. Notice that xi

can be processed as a three component vector.

We measure the similarity between images X and Y as the average of the similari-

ties of the image patchesXW and YW obtained when sliding the patch along every

image row. To measure the similarity between two patches in the same image lo-

cation we measure three different similarities: contrast, structure and luminance.

In so doing, we need to measure the similarities between all image color pixels xi

and yi in XW and YW , respectively, and the mean color vector in each patch, xW

and yW . We denote these similarities by Mxi
and Myi

and we measure them by

employing the fuzzy metric used in [7, 8, 9, 10] for its high sensitivity to edges as

follows.

(1) Mxi
=M(xi,xW , t) =

3∏

l=1

min(xi(l),xW (l)) + t

max(xi(l),xW (l)) + t
, i = 1, ..., n,

where t > 0 and
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(2) xW =
1

n

n∑

j=1

xj , l = 1, 2, 3

Through an analogous computation in the image Y we obtained the similarities

Myi
, i = 1, . . . , n. Notice that Mxi

and Myi
are fuzzy similarities that take value

in [0, 1].

2.1. Contrast. Contrast can be seen as the largest difference observed in XW

and YW . We can measure contrast in XW using Mxi
as CXW

= max(Mxi
) −

min(Mxi
), i = 1, ..., n, and analogously for YW . Then, the fuzzy similarity

between the contrasts is given by

(3) SC(XW ,YW ) = 1− |CXW
− CYW

|.

2.2. Structure. Structure describes how the differences between the pixels in a

patch are distributed spatially. Therefore, for this aspect we average the fuzzy

similarities of Mxi
and Myi

as follows.

(4) SS(XW ,YW ) =

n∑
i=1

1− |Mxi
−Myi

|

n
.

2.3. Luminance. To compare image luminance we propose to use spherical coor-

dinates computed from RGB values [11]. Luminance correspond with the radius

parameter given by

(5) Lxi =
√
xi(1)2 + xi(2)2 + xi(3)2

The luminance similarity between XW and YW is obtained through the corre-

sponding expression in [4] as
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(6) SL(XW ,YW ) =
2LXW

LYW

LXW

2
+ LYW

2

where LXW
and LYW

are the mean luminance in each patch. In the case that

LXW
= LYW

= 0 we assign SL(XW ,YW ) = 1.

Finally, the similarity between XW and YW results from combining the three

previous measures as follows

S(XW ,YW ) = SC(XW ,YW )α · SS(XW ,YW )β · SL(XW ,YW )γ(7)

where α, β, γ > 0 are parameters used to adjust relative importance of three

components. As commented above, the average of all S(XW ,YW ) provides the

similarity between X and Y, that will be high only if the three similarities are

high.

Finally, we would like to point out that in each processing patch the number of

operations is proportional to the number of pixels, so for the whole method we

have also a linear computational cost.

3. Experimental study

In order to study the performance of our proposal and also to compare with other

approaches we make a comparison with respect to a survey of perceptual observa-

tions as follows.

We have chosen the four color bmp images in Figure 3: Goldhill, Lenna, Baboon,

and Parrots. To better appreciate low resolution differences we have taken a small

part of 68x68 pixels of the original images. We have applied a series of 10 different

distortions to each of the test images. The distortions applied over the image

Parrots along with the software use in each case, which are shown in Figure 4, are

the following.

(1) jpg compression of ratio 20% (MS Picture Manager)

(2) Increase brightness by 15% (MS Picture Manager)
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(a) (b) (c) (d)

Figure 3. Images for tests: (a) Goldhill, (b) Lenna, (c) Baboon,

and (d) Parrots.

(3) Increase contrast by 15% (MS Picture Manager)

(4) Gaussian blur with radius 1.5 (Corel Draw X5)

(5) Addition of 5% of impulsive noise (imnoise function from Matlab)

(6) Addition of white Gaussian noise with standard deviation equals to 10%

of the maximum value in the channels (imnoise function from Matlab)

(7) Filtering of original image with [12]

(8) Addition of Gaussian noise as in 6) and filtering with [12]

(9) Filtering of original image with Vector Median Filter (VMF) [13]

(10) Addition of 5% of impulsive noise as in 5) and filtering with Vector Median

Filter (VMF) [13]

In the survey, we asked independent observers to rank the 10 distorted images

with respect to its similarity to the original image (1st the most similar, 10th

the least). We did this through a questionnaire available on the internet to get

as many answers as possible. We received 108 complete answers. We processed

them to remove outliers using boxplot and we found 4 outliers that could be due

to the observer not paying enough attention or to wrong understanding. Finally,

we average the ranks obtained by each of the distorted images and we re-scale the

average rankings to the interval [1, 10].

Next, we measure the similarity between all distorted images and the original one

with the usual similarity measures MAE, MSE, NCD, as well as with Structural

Similarity Index (SSIM) [4, 5] (used by averaging after component-wise application

in each channel), FSIMc [14], CMSSIM [6] and the proposed method (Fuzzy Color
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4. Distortions applied to the image Parrots: (a) jpg com-

pression of ratio 20% (MS Picture Manager), (b) Increase bright-

ness by 15% (MS Picture Manager), (c) Increase contrast by 15%

(MS Picture Manager), (d) Gaussian blur with radius 1.5 (Corel

Draw X5), (e) Addition of 5% of impulsive noise (Matlab accord-

ing to [2]), (f) Addition of white Gaussian noise with standard

deviation equals to 10% of the maximum value in the channels

(Matlab according to [2]), (g) Filtering of original image with [12],

(h) Addition of Gaussian noise as in (f) and filtering with [12], (i)

Filtering of original image with Vector Median Filter (VMF) [13],

(j) Addition of 5% of impulsive noise as in (e) and filtering with

Vector Median Filter (VMF) [13].

Structural Similarity, FCSS). To assess the match between these measures and

the survey perceptual observations, we re-scaled similarity measures results to the

interval [1, 10]. In this way we can measure the similarity between each measure

ranking and the perceptual ranking.

For our proposal we try different parameter settings and one providing a nice

overall performance is the following: t = 256, patch size q = 4 and α = β = γ = 1.

Table 1 show the comparison in terms of the correlation coefficient r between

average observer ranking and each measure ranking.
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Table 1. Performance comparison in terms of correlation coeffi-

cient r between average observer ranking and each measure rank-

ing

Image MAE MSE NCD SSIM CMSSIM FSIM FCSS

GoldHill -0.11 0.12 0.57 0.96 0.80 0.96 0.87

Lenna 0.16 0.38 0.64 0.93 0.39 0.93 0.85

Baboon -0.27 0.22 0.21 0.78 0.35 0.78 0.86

Parrots -0.29 0.12 0.13 0.74 0.22 0.80 0.80

From these results we can see that performance of SSIM, FSIMc and FCSS is much

better than the rest of the methods. CMSSIM only works well for Goldhill image,

which suggests that it is too sensitive to the image features. SSIM exhibits a very

high performance (r > 0.9) in two cases (Goldhill and Lenna) but much lower

(r < 0.8) in another two cases (Baboon and Parrots). FSIMc performs very well

for GoldHill and Lenna (r > 0.9), well for Parrots (r ∼ 0.8), but worse for Baboon

image, where its performance drops with respect to FCSS (r < 0.8). On the other

hand, FCSS exhibits a consistent high performance in all cases (r ∈ [0.80, 0.90])

and it is better than SSIM for Baboon and Parrots images and better than FSIMc

for Baboon image.

In order to understand these pretty high differences in the performance of SSIM

and FSIMc for different images we analyzed several features of the images and

we realized that there is significant differences with respect to their correlations

among the image channels. These correlations are shown in Table 2. We see

that correlations in Goldhill and Lenna images are high in all cases, whereas in

Parrots and Baboon appear some medium and low correlations respectively. This

implies that SSIM is only able to provide high performance when the correlation

among the color channels is high in all cases. However, when for a couple of

channels the correlation is not high, SSIM performs worse. This is most probably

due to the component-wise application of SSIM. FSIMc performs better from this

point of view and still performs well in the presence of some medium correlations

(Parrots), but its performance drops for the Baboon image were the correlation

between the R and B channels is very low and the rest are not high. We see that
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FSIMc is sensitive to low correlations between channels which probably means

that its capability to take into account correlation can be improved. On the

other hand, FCSS performance is independent from the correlation among the

image channels which in turns indicates proper correlation management. This is

interesting for practical applications and also for possible adaptations to other

types of multichannel images and future research.

Table 2. Correlation in image channels

Channels Goldhill Lenna Baboon Parrots

RG 0.92 0.89 0.69 0.9

RB 0.89 0.78 0.1 0.5

GB 0.97 0.96 0.7 0.75

4. Conclusions

In this paper we have proposed a method to measure the similarity between two

color images that uses fuzzy metrics. The similarity between the images takes into

account three factors: structural similarity, contrast similarity, and luminance sim-

ilarity. The method takes into account the correlation among the image channels

by processing the images as vector fields. Experimental results employing a survey

of observations show that the global performance of our proposal is competitive

with best state of the art methods and that it shows some advantages in per-

formance for images with low correlation among some image channels, which is

interesting for future research.
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Abstract

In this talk, we revise some aspects of the using of metrics and fuzzy

metrics for colour image filtering.

1. Colour image filtering

Colour image processing has received so much attention in the recent years. Early

approaches process colour images by straightforwardly applying gray-scale meth-

ods to each colour channel. However, many deficiencies arise from this way of

processing mainly due to the fact that inter-channel interactions are not taken

into account. As a result, a widely studied solution is to process the colour (or

multichannel) images in a vector fashion [8]. One of the most well-known filters of

this family which are based on vector ordering is the vector median filter (VMF) [1]

where the colour vectors are ranked using the reduced ordering principle by means

1This author is supported under grant MTM2015-64373-P (MINECO/FEDER,UE)
2This author acknowledges the support of Spanish Ministry of Economy and Competitiveness

under Grant TEC2013-45492-R.
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of a suitable distance or similarity measure. The lowest ranked vectors are those

which are close to all the other vectors in the window according to the distance

or similarity measure used. On the other hand, atypical vectors, susceptible to

be considered as noisy or outliers, occupy the highest ranks. The output of these

filters is defined as the lowest ranked vector as follows.

Let F represent a multichannel image and let W be a window of size n+ 1 (filter

length). The image vectors in the filtering window W are denoted as Fj , j =

0, 1, . . . , n. The distance between two vectors Fk and Fj is denoted as ρ(Fk,Fj),

where ρ is a chosen metric. For each vector in the filtering window, a global or

accumulated distance to all the other vectors in the window has to be calculated.

The scalar quantity Rk =
n∑

j=0,j 6=k

ρ(Fk,Fj), is the accumulated distance associated

to the vector Fk. The ordering of the Rk’s: R(0), R(1), . . . , R(n), implies the same

ordering of the vectors Fk’s: F(0),F(1), . . . ,F(n). Given this order, the output of

the filter is F(0).

On the other hand, vector median type techniques that output some of the input

vectors are not useful for Gaussian noise smoothing since all the input vectors

usually contain some noise. Indeed, thanks to the commonly assumed zero-mean

property of Gaussian noise this noise can be smoothed out by locally averaging

pixel values. Classical linear filters, such as the arithmetic mean filter (AMF)

smooth noise but blur edges significantly.

Since then, there have been proposed a series of nonlinear filters to approach this

problem with the main idea to use local measures to detect edges and smooth

them less than the rest of the image to better preserve their sharpness. This

mechanism works well to reduce gaussian noise without blurring edges however

these methods would detect impulsive noises as edges to be preserved so, these

vector filters are very efficient in reducing impulsive noise but they mostly lack

of good signal-preserving ability because the filtering operation is applied to each

image pixel regardless whether it is noisy or not.

In order to address this drawback, several approaches have been introduced by

using different criteria to preserve the original signal structures, such as edges and

fine details. Most of these filters work in two steps: a first step to classify whether
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a pixel is corrupted or not (detection step) and a second step to replace only the

pixels detected as corrupted. These methods have been called switching filters.

In particular, the notion of peer group is used in the switching filters to detect the

noise-likely pixels [2, 3]. This method consists on the construction of the set of the

pixels in a filtering window which are close to the central one. The central pixel

will be classified as corrupted if its peer group is small and it will be classified as

noise free if its peer group is great enough by means of a parameter that determines

whether the peer group is small or not.

Another notion that has been used in the recent literature is the Rank-Ordered

Differences (ROD) statistic [4]. In this case, the detection process consists on the

calculation of the sum of the lower m distances between the central pixel in the

filtering window and the rest of pixels. The ROD statistic provides a measure of

how close a pixel is to its m most similar neighbours in W attending to their RGB

colour vectors. The logic underlaying of the statistic is that unwanted impulses will

vary greatly in intensity in one or more colours from most of their neighbouring

pixels, whereas most pixels composing the actual image should have at least some

of their neighbouring pixels of similar intensity in each colour, even pixels on an

edge in the image. Thus noise-free pixels have a significantly lower ROD value

than corrupted pixels.

As a consequence of the ROD statistic notion, a new idea has been implemented

in a recent work. In front of the calculation of the m closest distances, one can

consider only the m-th closest distance to decide whether a pixel is noise-free or

not. In this case, it is not important to consider how close the pixels are to the

central one except the m-th.

2. The using of fuzzy metrics

As commented before, to measure similarity (or difference) between pixels one can

use the so called metrics. Since early filtering techniques, classical metrics have

been implemented and the more used ones are the well-known L1, L2 and L∞,

although any Minkowski type metric could be used to measure it. In particular,

the L1 distance measure takes into account the noise appearance in all the vector
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components but L∞ takes into account the noise appearance in only one com-

ponent. With respect to the distance L2 it works as the L1 but its efficiency is

computationally higher.

Nevertheless, recently fuzzy metrics have been introduced to extend the classical

notions to the fuzzy setting.

Definition 1 ([5]). A fuzzy metric space is an ordered triple (X,M, ∗) such that

X is a (nonempty) set, ∗ is a continuous t-norm andM is a fuzzy set onX×X×R+

satisfying the following conditions, for all x, y, z ∈ X, s, t > 0 :

(GV1) M(x, y, t) > 0

(GV2) M(x, y, t) = 1 if and only if x = y

(GV3) M(x, y, t) =M(y, x, t)

(GV4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s)

(GV5) M(x, y, ) : R+ →]0, 1] is continuous

If (X,M, ∗) is a fuzzy metric space we say that (M, ∗), or simply M , is a fuzzy

metric on X . Also, we say that (X,M) or, simply, X is a fuzzy metric space. The

value M(x, y, t) represents the degree of nearness between x and y (with respect

to the parameter t) and according to (GV2) M(x, y, t) is close to 0 when x is far

from y.

The three most commonly used continuous t-norms in fuzzy logic are the mini-

mum, denoted by ∧, the usual product, denoted by · and the Lukasievicz t-norm,

denoted by LUC (G), (xLUC (G)y = max{0, x+ y− 1}). They satisfy the inequal-

ity xLUC (G)y ≤ x · y ≤ x ∧ y and for each (continuous) t-norm ∗ it is satisfied

x ∗ y ≤ x ∧ y.

Definition 2 ([6]). A fuzzy metric M on X is said to be stationary if M does

not depend on t, i.e. if for each x, y ∈ X , the function Mx,y(t) = M(x, y, t) is

constant. In this case we write M(x, y) instead of M(x, y, t),

The interest of fuzzy metrics is mainly due to the following two main advantages

with respect to classical metrics: First, values given by fuzzy metrics are in the

interval ]0,1] regardless the nature of the distance concept being measured. This
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implies that it is easy to combine different distance criteria that may originally

be in quite different ranges but fuzzy metrics take to a common range. In this

way, the combination of several distance criteria may be done in a straightforward

way. Second, fuzzy metrics match perfectly with the employment of other fuzzy

techniques since the value given by a fuzzy metric can be directly employed or

interpreted as a fuzzy certainty degree. This allows to straightforwardly include

fuzzy metrics as part of other complex fuzzy systems.

Notice that a metric space (X, d) can be normalized to take values in the range

[0,1]. It would be enough to take the metric d∗ =
d

K + d
for a K > 0 but, in

this case, to measure similarity one should consider the function (1 − d∗) and it

is easy to observe that it coincides with a stationary version of the well-known

standard fuzzy metric for the usual product. Now, one can consider other fuzzy

metric examples to measure similarity and not only refer to the standard fuzzy

metric.

Actually, this kind of metrics have been implemented in several types of filtering

processes with a better performance in the quality. Moreover, fuzzy metrics take

values in the interval ]0, 1] and this is an advantage in front of classical metrics

since one can mix several fuzzy metrics to generate a new one to measure several

criteria simultaneously. In fact, it has been introduced in the literature a fuzzy

metric to simultaneously measure colorimetric difference and spatial distance.

In particular, to determine colorimetric difference between two pixels it has been

used the so called quotient fuzzy metric (for the usual product), defined by

Mq(x,y) =

3∏

i=1

min{xi, yi}+K

max{xi, yi}+K

where K is a parameter which can be adjusted attending to each image charac-

teristics (in general, it is used the value K = 1024 to guarantee certain symmetry

in the RGB domain).

To evaluate spatial distance between two pixel in the image matrix, the most used

fuzzy metric is the so called standard fuzzy metric [5] defined by
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Md(x,y) =
K

K + d(x,y)

where d is a classical metric (usually some of the above commented).

So, attending to the fuzzy metrics properties, one can define, in this case, a new

fuzzy metric by the expression

M(x,y) =Mq(x,y) ·Md(x,y)

to evaluate, simultaneously, colorimetric difference and spatial distance.

The previous fact is a clear advantage in front of classical metrics. Nevertheless, the

Mq fuzzy metric has the important handicap that it is so drastic when measuring

similarity between two pixels since an extreme value in one only component will

decrease significantly the corresponding final product and, in consequence, both

pixels will considered very different.

3. A new similarity measure

In some cases colorimetric difference between two pixels is distorted because the

triple product. For example, in a gray-scale system, the value 90 is close to 100 and

the fuzzy distance is 0.9 (without the correction parameter). Nevertheless, in the

three channel colour space RGB, the fuzzy distance between the pixels (90, 90, 90)

and (100, 100, 100) decreases to 0.73.

In order to overcome the commented inconvenience, we introduce a new similarity

measure that study in some sense similarity between two pixels regarding the Md

idea but not to be so drastic when considering the three components RGB.

So we consider the following function:

M1(x,y) =

3∑
i=1

min{xi, yi}

3∑
i=1

max{xi, yi}
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Notice that, in this case, the colorimetric difference between the previously con-

sidered pixels is M1((90, 90, 90), (100, 100, 100)) = 0.9 that can be considered to

better agree with the gray-scale case.

Proposition 3. The similarity measure M1 satisfies the following conditions:

(i) M1(x,y) ≥ 0

(ii) M1(x,y) =M(y,x)

(iii) M1(x,y) = 1 if and only if x = y

This function will compare similarity between pixels with a better sensibility and

not to be so drastic. Nevertheless, it would be very interesting to prove that it

satisfies the corresponding axioms to be a stationary fuzzy metric.

If we consider ∗ as the usual product we have proved that this measure does not

satisfy axiom (GV 4). Indeed, consider the following colour pixels (in a two-space

range): x = (1, 6), y = (5, 8) and z = (7, 2). Then we have

M1(x, z) =
1 + 2

7 + 6
=

3

13

M1(x,y) ·M1(y, z) =
1 + 6

5 + 8
·
5 + 2

7 + 8
=

7

13
·
7

15
=

49

195

It remains an open question to verify if this measure satisfies axiom (GV 4) for ∗

as the Lukasievicz t-norm.
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Abstract

Uniform spaces can be defined in various equivalent ways by means

of entourages, uniform covers and pseudometrics. The latter allows

to identify a uniformity the family of all pseudometrics generating a

coarser uniformity. Hence, it is natural to wonder if this is also true in

the realm of fuzzy uniform spaces. Recently, it has been proved that a

uniformity is categorically equivalent to a family of fuzzy pseudometrics

generating a coarser uniformity. Here we will show that a probabilistic

uniformity can be also defined by means of a certain family of fuzzy

pseudometrics. This new approach to probabilistic uniformities sheds

light on their relationship with classical uniformities.

1. Introduction

It is well-known that, although not every uniformity is metrizable, every entourage

of a uniformity belongs to a coarser uniformity generated by a certain pseudome-

tric. This allows to establish a categorical identification between a uniformity and

1This research is supported under grant MTM2015-64373-P (MINECO/FEDER, UE).
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a family of pseudometrics called a gauge or a uniform structure. In 2010, Gutiérrez

Garćıa, S. Romaguera and M. Sanchis [6] showed that this is also true when you

consider fuzzy pseudometrics, i. e. every uniformity is, categorically speaking,

equivalent to a fuzzy uniform structure, i. e. a family of fuzzy pseudometrics in

the sense of Kramosil and Michalek, satisfying certain properties.

On the other hand, probabilistic uniform spaces were introduced in [7] as a fuzzy

counterpart of the concept of uniform space (see, for example, [13] for a discussion

about several notions of fuzzy uniformity).

Consequently, it is natural to wonder whether, as classical uniformities, every

probabilistic uniformity is equivalent to a certain family of fuzzy pseudometrics.

Here, we show explicitly that this is true by establishing a category isomorphism

theorem. Furthermore, as we will see, this isomorphism provides a more under-

standable way of establishing the relationship between classical uniformities and

probabilistic uniformities.

2. Uniformities and fuzzy uniform structures

We start recalling some well-known facts about uniformities that will be useful

later on. Our basic reference is [1].

We will denote by Unif the topological category whose objects are the uniform

spaces (defined in terms of entourages) and whose morphisms are the uniformly

continuous functions.

Uniformities admit several equivalent definitions. One of the most usual is the

definition by means of pseudometrics.

Definition 1. Let X be a nonempty set. A gauge or a uniform structure on

X is a nonempty family D of pseudometrics on X such that:

(G1) if d, q ∈ D then d ∨ q ∈ D;

(G2) if e is a pseudometric on X and for each ε > 0 there exist d ∈ D and δ > 0

such that d(x, y) < δ implies e(x, y) < ε for all x, y ∈ X , then e ∈ D.
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If we say that a function f : (X,D) → (Y,Q) between two spaces endowed

with a uniform structure is uniformly continuous whenever f : (X,
∨
d∈D Ud) →

(Y,
∨
q∈Q Uq) is uniformly continuous, then we can consider the category SUnif

whose objects are the spaces endowed with a uniform structure and whose mor-

phisms are the uniformly continuous functions. It is well-known that Unif and

SUnif are isomorphic categories as the next theorem shows.

Theorem 2. Let U and D be a uniformity and a uniform structure on a nonempty

set X respectively. Define:

• DU as the family of all pseudometrics d on X such that Ud ⊆ U ;

• UD as the uniformity
∨
d∈D Ud.

Then the mappings:

• ∆ : Unif → SUnif given by ∆((X,U)) = (X,DU );

• Λ : SUnif → Unif given by Λ((X,D)) = (X,UD);

which leave morphisms unchanged are covariant functors such that ∆ ◦ Λ = 1SUnif

and Λ ◦∆ = 1Unif .

In [6] the authors studied a fuzzy notion of the concept of uniform structure giving

a new category isomorphic to Unif. We recall the necessary notions to establish

this isomorphism. In the sequel we wilI use the following notation: I = [0, 1],

I0 = (0, 1] and I1 = [0, 1).

Definition 3. A binary operation ∗ : [0, 1]× [0, 1]→ [0, 1] is called a continuous

t-norm if ([0, 1], ∗) is an Abelian topological monoid with unit 1, such that a∗b ≤

c ∗ d whenever a ≤ c and b ≤ d, with a, b, c, d ∈ [0, 1].

Definition 4 ([6]). A fuzzy pseudometric (in the sense of Kramosil and Michalek)

on a nonempty set X is a pair (M, ∗) such that ∗ is a continuous t-norm and M

is a fuzzy set in X ×X × [0,+∞) such that for every x, y, z ∈ X and t, s > 0 :

(FM1) M(x, y, 0) = 0;

(FM2) M(x, x, t) = 1;

(FM3) M(x, y, t) =M(y, x, t);
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(FM4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s);

(FM5) M(x, y, ·) : [0,∞)→ [0, 1] is left continuous.

If the fuzzy pseudometric (M, ∗) also satisfies:

(FM2’) M(x, y, t) = 1 for all t > 0 if and only if x = y

then (M, ∗) is said to be a fuzzy metric on X [10].

A fuzzy (pseudo)metric space is a triple (X,M, ∗) such that X is a nonempty

set and (M, ∗) is a fuzzy (pseudo)metric on X.

Remark 5. Every fuzzy pseudometric (M, ∗) on a nonempty set X generates a

topology τM on X which has as a base the family {BM (x, ε, t) : x ∈ X, ε ∈

(0, 1), t > 0} where BM (x, ε, t) = {y ∈ X : M(x, y, t) > 1 − ε}. Furthermore (cf.

[4]) every fuzzy (pseudo)metric space (X,M, ∗) is (pseudo)metrizable and it has a

compatible uniformity UM with a countable base given by

UMn = {(x, y) ∈ X ×X :M(x, y, 1/n) > 1− 1/n}

(we will omit the superscript M if no confusion arises).

Definition 6 ([3]). A function f : (X,M, ∗)→ (Y,N, ⋆) between two fuzzy metric

spaces is said to be uniformly continuous if for every ε ∈ (0, 1) and t > 0 there

exist δ ∈ (0, 1) and s > 0 such that

if M(x, y, s) > 1− δ then N(f(x), f(y), t) > 1− ε

where x, y ∈ X.

This is equivalent to assert that f : (X,UM )→ (Y,UN ) is uniformly continuous.

Example 7 ([6], cf. [2]). Let (X, d) be a pseudometric space. LetMd be the fuzzy

set on X ×X × [0,∞) given by

Md(x, y, t) =





t
t+d(x,y) if t > 0

0 if t = 0
.

For every continuous t-norm ∗, (Md, ∗) is a fuzzy pseudometric on X which is

called the standard fuzzy pseudometric induced by d.
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Furthermore, we notice that Ud = UMd
(cf. [5, Lemma 5]) where Ud is the unifor-

mity generated by d.

Definition 8 ([6]). Let X be a nonempty set and let ∗ be a continuous t-norm. A

fuzzy uniform structure for ∗ is a pair (M, ∗) whereM is a nonempty family

of fuzzy pseudometrics with respect ∗ on X such that:

(FU1) if (M, ∗), (N, ∗) ∈ M then (M ∧N, ∗) ∈ M;

(FU2) if (M, ∗) is a fuzzy pseudometric on X , and if for each ε ∈ (0, 1) and each

t > 0 there exist (N, ∗) ∈ M, δ ∈ (0, 1) and s > 0 such that N(x, y, s) ≥

1− δ implies M(x, y, t) ≥ 1− ε for all x, y ∈ X , then (M, ∗) ∈M.

A fuzzy uniform space is a triple (X,M, ∗) such that X is a nonempty set and

(M, ∗) is a fuzzy uniform structure on X.

Definition 9 ([6]). Let (X,M, ∗) and (Y,N , ⋆) be two fuzzy uniform spaces.

A mapping f : X → Y is said to be uniformly continuous if for each N ∈

N , ε ∈ (0, 1) and t > 0 there exist M ∈ M, δ ∈ (0, 1) and s > 0 such that

N(f(x), f(y), t) > 1− ε whenever M(x, y, s) > 1− δ.

Then we can consider the category FUnif whose objects are the fuzzy uniform

spaces and whose morphisms are the uniformly continuous functions. Besides, if ∗

is a continuous t-norm, we denote by FUnif(∗) the full subcategory of FUnif whose

objects are the fuzzy uniform spaces of the form (X,M, ∗). In [6] it is proved that

the category FUnif(∗) is isomorphic to Unif as follows:

Theorem 10 ([6]). Let (X,U) be a uniform space and (X,M, ∗) be a fuzzy uni-

form space. Let us consider:

• (ϕ∗(DU ), ∗) the fuzzy uniform structure ϕ∗(DU ) = {(M, ∗) : UM ⊆ U};

• ψ(M) the uniformity UM =
∨

(M,∗)∈M UM .

Then:

(i) Φ∗ : Unif → FUnif(∗) is a covariant functor sending each (X,U) to (X,ϕ∗(DU ), ∗);

(ii) Ψ : FUnif(∗) → Unif is a covariant functor sending each (X,M, ∗) to

(X,ψ(M)) = (X,UM);
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(iii) Φ∗ ◦Ψ = 1FUnif(∗) and Ψ ◦ Φ∗ = 1Unif .

3. Probabilistic uniform structures

Probabilistic uniformities were first considered by Höhle and Katsaras [7, 9] as

a fuzzy counterpart of uniformities. On his behalf, Lowen introduced in [12] for

the t-norm ∧ a different type of fuzzy uniformities, now called Lowen uniformities

or Lowen-Höhle uniformities [13], which were also studied by Höhle [8] for an

arbitrary t-norm. We recall their definitions.

Definition 11 ([11, 12]). Let X be a nonempty set.

• A prefilter F on X is a filter on the lattice IX .

• A prefilter base B on X is a filter base on the lattice IX . We denote

〈B〉 = {F ∈ IX : B ≤ F for some B ∈ B}.

• A prefilter F on X is said to be saturated if for every {Fε : ε ∈ I0} ⊆ F

we have that supε∈I0(Fε − ε) ∈ F .

Definition 12 ([7, Definition 2.1],[9],[12]). A probabilistic ∗-uniformity on a

nonempty set X is a pair (U, ∗), where ∗ is a continuous t-norm and U is a prefilter

on X ×X such that:

(PU1) U(x, x) = 1 for all U ∈ U;

(PU2) if U ∈ U then U−1 ∈ U where U−1(x, y) = U(y, x);

(PU3) for each U ∈ U there exists V ∈ U such that

V 2 ≤ U

where V 2(x, y) = supz∈X V (x, z) ∗ V (z, y).

In this case we say that (X,U, ∗) is a probabilistic ∗-uniform space.

Furthermore, if (U, ∗) is a saturated probabilistic uniformity on X, then it is called

a Lowen ∗-uniformity.

In general, we will not make reference to the t-norm ∗ if no confusion arises.
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Definition 13. A function f : (X,U, ∗) → (Y,V, ⋆) between two probabilistic

uniform spaces is said to be fuzzy uniformly continuous if (f × f)−1(V ) ∈ U

for all V ∈ V, i. e. for every V ∈ V we can find U ∈ U such that

U(x, y) ≤ V (f(x), f(y)) for all x, y ∈ X.

Then we can consider the category PUnif whose objects are the probabilistic uni-

form spaces and whose morphisms are the fuzzy uniformly continuous functions.

For a fixed continuous t-norm ∗, PUnif(∗) is the full subcategory of PUnif whose

objects are the probabilistic uniform spaces with respect to the continuous t-norm

∗.

Lowen [12] provided a pair of adjoint functors ω∗ and ι between the category Unif

and the category LUnif(∗) of probabilistic uniform spaces with respect to a fixed

continuous t-norm ∗, which is a coreflective subcateogry of PUnif(∗) [13].

Theorem 14 ([12]). Let X be a nonempty set, U be a uniformity on X and (U, ∗)

be a Lowen uniformity on X. Define

ω(U) = {F ∈ IX×X : F−1((ε, 1]) ∈ U for all ε ∈ I1}

and

ι(U) = {U−1((ε, 1]) : U ∈ U, ε ∈ I1}.

Then:

(1) (ω(U), ∗) is a Lowen uniformity on X ;

(2) ι(U) is a uniformity on X ;

(3) ι(ω(U)) = U ;

(4) (ω(ι(U)), ∗) is the coarsest Lowen uniformity generated by a uniformity

and which is finer than U.

Furthermore, if we consider the mappings ω∗ : Unif → LUnif(∗) and ι : LUnif →

Unif, which leave morphisms unchanged, and ω∗((X,U)) = (X,ω(U), ∗) and ι((X,U, ∗)) =

(X, ι(U)) then they are fully faithful and faithful functors respectively. Therefore

Unif is isomorphic to a full subcategory of LUnif(∗).
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We next introduce a new fuzzy uniform structure which, as we will see in the next

section, is very related with probabilistic uniformities.

Definition 15. Let X be a nonempty set and let ∗ be a continuous t-norm. A

probabilistic ∗-uniform structure on X is a pair (M, ∗) where M is a family

of fuzzy pseudometrics on X with respect to ∗ such that:

• if (M, ∗), (N, ∗) ∈M then (M ∧N, ∗) ∈M;

• if (M, ∗) is a fuzzy pseudometric on X such that for all t > 0, there exist

(N, ∗) ∈M and s > 0 verifying

N(x, y, s) ≤M(x, y, t)

for all x, y ∈ X , then (M, ∗) ∈M.

A space with a probabilistic ∗-uniform structure is a triple (X,M, ∗) such that X

is a nonempty set and (M, ∗) is a probabilistic ∗-uniform structure on X.

Definition 16. Let (X,M, ∗) and (Y,N, ⋆) be two spaces endowed with two pro-

babilistic uniform structures. A mapping f : X → Y is said to be fuzzy uni-

formly continuous if for every (N, ⋆) ∈ N and t > 0 there exist (M, ∗) ∈M and

s > 0 such that M(x, y, s) ≤ N(f(x), f(y), t) for all x, y ∈ X.

In the sequel, we will denote by PSUnif the category whose objects are the spaces

with a probabilistic uniform structure and whose morphisms are the fuzzy uni-

formly continuous functions. PSUnif(∗) will denote the full subcategory of PSUnif

whose objects are the spaces with a probabilistic ∗-uniform structure where ∗ is a

fixed continuous t-norm ∗.

4. PSUnif and PUnif are isomoprhic

In [6] it was proved that the categories FUnif(∗) and Unif are isomorphic. Here we

will show that the categories PSUnif and PUnif are also isomorphic.

Proposition 17. Let us consider the map S : PUnif → PSUnif given by

S((X,U, ∗)) = (X, s(U), ∗) = (X,MU, ∗)
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where (s(U), ∗) = (MU, ∗) is the probabilistic uniform structure of all fuzzy pseu-

dometrics (M, ∗) on X such that M(·, ·, t) ∈ U for all t > 0 and

S(f) = f

for every morphism f in PUnif. Then S is a covariant fully faithful functor.

Proposition 18. Let us consider the map Υ : PSUnif → PUnif given by

Υ((X,M, ∗)) = (X, υ(M), ∗) = (X,UM, ∗)

where (UM, ∗) is the probabilistic uniformity which has as base the family {M(·, ·, t) :

t > 0, (M, ∗) ∈M} and

Υ(f) = f

for every morphism f in PSUnif. Then Υ is a fully faithful covariant functor.

Theorem 19. S ◦ Υ = 1PSUnif and Υ ◦S = 1PUnif so the categories PSUnif and

PUnif are isomorphic.

Theorem 20. The following diagram commutes:

FUnif(∗)Unif

PSUnif(∗)PUnif(∗)

Φ∗

Ψ

ω∗ i

Υ

S

where i denotes the inclusion functor.

Corollary 21. Lowen’s functor ω∗ can be factorized as follows:

ω∗ = Υ ◦ i ◦ Φ∗.
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Abstract

In this work we show how to define a probability measure with the help

of a fractal structure. One of the keys of this approach is the use of

the completion of the fractal structure. In this completion we define an

order and describe a theory of the distribution function in this context.

1. Introduction

This work collects and advances some results on a research line on the construction

of a probability measure with the help of a fractal structure, which is in current

development ([3], [4], [5]).

The idea is to define a pre-measure on the elements of the fractal structure or

some induced structure and be able to extend it to a probability measure on the

Borel σ-algebra of the space or its completion.

1This author acknowledges the support of grant MTM2015-64373-P (MINECO/FEDER, UE).
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2. Fractal structures and non archimedean quasi metrics

Fractal structures were introduced in [1] to study non archimedean quasi metriza-

tion, but they have been used in other fields. We refer the reader to [6] for a survey

on fractal structures.

LetX be a set and Γ1 and Γ2 be coverings ofX . Γ2 is said to be a strong refinement

of Γ1 if it is a refinement (that is, each element of Γ2 is contained in some element

of Γ1) and for each A ∈ Γ1 it is satisfied that A = ∪{B ∈ Γ2 : B ⊆ A}.

Definition 1. A fractal structure Γ on a set X is a countable family of coverings

Γ = {Γn : n ∈ N} such that each cover Γn+1 is a strong refinement of Γn for each

n ∈ N. Cover Γn is called level n of the fractal structure.

A quasi pseudo metric on a set X is a function d : X ×X → [0,∞[ such that:

(1) d(x, x) = 0, for each x ∈ X .

(2) d(x, z) ≤ d(x, y) + d(y, z) for each x, y, z ∈ X .

d is called a pseudo metric if it also satisfies that d(x, y) = d(y, x) for each x, y ∈ X .

A quasi pseudo metric (resp. a pseudo metric) is said to be a T0 quasi metric (resp.

a metric) if d(x, y) = d(y, x) = 0 implies that x = y, for each x, y ∈ X .

If d is a quasi (pseudo) metric, the function defined by d−1(x, y) = d(y, x) is also a

quasi (pseudo) metric, called conjugate quasi (pseudo) metric of d. Furthermore,

the function d∗(x, y) = max{d(x, y), d−1(x, y)} is a (pseudo) metric.

A quasi pseudo metric is said to be non archimedean if d(x, z) ≤ max{d(x, y), d(y, z)}

for each x, y, z ∈ X .

If d is a non archimedean quasi (pseudo) metric, then d−1 is also a non archimedean

quasi (pseudo) metric and d∗ is a non archimedean (pseudo) metric.

A fractal structure Γ induces a non archimedean quasi pseudo metric dΓ given by:

dΓ(x, y) =





1
2n if y ∈ Uxn\Ux,n+1

1 if y /∈ Ux1
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where Uxn = X \
⋃
{A ∈ Γn : x 6∈ A} for each x ∈ X and n ∈ N.

In this work, we will assume that the induced topology is T0, and hence dΓ is a

non archimedean T0-quasi metric and d∗Γ is a non archimedean metric (also called

ultrametric).

Given x ∈ X and n ∈ N, we will denote by U∗
xn = {y ∈ X ; d∗(x, y) ≤ 1

2n } the

closed ball, with respect to the ultrametric d∗, centered at x with radius 1
2n . The

collection of these balls will be denoted by G = {U∗
xn : x ∈ X ;n ∈ N}.

Conversely, a non archimedean quasi pseudo metric d induces a fractal structure

Γ = {Γn : n ∈ N}, where Γn = {Bd−1(x, 1
2n ) : x ∈ X} and Bd−1(x, 1

2n ) is the

ball with respect to the conjugate quasi pseudo metric d−1, given as usual by

Bd−1(x, 1
2n ) = {y ∈ X : d−1(x, y) ≤ 1

2n }.

2.1. Completion of a fractal structure. Following [1], we can define an exten-

sion of X as follows.

Let Gn = {U∗
xn : x ∈ X}. Note that Gn is a partition ofX . Then we can define the

projection ρn : X → Gn by ρn(x) = U∗
xn, and the bonding maps φn : Gn+1 → Gn

given by φn(ρn+1(x)) = ρn(x). We will denote by X̃ = lim←−Gn = {(g1, g2, ...) ∈∏∞
n=1Gn : φ(gn+1) = gn, ∀n ∈ N}. Now, we can embed X into X̃ by using the

map ρ : X → X̃ defined as ρ(x) = (ρn(x))n∈N.

The construction of the bicompletion of a fractal structure Γ is given in [3] by

defining level n of the extended fractal structure Γ̃ as Γ̃n = {Ã : A ∈ Γn}, where

Ã = {(ρk(xk))k∈N ∈ X̃ : xn ∈ A} for each A ∈ Γn and n ∈ N.

We will denote by Ũ∗
xn = {y ∈ X̃ : d̃∗(x, y) < 1

2n }, where d̃
∗ is the ultrametric

induced by Γ̃ on X̃. Following a similar notation, we will denote the collection of

these balls by G̃ = {Ũ∗
xn : x ∈ X ;n ∈ N} = {Ũ∗

xn : x ∈ X̃;n ∈ N}.

3. Defining a probability measure on X̃ and X

In this section we show how to define a probability measure on X̃ by defining it

on G or G̃ (this section is further developed in [4]).
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Let ω be a pre-measure ω : G → [0, 1]. We will say that ω satisfies the mass

distribution conditions if:

(1)
∑
{ω(U∗

x1) : U
∗
x1 ∈ G1} = 1.

(2) ω(U∗
n) =

∑
{ω(U∗

y,n+1) : U
∗
y,n+1 ∈ Gn+1; y ∈ U∗

xn} for each U
∗
xn ∈ Gn and

each n ∈ N.

ω can be extended to G̃ by letting ω̃(Ũ∗
xn) = ω(U∗

xn), for each x ∈ X and n ∈ N.

Note that ω̃ also satisfies the mass distribution conditions.

From ω̃ and by using Method I and II of construction of outer measures (see [2])

it can be proved the next

Proposition 2. ω̃ can be extended to a probability measure µ on the Borel sigma-

algebras of (X̃, d̃∗) and (X̃, d̃).

The second way to define a probability measure on X̃ is by using the elements of

Γn, instead of G. We will assume that Γ is a tiling fractal structure (that is, each

level is a tiling covering which means the elements are regularly closed and their

interior are pairwise disjoint).

So now ω is a pre-measure ω :
⋃
n∈N

Γn → [0, 1] satisfying the mass distribution

conditions, which are now:

(1)
∑

A∈Γ1
ω(A) = 1.

(2) ω(A) =
∑

B∈Γn+1,B⊆A ω(B), for each A ∈ Γn and each n ∈ N.

From ω, we can define a pre-measure on G as follows:

ω(U∗
xn) =





ω(A) if x ∈ in(A)

0 otherwise

where in(A) is the set of points which belongs to A, but does not belong to any

other B with B ∈ Γn. Note that in(A) is not empty and it contains the interior

of A, since Γ is a tiling.
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Proposition 3. ω : G → [0, 1] satisfies the mass distribution conditions. If µ

is the extension of ω to the Borel sigma-algebras of (X̃, d̃∗) and (X̃, d̃), then ω :
⋃
n∈N

Γn → [0, 1] satisfies that µ(Ã) = ω(A) for all A ∈ Γn and n ∈ N.

The next goal is to find conditions such that ω can be extended to a probability

measure on the Borel σ-algebras of (X, d∗) and (X, d).

A fractal structure Γ = {Γn : n ∈ N} is said to be Cantor complete if for each

sequence (An)n∈N with An ∈ Γn and An+1 ⊆ An for each n ∈ N, it holds that
⋂
n∈N

An 6= ∅.

A sufficient conditions to obtain a probability measure on X is the following one,

which uses the set of critical points Cn at level n, defined as Cn =
⋃
{A∩B : A,B ∈

Γn;A 6= B} for each n ∈ N.

Theorem 4. Let Γ be a Cantor complete fractal structure on X (we assume

that Γ is tiling if we define ω on
⋃
n∈N

Γn) and suppose that for each n ∈ N

ω(St(Cn,Γm))→ 0. Then ω can be extended to a probability measure on the Borel

σ-algebras of (X, d∗) and (X, d).

4. Distribution function

In this section we elaborate a theory of a distribution function in the context of

this work (this section is further developed in [5]).

First, we define an order in X̃ from the collection of balls Gn.

Definition 5. Let us suppose that Gn is countable for each n ∈ N. Then we can

enumerate G1 = {g1, g2, . . .}. Now we enumerate G2 such that gi = gi1 ∪ gi2 ∪ · · ·

for each gi ∈ G1, and define the lexicographical order in G2. Recursively, we define

an order in Gn for each n ∈ N.

This order induces an order in X̃ given by x ≤ y if and only if Ũ∗
xn ≤ Ũ∗

yn in Gn

for each n ∈ N.

Proposition 6. This order is a complete total order with a bottom. If Γ is finite,

then it also has a top.
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Definition 7. The cumulative distribution function (in short, cdf) of a probability

measure µ is a function F : X̃ → [0, 1] defined by F (x) = µ(≤ x), where ≤ x =

{y ∈ X̃ : y ≤ x}.

Proposition 8. Let F be a cdf. Then:

(1) F is non-decreasing.

(2) F is right τd∗-continuous.

(3) limx→∞ F (x) = 1 (this means that for each ε > 0 and x ∈ X̃ there exists

y ∈ X̃ with x ≤ y and such that 1− F (y) < ε).

Finally, we prove that any function satisfying the conditions of the previous propo-

sition is the distribution function of a probability measure on X̃ defined with the

help of a fractal structure.

Theorem 9. Let F : X̃ → [0, 1] be a non-decreasing, right τd∗-continuous function

such that limx→∞ F (x) = 1. Then there exists a pre-measure ω : G → [0, 1],

satisfying the mass distribution conditions, such that F is the cdf of µ, where µ is

the extension of ω̃ to the Borel σ-algebras of (X̃, d̃∗) and (X̃, d̃).
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132



WATS'16

Workshop on Applied Topological Structures

Valencia, 22-23 June 2016
pp. 133 – 138

A brief survey on transitivity and Devaney’s chaos:
autonomous and nonautonomous discrete dynami-
cal systems

Manuel Sanchis 1

a Institut Universitari de Matemátiques i Aplicacions de Castelló (IMAC), Universitat Jaume I de Castelló, 12017
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Abstract

This is intended as a brief survey on topological transitivity and De-

vaney’s chaos for autonomous (respectively, noautonomous) discrete

dynamical systems on metric spaces. Our main is to give an overview

of basic results on these topics. We emphasize the differences between

autonomous and nonautonomous systems. The outcomes are purely

“topological” and they do not reflect differentiable dynamics or ergodic

theory aspects of these topics.

1. Introduction

All spaces under consideration are metric spaces. Given a metric spaceX := (X, d)

and a continuous function f : X → X , the pair (X, f) is called a(n) (autonomous)

discrete dynamical system (discrete dynamical system or DS, for short). Notice

1This research is supported under grant MTM2015-64373-P (MINECO/FEDER, UE).
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that it is equivalent to consider an action of the usual topological semigroup of the

natural on the metric space X and, if f is a homeomorphism, then it is equivalent

to consider an action of the usual topological group of the integers on X . One of

the most interesting and useful notions in the theory of discrete dynamical systems

is the concept of orbit of a point x, that is, the sequence

orbf (x) =
{
x, f(x), f2(x), . . . , fn(x), . . .

}

where fn stands for the n-th iterate of the function f .

Discrete dynamical systems can be generalized in the following way. Let X be

a metric space, fn : X → X a continuous map for each positive integer n, and

f∞ the sequence (f1, f2, . . . , fn, . . .). The pair (X, f∞) is called a nonautonomous

discrete dynamical system (NDS, for short) in which the orbit of a point x ∈ X

under f∞ is defined as the set

orbf∞(x) = {x, f1(x), f
2
1 (x), . . . , f

n
1 (x), . . .},

where

fn1 = fn ◦ fn−1 ◦ . . . ◦ f2 ◦ f1,

for each positive integer n, and f0
1 is the identity on X . In particular, when f∞ is

the constant sequence (f, f, . . . , f, . . .), the pair (X, f∞) is the usual (autonomous)

discrete dynamical system given by the map f on X .

In this note we deal with basic results on topological transitivity and Devaney’s

chaos for DS and NDS. Our presentation is organized in such a way that the

differences between DS, on the one hand, and NDS, on the other, are strongly

emphasized. A detailed exposition, more suited to the purposes of the present

note, is given in [10].

Let (X, f) be DS. We will consider the following two conditions:

(TT) for every pair of nonempty open sets U and V in X , there is a positive

integer n such that fn(U) ∩ V 6= ∅, and

(DO) there is a point x0 such that the orbit of x0 is dense in X .
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As is customary, we adopt the condition (TT) as the definition of topological

transitivity, but note that some authors take (DO) instead. Any point with dense

orbit is called a transitive point. As a motivation for the notion of topological

transitivity of (X, f) one may think of a real physical system, where a state is

never given or measured exactly, but always up to a certain error. So instead of

points one should study (small) open subsets of the phase space and describe how

they move in that space.

The concept of topological transitivity goes back Birkhoff. According to [7], he

used it in 1920, cf. [4] (see also [3]).

Remember that, given a DS (X, f), a point x ∈ X is periodic if there exists a non-

negative integer n such that fn(x) = x. A DS (X, f) is called Devaney’s chaotic

[5] if it satisfies the following three conditions:

(i) (X, f) is transitive;

(ii) the periodic points are dense in X ;

(iii) (X, f) has sensitive dependence on initial conditions, that is, there exists

ε > 0 such that for all δ > 0 and all x ∈ X there is y ∈ X and n > 0 with

d(x, y) < δ and d(fn(x), fn(y)) ≥ ε.

As far as we know the first to formulate (iii) was Guckenheimer [8] in his study

on maps of the interval (he required the condition to hold for a set of positive

Lebesgue measure). The phrase sensitive dependence on initial conditions was

used by Ruelle [12] to indicate some exponential rate of divergence of orbits of

nearby points.

The corresponding conditions and definitions for NDS are self-explanatory and we

omit the details. NDS were introduced in [9], and are related to nonautonomous

difference equations: Indeed, a general form of a nonautonomous difference equa-

tion is the following: Given a compact metric space (X, d) and a sequence of

continuous functions (fn : X → X)n∈N, for each x ∈ X we set




x0 = x,

xn+1 = fn(xn).
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These kind of nonautonomous difference equations have been considered by several

mathematicians (see for instance, among others, [15], [17]). The most classical

examples are when X = [0, 1] is the unit interval, and d is the usual euclidean

metric. Observe that the orbit of a point forms a solution of a nonautonomous

difference equation.

Our notation and terminology is standard and follows [6].

2. Discrete dynamical systems

We begin by describing the relationship between conditions (TT) and (DO). The

two conditions are independent in general. We will present the usual examples of

this fact. First consider X = {0} ∪ {1/n : n ∈ N} equipped with the usual metric

and let f be the continuous function on X onto itself defined by f(0) = 0 and

f(1/n) = 1/(n + 1), n ≥ 1. The point x = 1 is (the only) transitive point for

(X, f) but the system is not topologically transitive (take, say, U = {1/3} and

V = {1}). Thus, (DO) does not imply (TT). We show that neither (TT) implies

(DO). To this end take the unit interval I and the tent map g(x) = 1 − |2x − 1|

from I into itself. Let X be the set of all periodic points of g and consider the

dynamical system (X, f) where f = g|X . Then the system (X, f) does not satisfy

the condition (DO), since X is infinite (dense in I ) while the orbit of any periodic

point is finite. But the condition (TT) is fulfilled. This follows from the fact

that for any nondegenerate subinterval J of I there is a positive integer n with

gn(J) = I (see [11]). Hence, whenever M and N are nonempty open subintervals

of I, there is a periodic orbit of g which intersects both M and N . This gives (TT)

for (X, f).

Nevertheless, under some additional assumptions on the phase space X the two

conditions (TT) and (DO) are equivalent. In fact, we have

Theorem 1 ([16]). Let (X, f) be a discrete dynamical system. If X has no isolated

points, then (DO) implies (TT). If X is separable and second category, then (TT)

implies (DO).

We now turn our attention to Devaney’s chaos. Taking as a point of starting the

definition of Devaney’s chaos, an obvious question to ask is whether Devaney’s
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chaos is independent of the choice of the metric d on X . The following result

answers this question in a drastic way.

Theorem 2 ([2]). Let (X, f) be a discrete dynamical system with X an infinite

set. If (X, f) is transitive and the set of periodic points is dense in X, then (X, f)

has sensitive dependence on initial conditions.

The previous result implies that condition (iii) in Devaney’s definition of chaos is

in fact superfluous. It is worth nothing (and easy to see) that neither (i) nor (ii)

are redundant. However, in [14] Sarkovskǐı proved that transitivity implies that

the periodic points are dense in the case of the dynamical systems on the interval.

Sarkovskǐı’s result can be improved by considering a more general class of spaces.

A connected space X has a disconnecting interval if there is an open subset I of

X , homeomorphic to an open interval, such that X \ I is not connected.

Theorem 3 ([1]). If in the dynamical system (X, f) the space X is connected and

has a disconnecting interval and f is transitive, then the periodic points are dense

in X.

3. Nonautonomous dynamical systems

In this section we describe how the previous results fit into the theory of NDS.

Concerning the relationship between conditions (TT) and (DO) we have the two

following results related to Theorem 1.

Theorem 4 ([13]). Suppose that X is a separable space with the Baire property. If

(X, f∞) is a transitive NDS, then there exists a point x ∈ X whose orbit is dense.

Example 5 ([13]). There is a non-transitive NDS (I, g∞) which has a dense orbit.

The relevant results on Devaney’s chaos presented by Theorem 2 and Theorem 3

fail to be true in the realm of NDS.

Example 6 ([13]). There is a NDS (I, f∞) which is transitive and has a dense set

of periodic points, but it does not have sensitive dependence on initial conditions.

Example 7 ([13]). There is a transitive NDS (I, g∞) with sensitive dependence

on initial conditions such that the set of periodic points is not dense in I.
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Abstract

Here we present the concept of p-metric that use to obtain some well-

known fixed point theorems in fuzzy metric spaces from the classical

Banach’s principle

1. Introduction

p-sums or p-Yager-sums are defined as ⊕p : R+ × R+ :→ [0, 1]; ⊕p(a, b) =

min{1, (ap + bp)1/p}, p > 0. In particular ⊕1(a, b) = min{1, a + b}, that is re-

ferred in the literature as the bounded sum or the Lukasiewicz sum. Moreover ⊕p

is known as a Yager t-norm if it is defined on [0, 1]. It is well known that the theory

of fuzzy logic and fuzzy sets focus its attention on the set [0, 1]. On the other hand,

if we have a metric d on a non-empty set X , the topology induced by d on X coin-

cides with the topology induced by d1, where d1 is the metric d bounded by 1. So

we could generalize the concept of metric by using the concept of p-sum to give the

1This research is supported under grant MTM2015-64373-P (MINECO/FEDER, UE).
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definition of p-metric on a set X as a binary fuzzy relationD : X×X → [0, 1] satis-

fying the following properties for all x, y, z ∈ X and for some p > 0 : i) D(x, y) = 0

if and only if x = y, ii) D(x, y) = D(y, x) and iii) D(x, z) ≤ D(x, y) ⊕p D(y, z).

We will know this triple (X,D,⊕p) as a p-metric space. For each x ∈ X and r > 0

we can define the open ball BD(x, r) = {y ∈ X : D(x, y) < r} and it is obvious

that BD(x, r1) ⊆ BD(x, r2) provided that r1 ≤ r2. Consequently, we may define a

topology τD on X as τD = {A ⊆ X : for each x ∈ A there exists r > 0 such that

BD(x, r) ⊆ A}.

It is easy to see that d(x, y) = Dp(x, y) for all x, y ∈ X is a metric on X and that

τd = τD. Reciprocally, if d is a 1−bounded metric on X then D(x, y) = d1/p(x, y)

for all x, y ∈ X is a p-generalized metric on X for ⊕p, p > 0.

In fuzzy theory, the concepts of intersection and union are generalized in terms

of t-norms and t-conorms, respectively. A t-norm is a binary operation ∗ :

[0, 1]×[0, 1]→ [0, 1] satisfying the following conditions:(i) ∗ is associative and com-

mutative; (ii) a∗1 = a for every a ∈ [0, 1], (iii) a∗b ≤ c∗d whenever a ≤ c and b ≤ d

with a, b, c, d ∈ [0, 1]. A t-conorm is a binary operation ⋄ : [0, 1]× [0, 1]→ [0, 1] sat-

isfying the following conditions:(i) ⋄ is associative and commutative; (ii) a ⋄ 0 = a

for every a ∈ [0, 1], (iii) a⋄b ≤ c⋄d whenever a ≤ c and b ≤ d with a, b, c, d ∈ [0, 1].

If ∗ (⋄) is continuous we will call to ∗ (⋄) as a continuous t-nom (t-conorm). If

∗ is a (continuous) t-norm we can define a (continuous) t-conom ⋄∗as follows:

a ⋄∗ b = 1− [(1− a) ∗ (1− b)] for all a, b ∈ [0, 1]. It is well known that the p-Yager

sums are continuous t-conorms.

In [1] L. Zadeh introduced the concept of similarity relation as follows

Definition 1. A similarity relation on a set X is a pair (E, ∗) such that ∗ is a

t-norm and E is a fuzzy set in X ×X such that for all x, y, z ∈ X :

(E1) E(x, y) = 1 if and only if x = y,
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(E2) E(x, y) = E(y, x)

(E3) E(x, z) ≥ E(x, y) ∗ E(y, z).

If we defineD(x, y) = 1−E(x, y) for all x, y ∈ X , thenD(x, z) ≤ D(x, y)⋄∗D(y, z).

So if ⋄∗ ≤ ⊕p for some p > 0 then (X,D,⊕p) is a p-generalized metric space.

In [2] Kramosil and Michalek introduced its celebrated notion of fuzzy metric as

follows:

Definition 2. A fuzzy metric on a setX is a pair (M, ∗) such that ∗ is a continuous

t-norm and M is a fuzzy set in X ×X × [0,∞) such that for all x, y, z ∈ X :

(FM1) M(x, y, 0) = 0;

(FM2) x = y if and only if M(x, y, t) = 1 for all t > 0;

(FM3) M(x, y, t) =M(y, x, t);

(FM4) M(x, z, t+ s) ≥M(x, y, t) ∗M(y, z, s) for all t, s ≥ 0;

(FM5) M(x, y, ) : R+ → [0, 1] is left continuous.

By a fuzzy metric space we mean a triple (X,M, ∗) such that X is a set and (M, ∗)

is a fuzzy metric on X .

A fuzzy metric space (X,M, ∗) is said to be stationary [5] if M does not depend

on t, so a similarity relation (E, ∗) on a set X is a stationary fuzzy metric space

(X,E, ∗) by defining E(x, y, 0) = 0 and ∗ is continuous. On the other hand, if

(X,M, ∗) is a stationary fuzzy metric space such that ⋄∗ ≤ ⊕p for some p > 0

then (X,D,⊕p) is a p-generalized metric space where D(x, y) = 1−M(x, y) for all

x, y ∈ X . Reciprocally, if (X,D,⊕p) is a p-generalized metric space then (X,M, ∗)

is a stationary fuzzy metric space, where M(x, y) = 1 −D(x, y) for all x, y ∈ X

and ⋄∗ ≤ ⊕p.
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Given a fuzzy metric (M, ∗) on a set X we can define a open ball for each x ∈ X ,

t > 0 and ε ∈ (0, 1) as BM (x, ε, t) = {y ∈ X : M(x, y, t) > 1 − ε}. Consequently,

we may define a topology τM on X as τM = {A ⊆ X : for each x ∈ A there exists

ε ∈ (0, 1) and t > 0 such that BM (x, ε, t) ⊆ A}.

A Cauchy sequence in a fuzzy metric space (X,M, ∗) is a sequence {xn}n∈N in

X such that for each ε ∈ (0, 1) and t > 0 there exists an n0 ∈ N satisfying

M(xn, xm, t) > 1− ε whenever n,m ≥ n0.

A fuzzy metric space (X,M, ∗) is said to be complete if every Cauchy sequence

{xn}n∈N converges with respect to the topology τM , i.e, if there exists y ∈ X such

that for each t > 0, limnM(y, xn, t) = 1.

It is obvious that every stationary fuzzy metric space (X,M, ∗) such that ⋄∗ ≤ ⊕p

for some p > 0 is metrizable. In fact d(x, y) = Dp(x, y) = (1 −M(x, y))p for all

x, y ∈ X is a metric on X and that τd = τD = τM .In particular if ⋄∗ ≤ ⊕1 then

d(x, y) = 1−M(x, y) is a metric on X . Taking into account the general case, it is

also well known [4] that every fuzzy metric space is metrizable, however it is not

easy to construct from a fuzzy metric (M, ∗) on a set X a metric d inducing the

same topology on X .

2. Metrics from fuzzy metrics

In [2] the authors remarked that FM5 condition is chosen to enable to understand

M(x, y, t) as the degree of our belief that the distance between x and y is smaller

that t. As it is said above if (X,M, ∗) is a stationary fuzzy metric space such

that ⋄∗ ≤ ⊕1 then d(x, y) = 1 −M(x, y) is a metric on X . In the general case

of a fuzzy metric space (X,M, ∗) such that ⋄∗ ≤ ⊕1 and taking into account the

previous remark it seems to be quite natural to define ”the distance ” d(x, y) as

sup{t ≥ 0 : 1−M(x, y, t) ≥ t}. In this direction Radu obtained in [7] the following

theorem.
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Theorem 1. Let (X,M, ∗) be a fuzzy metric space such that ⋄∗ ≤ ⊕1. For each

x, y ∈ X put

dR(x, y) = sup{t ≥ 0 :M(x, y, t) ≤ 1− t}.

Then dR is a metric on X such that

dR(x, y) < ε⇔M(x, y, ε) > 1− ε,

for all ε ∈ (0, 1). Therefore, the topologies induced by (M, ∗) and dR coincide on

X . In particular, (X,M, ∗) is complete if and only if (X, dR) is complete.

If (X,M, ∗) is a stationary fuzzy metric space such that ⋄∗ ≤ ⊕p for some p > 0,

then d(x, y) = Dp(x, y) = (1−M(x, y))p for all x, y ∈ X is a metric on X ,as it is

said above. In the general case of a fuzzy metric space (X,M, ∗) such that ⋄∗ ≤ ⊕p

for some p > 0 and following the previous construction, it seems natural to define

d(x, y) as sup{t ≥ 0 : (1−M(x, y, t))p ≥ t}. This agree with the following example

in [8].

Example 1. Let (X,M, ∗) be a fuzzy metric space such that ⋄∗ ≤ ⊕p for some

p ∈ (0, 1). The function d : X ×X → R+, defined as

d(x, y) = sup{t ≥ 0 :M(x, y, t) ≤ 1− t1/p},

is a metric on X such that

d(x, y) < ε⇔M(x, y, ε) > 1− ε1/p,

for all ε ∈ (0, 1). Therefore, the topologies induced by (M, ∗) and d coincide on X .

In particular, (X,M, ∗) is complete if and only if (X, d) is complete.

This example is result of the following theorem in [8].

Theorem 2. Let (X,M, ∗) be a fuzzy metric space. Suppose that there exists a

function α : R+ → R+ satisfying the following conditions:

(c1) α is strictly increasing on [0, 1];

(c2) 0 < α(t) ≤ t for all t ∈ (0, 1) and α(t) > 1 for all t > 1;

(c3) α(t+ s) ≥ α(t) ⋄∗ α(t);
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Then the function dα : X ×X → R+ defined as

dα(x, y) = sup{t ≥ 0 :M(x, y, t) ≤ 1− α(t)},

is a metric on X such that dα(x, y) ≤ 1 for all x, y ∈ X . If, in addition, the

function α is left continuous on (0, 1], then

dα(x, y) < ε⇔M(x, y, ε) > 1− α(ε)

for all ε ∈ (0, 1). Thus the topologies induced by (M, ∗) and dα coincide on X .

Moreover, (X,M, ∗) is complete if and only if (X, dα) is complete.

3. Some remarks on fixed point theorems

In [9] the following fixed point theorem on fuzzy metric spaces was established

Theorem 3. Let (X,M, ∗) be a complete fuzzy metric space such that ⋄∗ ≤ ⊕p

for some p > 0. If T is a self-map on X such that there is k ∈ (0, 1) satisfying

M(Tx, T y, t) ≥ 1− k + kM(x, y, t)

for all x, y ∈ X and t > 0, then T has a unique fixed point.

Next we show that this theorem can be proved by means of the classical Banach

contraction principle. Indeed, the previous contraction condition can be rewritten

as follows

1−M(Tx, T y, t) ≤ k(1−M(x, y, t))

⇔ [1−M(Tx, T y, t)]p ≤ [k(1−M(x, y, t))]p

⇔ [1−M(Tx, T y, t)]p ≤ kp[(1−M(x, y, t))]p. So we can write

sup{t ≥ 0 : (1 −M(Tx, T y, t))p ≥ t} ≤ kp sup{t ≥ 0 : (1 −M(x, y, t))p ≥ t}, i.e,

following the notation in Example 1

d(Tx, T y) ≤ kpd(x, y). Since (X, d) is complete, by the Banach contraction prin-

ciple T has a unique fixed point.
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George and Veeramani introduced in [3] the following modification of Kramosil

and Michalek’s notion of fuzzy metric space.

Definition 3. A GV-fuzzy metric on a set X is a pair (M, ∗) such that ∗ is

a continuous t-norm and M is a fuzzy set in X × X × (0,∞) such that for all

x, y, z ∈ X and t, s > 0 :

(GV1) M(x, y, t) > 0;

(GV2) x = y if and only if M(x, y, t) = 1;

(GV3) M(x, y, t) =M(y, x, t);

(GV4) M(x, z, t+ s) ≥M(x, y, t) ∗M(y, z, s) ;

(GV5) M(x, y, ) : (0,∞)→ (0, 1] is continuous.

It is interesting to remark the fact that every GV-fuzzy metric space (X,M, ∗)

can be considered as a fuzzy metric space in the sense of Kramosil and Michalek,

simply putting M(x, y, 0) = 0 for all x, y ∈ X , so the previous results remain valid

for GV-fuzzy metric spaces.

In [6] Gregori and Sapena introduced the following notion of contraction in a GV-

fuzzy metric spaces, that has been widely used in the related literature.

Definition 4. Let (X,M, ∗) be a GV-fuzzy metric space and T : X → X a

self-map. We will say that T is fuzzy contractive if there exists k ∈ (0, 1) such

that
1

M(Tx, T y, t)
− 1 ≤ k(

1

M(x, y, t)
− 1)

for all x, y ∈ X and t > 0.

The following theorem can be deduced from the results that appear in [6]. Never-

theless we use here our approach to deduce it, and by using the classical Banach

contraction principle.
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Theorem 3. Let (X,M,∧) be a complete GV-fuzzy metric space.Then every

fuzzy contractive self-map T on X has a unique fixed point.

Proof. Let α(t) = t
t+1 for t ∈ [0, 1] and 2 for t > 1, then α satisfies the conditions

of Theorem 2, then the function dα : X ×X → R+ defined as

dα(x, y) = sup{t ≥ 0 : M(x, y, t) ≤ 1 − t
t+1}, or , equivalently dα(x, y) = sup{t ≥

0 : 1
M(x,y,t) − 1 ≥ t}

is a metric onX , thus (X, dα) is a complete metric space. Let T a fuzzy contractive

self-map, then

1
M(Tx,Ty,t) − 1 ≤ k( 1

M(x,y,t) − 1)

so, we have

sup{t ≥ 0 : 1
M(Tx,Ty,t) − 1 ≥ t} ≤ k sup{t ≥ 0 : 1

M(x,y,t) − 1 ≥ t}, i.e

dα(Tx, T y) ≤ kdα(x, y). By the Banach contraction principle, T has a unique

fixed point. �
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