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Preface

General Topology has become one of the fundamental parts of mathematics. Nowa-
days, as a consequence of an intensive research activity, this mathematical branch
has been shown to be very useful in modeling several problems which arise in
some branches of applied sciences as Economics, Artificial Intelligence and Com-
puter Science. Due to this increasing interaction between applied and topological
problems, we have promoted the creation of an annual or biennial workshop to
encourage the collaboration between different national and international research
groups in the area of General Topology and its Applications. This year it has been
given the name of Worksop on Applied Topological Structures (WATS).

This book contains a collection of papers presented by the participants in this

workshop which took place in Valencia (Spain) from September 3 to 4, 2015.
All the papers of the book have been strictly refereed.

We would like to thank all participants, the plenary speakers and the regular ones,

for their excellent contributions.

We express our gratitude to the Ministerio de Economia y Competitividad, grant
MTM2012-37894-C02-01, and Instituto de Matematica Pura y Aplicada for their

financial support without which this workshop would not have been possible.

We are certain of all participants have established fruitful scientific relations during
the Workshop.

The Organizing Committee of WATS'15
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On fixed point theorems for generalized set valued
maps with mw-distances

Carmen Alegre and Josefa Marin®

Instituto Universitario de Matemdtica Pura y Aplicada, Universitat Politécnica de Valéncia, 46022 Valencia, Spain

(calegre@mat.upv.es, jomarinm@mat.upv.es)

ABSTRACT

In this paper the notion of mw-distance on a quasi-metric space is
discussed. Some fixed point theorems in the context of quasi-metric

spaces using that notion are included.

Key words: quasi-metric space, complete quasi-metric space, fixed

point, set-valued map, generalized contraction, mw-distance.

1. INTRODUCTION AND PRELIMINARIES

Kada et al. [11] introduced the notion of w-distance on a metric space and im-
proved some classical fixed point theorems by replacing the metric with a w-

distance in the contraction conditions. Later, Park [19] extended this notion of

IThe authors acknowledge the support of the Ministry of Economy and Competitiveness of
Spain, Grant MTM2012-37894-C02-01.
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C. Alegre and J. Marin

w-distance to quasi-metric spaces. Using these concepts, Alegre, Marin and Roma-
guera ([4], [5]) obtained fixed point theorems for generalized contractions on com-
plete metric and quasi-metric spaces which involve w-distances and Meir-Keeler

or Jachymski functions.

A metric d on X is a w-distance on the metric space (X, d). Nevertheless, if d is
a quasi-metric on X, d is not necessarily a w—distance on the quasi-metric space
(X,d). Motivated from this fact, we introduced in [2] the notion of mw-distance
on a quasi-metric space, slightly modifying the definition of w-distance given by
Park. This new notion generalizes the concept of quasi-metric. We also showed
that mw-distance and w-distance are two different notions, both in the metric case

and quasi-metric case.

By using mw-distances, it has been possible to obtain new fixed point theorems
for generalized contractions on quasi-metric spaces [2] and generalizations of well-
known fixed points theorems in metric spaces (see [1], [16]). Currently, our purpose
is to obtain fixed point theorems for multivalued maps on quasi-metric spaces with

mw-distances.

Throughout this paper the letters R, R™ and N will denote the set of real numbers,
the set of non-negative real numbers and the set of positive integer numbers,
respectively. Our basic references for quasi-metric spaces and asymmetric normed
spaces are [9], [13] and [7].

A quasi-metric on a set X is a function d : X x X — R¥ such that for all z,y, z € X:
(i) d(z,y) = d(y,z) = 0 if and only if x = y; (ii) d(x,y) < d(z,2) + d(z,y). If in
addition it is fulfilled (iii) d(z,y) = d(y, ) for all z,y € X, d is a metric on X.

If the quasi-metric d satisfies the stronger condition (i) d(z,y) = 0 if and only if

x =y, we say that d is a 71 quasi-metric on X.

A (T1) quasi-metric space is a pair (X, d) such that X is a non-empty set and d is

a (T1) quasi-metric on X.

Each quasi-metric d on a set X induces a Ty topology 75 on X which has as a base
the family of open balls {By(z,r) : x € X, e > 0}, where By(z,e) = {y € X :
d(z,y) < e} forall z € X and ¢ > 0.

This work is licensed under a Creative Commons License CC BY-NC-ND 4.0
EDITORIAL UNIVERSITAT POLITECNICA DE VALENCIA
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On fixed point theorems for generalized set valued maps with mw-distances

Note that if d is quasi-metric then 74 is a T topology, and if d is a T} quasi-metric

then 74 is a T3 topology on X.

Given a quasi-metric d on X, the function d~! defined by d~!(x,y) = d(y,z)
for all z,y € X, is also a quasi-metric on X, and the function d° defined by

d*(z,y) = max{d(z,y),d(y,z)} for all z,y € X, is a metric on X.

2. mw-DISTANCES IN A QUASI-METRIC SPACE AND EXAMPLES

Definition 1 ([2]). An mw-distance on a quasi-metric space (X, d) is a function
q: X x X — RT satisfying the following conditions:

(W1) g(2,9) < (s, 2) + a2 ) for all 2,5, 2 € X;

(W2) g(z,-) : X — RT is lower semicontinuous on (X, 74-1) for all z € X;

(mW3) for each £ > 0 there exists 6 > 0 such that if ¢(x,z) < § and ¢(y,z) <o
then d(y, 2z) < e.

Note that every quasi-metric d on X is an mw-distance on (X, d).

Definition 2 ([2]). A strong-mw-distance on a quasi-metric space (X,d) is
an mw-distance ¢ : X x X — R* satisfying the following condition:

(mW2) q(-,z) : X — RT is lower semicontinuous on (X, 74-1) for all x € X.

It is easy to prove that every strong-mw-distance on a quasi-metric space (X, d)

generates a w-distance on this quasi-metric space.

Proposition 3. Let (X,d) be a quasi-metric space and let q¢ be a strong-mw-
distance on (X,d). Then, for alla, B € R, a, 8 > 0, the function g : X x X — RT
defined by q1 (z,y) = aq(x,y) + Bq(y, x) is a w-distance on the quasi-metric space
(X,d).

We will show now some examples of mw-distances and strong-mw-distances de-

fined on quasi-metric spaces. These examples are included in [2].

Example 1. Let X = R and let dg be the quasi-metric on X given by dg(x,y) =
y—zif z <y, and dg(x,y) = 1 if x > y. The quasi-metric dg induces the

Sorgenfrey topology on R. Since dg is a quasi-metric, dg is an mw-distance on

This work is licensed under a Creative Commons License CC BY-NC-ND 4.0
EDITORIAL UNIVERSITAT POLITECNICA DE VALENCIA
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the T} quasi-metric space (X,dg). Furthermore, dg is a strong-muw-distance on
(X,ds).

Example 2. Let (X, =<, |.||) be a normed lattice. Denote by X ™ the positive cone
of X,ie, XT:={z € X :0=uz}, and let ||.|* be the asymmetric norm on X
given by ||z]|" = ||z v 0| for all z € X (see e.g. [8]). The function d defined by
d(z,y) = |y —z|" for allz,y € X, is a quasi-metric on X, then (X*,dy) is a
quasi-metric space, where d, denotes the restriction of d to X*. The function ¢

defined by ¢q(z,y) = ||y|| for all z,y € X, is a strong-mw-distance on (X, d ).

Example 3. Consider the quasi-metric space (R, d) where d(z,y) = (y — ) V 0.
Then ¢ = d is an mw-distance but ¢ is not a strong-mw-distance, because the
condition (mW2) does not hold.

3. PARTIAL METRICS AND mw-DISTANCES

In [16] it is studied the relation between mw-distances and partial metrics (quasi-
metrics). A partial metric (quasi-metric) is a generalization of the notion of metric
(quasi-metric) such that the distance of a point from itself is not necessarily zero.
The notion of partial metric was introduced by Matthews [18] as a part of the
study of programming language semantics. Later on, Kiinzi [14] extended this

notion to nonsymmetric case.

Definition 4 ([18]). A partial metric on a set X is a function p : X x X — [0, 00)
satisfying:

La) p(z,z) < p(z,y);

LDb) p(z,z) < p(y, );

2) p(a,y) < p(x, 2) + p(z,y) — p(z, 2);

3) z =y ¢ p(z,x) = p(z,y) and p(y,y) = p(y, ©);

(4) p(z,y) = ply, ).

A partial metric space is a pair (X, p) such that X is a set and p is a partial

(
(
(
(

metric on X. The partial metric p induces a Ty topology 7, on X which has a
base the family of open p-balls {B,(x,¢) : = € X, € > 0} where B,(z,¢c) = {y €
X p(x,y) <e}.

This work is licensed under a Creative Commons License CC BY-NC-ND 4.0
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On fixed point theorems for generalized set valued maps with mw-distances

Definition 5 ([14]). A partial quasi-metric on aset X is a functionp : X x X —
[0, 00) that verifies the conditions (1.a), (1.b), (2) and (3) of Definition 4. A partial
quasi-metric space is a pair (X, p) such that X is a set and p is a partial quasi-
metric on X. If p satisfies all these conditions except (1b), the function p is called

lopsided partial quasi-metric.

In a partial (quasi-)metric space (X, p) the partial (quasi-)metric p induces a quasi-
metric d, on X given by dp(z,y) = p(z,y) — p(z,z) for all z,y € X, and the
topology generated by p is the same that the topology generated by d,,. In addition,
the function p* : X x X — [0,00) given by p*(z,y) = dp(z,y) + dp(y,x) =
p(z,y) + p(y,z) — p(z,z) — p(y,y) is a metric on X.

The relationship between mw-distances and partial metrics (quasi-metrics) ap-

pears in a natural way as shown in the following result.

Proposition 6. (a) If (X,p) is a partial metric space then p is both an mw-

distance and a w-distance on the quasi-metric space (X,d,), where d,(z,y) =
p(z,y) — p(z,2).

(b) If (X,p) is a partial quasi-metric space then p is a mw-distance on the quasi-
metric space (X, d,), where dp(z,y) = p(x,y) — p(x, x). But p is not necessarily a

w-distance on (X, d,).

4. RESULTS

There are several notions of Cauchy sequence and of complete quasi-metric space
in the literature (see e.g. [13]). In this paper we shall use the following general

notions.

A sequence (z,,)nen in a quasi-metric space (X, d) is said to be Cauchy if for each
€ > 0 there exists ng € N such that d(z,,z,) < ¢ whenever np < n < m. A
quasi-metric space (X, d) is called complete if every Cauchy sequence (2, )nen in
the metric space (X,d) converges with respect to the topology 74-1 (i.e., there
exists z € X such that d(z,,z) — 0).

This work is licensed under a Creative Commons License CC BY-NC-ND 4.0
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Recently, we have obtained a fixed point theorem for generalized contractions with
respect to mw-distances on complete quasi-metric spaces. Our approach uses a

kind of functions considered by Jachymski in [10].

Theorem 7 (Theorem 2 of [2]). Let f be a self-map of a complete quasi-metric
space (X, d). If there exist a strong-mw-distance q on (X,d) and a Jachymski
function ¢ : RT™ — RT such that ¢(t) <t for all t > 0, and

q(fz, fy) < olq(z,y)),

for all z,y € X, then [ has a unique fived point z € X. Moreover q(z,z) = 0.

On the other hand, we have proved in [3] a quasi-metric version of Caristi’s fixed
point theorem [6] by using mw-distances. Our result generalizes a recent result

obtained by Karapinar and Romaguera in [12].

Theorem 8 (Theorem 1 of [3]). Let T be a self mapping of a complete quasi-
metric space (X,d) and let g be an mw-distance on (X,d). If there exists a proper
bounded below and nearly lower semicontinuous function for T4-1, ¢ : X — RU
{oo} such that for all v € X:

q(z, Tx) + p(Tx) < p(z)

then there exists z € X such that o(Tz) = ¢(z) and q(z,Tz) = 0.

As we mentioned before, our next aim is to obtain fixed point theorems for mul-
tivalued maps on quasi-metric spaces with mw-distances. Latif and Al-Mezel [15]
extended Mizoguchi-Takahashi’s theorem to complete T; quasi-metric spaces by
using w-distances. Later on, Marin, Romaguera and Tirado [17] generalized this

result for multivalued maps.

Theorem 9 (Theorem 1 of [17]). Let (X,=,d) be a complete preordered quasi-
metric space and T : X — Cq(X) be a generalized w<-contractive set-valued map.
Then T has a fized point.

At present, we are trying to prove a result similar to this one by replacing the

w-distance with an mw-distance.

This work is licensed under a Creative Commons License CC BY-NC-ND 4.0
EDITORIAL UNIVERSITAT POLITECNICA DE VALENCIA

14



(1]

2]

(3]

(4]

(5]

[6]

[7]

(8]

(9]
(10]

(11]

(12]

(13]

[14]

(15]

(16]

(17]

On fixed point theorems for generalized set valued maps with mw-distances

REFERENCES

C. ALEGRE (2015): Fized points theorems and characterizations of metric completeness
using muw-distances, Proceedings of WiAT’15, 5-11, 2015.

C. ALEGRE, J. MARIN (2015): Modified w-distances on quasi-metric spaces and a fized
point theorem on complete quasi-metric spaces, CITA 2014, Topology and Its Applications,
(to appear) 2015.

C. ALEGRE, J. MARIN (2015): A Caristi fized point theorem for complete quasi-metric
spaces by using mw-distances, preprint.

C. ALEGRE, J. MARIN, S. ROMAGUERA (2013): Fized points for generalized contractions
with respect to w-distances and Meir-Keeler functions, Proceedings of the Conference in
Applied Topology WiAT’13, 53-58.

C. ALEGRE, J. MARIN, S. ROMAGUERA (2014): A fized point theorem for generalized con-
tractions involving to w-distances on complete quasi-metric spaces, Fixed Point Theory and
Applications, vol 2014, 2014:40, 1-8.

J. CarisTI, W.A. KIRK (1975): Geometric fixed point theory and and inwardness conditions,
in: The Geometry of Metric and Linear Spaces, Lecture Notes in Mathematics, vol. 490,
Springer-Verlag, Berline, Heidelberg, New York, pp. 74-83.

S. CoBzas (2012): Functional Analysis in Asymmetric Normed Spaces, Birkhauser.

J. FERRER, V. GREGORI, C. ALEGRE (1993): Quasi-uniform structures in linear lattices,
The Rocky Mountain Journal of Mathematics 23, 877-884.

P. FLETCHER, W.F. LINDGREN (1982): Quasi- Uniform Spaces, Marcel Dekker, New York.
J. JAacHYMSKI (1995): Equivalent conditions and the Meir-Keeler type theorems, J. Math.
Anal. Appl., 194, 293-303.

O. Kapa, T. Suzukl, W.TAKAHASHI (1996): Nonconvex minimization theorems and fized
point theorems in complete metric spaces, Mathematica Japonica 44, 381-391.

E. KARAPINAR, S. ROMAGUERA (2015): On the weak form of Ekeland § principle in quasi-
metric spaces, Topology and its Applications, 184, 54-60.

H.P.A. KUNzI (2001): Nonsymmetric distances and their associated topologies: About the
origins of basic ideas in the area of asymmetric topology, in: C.E. Aull, R. Lowen (Eds.),
Handbook of the History of General Topology, vol. 3, Kluwer, Dordrecht, pp. 853-968.
H.P.A. Kiinzi, H. Pajoohesh, and M. P. Schellekens, Partial quasi-metric, Theoretical Com-
puter Science, 365, 237-246, 2006.

A. LaTiF, S.A. AL-MEZEL (2011): Fized point results in quasimetric spaces, Fixed Point
Theory and Applications , Article ID 178306, 8 pages.

J. MARIN (2015): Partial quasi-metrics and mw-distances, Proceedings of WiAT’15, 89-98,
2015.

J. MARIN, S. ROMAGUERA, P. TIRADO (2013): Generalized Contractive Set-Valued Maps on
Complete Preordered Quasi-Metric Spaces, Journal of Functions Spaces and Applications

2013, Article ID 269246, 6 pages.

This work is licensed under a Creative Commons License CC BY-NC-ND 4.0
EDITORIAL UNIVERSITAT POLITECNICA DE VALENCIA

15



C. Alegre and J. Marin

[18] S.G. Matthews, Partial metric topology, Proceedings 8th Summer Conference on General
Topology and Applications, Ann. New York Acad. Sci., 728, 183-197, 1994.

[19] S. PARK (2000): On generalizations of the Ekeland-type variational principles, Nonlinear
Analysis 39, 881-889.

This work is licensed under a Creative Commons License CC BY-NC-ND 4.0
EDITORIAL UNIVERSITAT POLITECNICA DE VALENCIA

16



‘ ‘Workshop on Applied Topological Structures
WATSI.I 5 Valencia, 3-4 Septf)r;bir7 2});2

An application of Grabiec’s theorem to the Baire
fuzzy quasi-metric space

Francisco Castro-Company @ and Pedro Tirado **

@ Gilmation S.L., Calle 232, 66 La Canada, Paterna, 46182, Spain (fracasco@mat.upv.es)

b Universitat Politécnica de Valencia, 46022 Valencia, Spain (pedtipe@mat.upv.es)

ABSTRACT

We present a fuzzy quasi-metric space of type Baire which improves
the useful advantages of the Baire quasi-metric space and where we
can also apply a known quasi-metric version of Grabiec’s fixed point
theorem for fuzzy metric spaces. This construction will be used to

analyze the complexity of the average case of the Quicksort algorithm.

Let ¥ be a nonempty alphabet. Let ¥X°° be the set of all finite and infinite sequences
(“words”) over X, where we adopt the convention that the empty sequence ¢ is an
element of ¥°°. Denote by C the prefix order on 3X*° i.e. x C y < x is a prefix of
Y.

Now, for each x € £ denote by £(z) the length of 2. Then ¢(x) € [1, co] whenever
x # ¢ and £(¢p) = 0. For each z,y € X°° let x My be the common prefix of 2 and
y. For all z,y,z € ¥*°.

1This author acknowledges the support of the Ministry of Economy and Competitiveness of
Spain, grant MTM2012-37894-C02-01.
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In the theory of computation the fact * C y means that the element y contains all
the information provided by x. Thus the partially defined objects (finite words)
customarily represent stages of a computational process for which the totally de-

fined objects (infinite words) contain exactly the amount of information provided
by »°°.
Recall that the function dr defined on ¥°° x ¥°° by
de(z,y) =0 ifxCy,
de(z,y) = 27@M)  otherwise,
is a quasi-metric on £*°. (We adopt the convention that 27> = 0)

Actually dr is a non-Archimedean quasi-metric on X (see, for instance, [3],
Example 8 (b)).

We also observe that the non-Archimedean metric (d-)® is the Baire metric on
¥ ie. )
(dc)*(z,z) =0
and
(d2)* (2 y) = 27
for all x,y € % such that = # y.

It is well known that (dc)® is complete. From this fact it clearly follows that dc

is bicomplete.

The quasi-metric dr, which was introduced by Smyth [6], will be called the Baire
quasi-metric. Observe that condition dr(x,y) = 0 can be used to distinguish

between the case where x is a prefix of ¥ and the remaining cases.

However, the quasi-metric dc does not provide us with any information about the
degree of approximation to a word z from two different prefixes =,y of z. For
instance, if we consider the totally defined object 7 and the partially defined ones
x = 3.14 and y = 3.141, then it is clear that y contains more information of 7 than
x, nevertheless dc (z,7) = dc(y, m) = 0, so dc is not sensitive to this amount of

information.

This work is licensed under a Creative Commons License CC BY-NC-ND 4.0
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An application of Grabiec's theorem to the Baire fuzzy quasi-metric space

Motivated by this fact J. Rodriguez-Lépez, S. Romaguera and J.M. Sanchez-
Alvarez constructed in [4] a fuzzy quasi-metric on £ that preserves the ad-
vantages of dc and that, in addition, allows us to measure, with the help of the
parameter t, the degree of approximation to a given word of each of its prefixes.

This new fuzzy quasi-metric space (X°°, My, A) is given by:

Mi(z,y,0) =0 for all z,y € X,

=

1(z,z,t) =1 forallz € ¥ and t > 0,

=

(
( )

W(z,y,t) =1 ifz Cy, and ¢t > 274,
( ) =1-—27%=M)  otherwise.

Ml I7y7t

Therefore it is satisfied that for all z,y,z € ¥*° Mi(x,y,t +s) > Mi(z,z,t) A
Mi(z,y,s) for all t,s > 0. In adition it is easy to see that for all z,y,z € X,
My (z,y,t) = Mi(x,2,t) AN Mi(z,y,t), so (3°°, My, A) is a non-Archimedean fuzzy

quasi-metric space.

Observe that if x,y are prefixes of z, with = # y, and one obtains that for some
to > 0, M(x,z,t9) < 1 and M(y,z,to) = 1, then 274 < ¢, < 27¢®) 5o that
£(z) < L(y), i.e., z C y; which shows that y is better approximation to z than z.

Then (see [4]), for each z € ¥\ {¢}, and each x C y the degree of approximation
of z to z, associated to (Mi, A), is defined as the number DA(x, z) = 1/t, where
ty = inf{t > 0: M(x,2,t) = 1}. Tt is clear that DA(x, z) = 2¢®).

Tt easy to see that (X°°, M7, A) is a bicomplete non-Archimedan fuzzy quasi-metric
space, so by [5, Theorem 3] (X°°, My, A) is a G-bicomplete fuzzy quasi-metric
space. Nevertheless tlggo M (z,y,t) # 1, so we can not apply [5, Theorem 2]
which is the extended version of Grabiec’s fixed point theorem to the fuzzy quasi-
metric case. To this end we modify the previous fuzzy quasi-metric in the following

manner:
My(z,y,0) =0 for all z,y € X,

Msy(z,z,t) =1 forall x € £°° and t > 0,
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My(x,y,t) =1 ifx Cy, and t > 274,

My(z,y,t) =1 —27CM) if 2 C g, and t < 274®),

Moy (x,y,t) =1 —27EM) if 2 is not a prefix of and y and ¢ < 1,
My(z,y,t) =1— 24(:%) if = is not a prefix of y and ¢ > 1.

Then we have the following

Proposition. (X°°, M5, A) is a non-Archimedean fuzzy quasi-metric space.

Proof. The different case between (M, A) and (Ma, A) is the last condition on

(M27/\), ie., M2($,y,t) —1— Te:timmy)

will prove that Ms(z,y,t) > Ma(x, z,t) A Ma(z,y,t) if x is not a prefix of y and
t >. To this end recall that I(x My) > min{l(z M z),l(z Ny)} for all z,y,z € £,

o—(=My) . 9—t(zMz) 9—£(=My)
- > min{1 — — 1= -

if x is not a prefix of y and ¢t > 1. So we

so1— }. Morover if z is not a prefix of y

we have:
if  C z then min{l(x M 2),l(zMNy)} =1(zNy),

if z C y then min{l(z M z2),l(zMy)} = (z N 2).

A). Suppose that = C 2z then min{l(zMz),l(2My)} = I(2My), and z is not a prefix
gt

t =

of y (otherwise z C y and the inequality is satisfied), so Ms(z,y,t) = 1—

1= 2500 = May(2,y,), then Ma(a,,1) > Ma(w,2,t) A Ma(2,y, ).

B). Suppose that z C y then min{l(zMz),l(2MNy)} = l(zMNz), and z is not a prefix

o —¢(xMy)

of z (otherwise x C y and the inequality is satisfied), so My (z,y,t) = 1—*— >
1-— = My (z, z,t), then Ms(x,y,t) > Ma(x, z,t) A Ma(z,y,t). O

o—L(zM2)
t

Corollary. For each continuous t-norm %, (X°°, My, %) is a fuzzy quasi-metric

space.

Definition. The fuzzy quasi-metric (Ma, A) is said to be the Baire fuzzy quasi-

metric and the space (X°°, My, A) is said to be the Baire fuzzy quasi-metric space.
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Tt is easy to see that (X°°, My, A) is a bicomplete fuzzy quasi-metric space. So
by [5, Theorem 3] we have that (X°°, Ms, A) is a G-bicomplete fuzzy quasi-metric

space, moreover lim Mas(x,y,t) = 1.
t—o0

Example. The average case analysis of Quicksort is discussed in [2] (see also [1]),

where the following recurrence equation is obtained:

T(1) = 0, and
2n—1) n+1
+
n n

Consider as an alphabet ¥ the set of nonnegative real numbers, i.e. ¥ = [0, 00).
We associate to T' the functional @ : ¥°° — 3 given by (®(x)); = T(1) and
2(n—1) n+1

(®(x)), = - + Tn-1

for all n > 2 (if € £*° has length n < oo, we write x := x123...2,, and if z is an

infinite word we write z := z125...).

Next we show that ® satifies the contraction in the sense of [5, Theorem 2] on the
G-bicomplete non-Archimedean Baire fuzzy quasi-metric space (X°°, Ma, A), with

contraction constant 1/2.

To this end, we first note that, by construction, we have £(®(z)) = ¢(x) + 1 for all

x € ¥ (in particular, £(®(z)) = oo whenever £(x) = c0).
Furthermore, it is clear that x C y <= ®(x) C ®(y),
and consequently

(zNy) C ¢(z) N O(y)

for all x,y € ¥°°. Hence

((@(xMy)) < L(2(z) N D(y))

Then we will prove that

My(®(x), ®(y),t) = Ma(x,y,2t) for allz,y € 3°°,t > 0.
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A). 2 Cyand t <274®%®) So &(z) C ®(y) and 2t < 274*). Then we have:

MQ(@(],‘% ¢(y), t) = 1— 2*f(<1>:rl_l<by)
2 1-— 2*Z(<I>(;1:|—|y)) =1— 27(Z(I|_|y)+1)

1— 12*5(1’”9) >1 -2 ¢y
2

MQ(xa Y, Qt)

B). z is not a prefix of y and 2t < 1. Then we have:

My (®(x), ®(y),t) 1 _ 9—U(®anPy)

1 — 9~ H@(zNy)) — 1 _ 9—(L(aMy)+1)

WV

1— %Q—K(ﬂ_ly) 2 1— 2—@(30’71})
= M2(-ra Y, Zt)

C). x is not a prefix of y and ¢ > 1. Then we have:

2—€(<I>xl_l<1>y)
M(®(a), By), 1) = 1t
9—4(2(=My)) 9—(E(zMy)+1)
> 1--— " 1=
t t
) 27£(xl_ly) oL )
= _—_— = t
2 2(1’, Y, )

D). x is not a prefix of y and t € (1/2,1], i.e., t < 1 and 2t > 1. Then we have:

M2((I)(£L')7 (I)(y), t) = 1- 2—f(fI>wI‘I<I>y)
> 127 U2EMY) — 1 _ 9= (=Ny)+1)
1 9—£(aMy)
= 1- 72—€(I|_Iy) > 12 7
2 2

- MQ(:E7y72t)

Therefore ® is a contraction in the sense of [5, Theorem 2] on the G-bicomplete
non-Archimedean Baire fuzzy quasi-metric space (X°°, My, A) with contraction
constant 1/2. So, by [5, Theorem 2], ® has a unique fixed point z = 21 25..., which
is obviously the unique solution to the recurrence equation 7, i.e. z; = 0 and
2(n—1) n+1
+ z
n n

n — n—1

for all n > 2.
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ABSTRACT

We update the Banach Contraction Principle in the realm of quasi-

metric spaces and give some illustrative examples.

1. INTRODUCTION AND PRELIMINARIES

In 1982, Reilly, Subrahmanyam and Vamanamurthy [14] obtained a quasi-metric
version of the celebrated Banach Contraction Principle. Since then, and specially
in the last seven years, several authors have contributed to the development of the
fixed point theory in the framework of quasi-metric spaces (see e.g. [1, 2, 3, 5,
10,7, 8,9, 10, 11, 12, 13, 15, 16, 17]). In particular, other versions of the Banach

1s. Romaguera and P. Tirado acknowledge the support of the Minsitry of Economy and
Competitiveness of Spain, Grant MTM2012-37894-C02-01
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Contraction Principle, different to the one obtained in [14] have been established.
In this note we update such versions and present two examples that illustrate the

results.
Our basic reference for quasi-metric spaces is [4].

By a quasi-metric on set X we mean a function d : X x X — [0, 00) such that for

all z,y,z € X :
(i) =y & d(z,y) = d(y,z) = 0;
(ii) d(z, 2z) < d(z,y) + d(y, 2).

A quasi-metric space is a pair (X, d) such that X is a set and d is a quasi-metric
on X.

Given a quasi-metric d on X, then the function d=! defined by d=!(x,y) = d(y, z),
is also a quasi-metric on X, called the conjugate of d, and the function d® defined

by d*(z,y) = max{d(z,y),d *(z,y)} is a metric on X.

Each quasi-metric d on X induces a T topology 74 on X which has as a base the
family of open balls {By(z,r) : z € X, & > 0}, where By(z,¢) = {y € X : d(z,y) <
¢} forall z € X and € > 0.

If 74 is a Th (resp. a Tb) topology on X, we say that (X,d) is a T} (resp. a

Hausdorff) quasi-metric space.

Note that a quasi-metric space (X, d) is T7 if and only if for each z,y € X, condition
d(z,y) = 0 implies z = y.

A quasi-metric space (X,d) is called bicomplete if the metric space (X,d®) is

complete.

A sequence (z,)nen in a quasi-metric space (X, d) is called left K-Cauchy if for

each & > 0 there is an ng € N such that d(z,,z,) < € whenever m > n > nyg.

A sequence (z,)nen in a quasi-metric space (X, d) is called right K-Cauchy if it is

a left K-Cauchy sequence in the quasi-metric space (X, d~1).

The quasi-metric space (X, d) is called left (right) K-sequentially complete if every
left (right) K-Cauchy sequence converges with respect to the topology 74.
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(X,d) is called d-sequentially complete if every Cauchy sequence in the metric

space (X, d®) converges with respect to the topology 74.

Remark 1. Tt is obvious that both bicompleteness and left (right) K-sequential
completeness imply d-sequential completeness. However, the rest of implications

does not hold in general.

2. CONTRACTION MAPPINGS AND FIXED POINTS IN QUASI-METRIC SPACES
The celebrated Banach Contraction Principle states that every contraction on a
complete metric space has a unique fixed point.

Let us recall that a contraction on a metric space (X, d) is a self mapping T on X

such that there exists a constant ¢ € [0,1) satisfying
d(Tz,Ty) < cd(z,y),
for all x,y € X.

This suggests, in a natural way, the following notion.

Definition 2. Let (X, d) be a quasi-metric space.

A d-contraction on (X, d) is a mapping T : X — X such that there is a constant
c € 10,1) satisfying d(Tz, Ty) < cd(z,y), for all z,y € X.

A d~!-contraction on (X, d) is a mapping T : X — X such that there is a constant
¢ € 10,1) satistying d(Tz, Ty) < cd(y,x), for all x,y € X.

Then, we have the following easy but useful consequence of the Banach Contraction

Principle for metric spaces.

Proposition 3. Let (X,d) be a quasi-metric space. If T is a d-contraction or a
d~t-contraction on (X,d), then the following hold:

(1) T is a contraction on the metric space (X, d?®).
(2) For any xo € X, the sequence (T™xo)nen s a Cauchy sequence in the metric

space (X, d*).
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Proof. (1) Suppose that T is a d-contraction of (X,d). Then, there exists a con-
stant ¢ € [0,1) such that
d(Tz,Ty)) < cd(z,y),

for all z,y € X. Thus, given x,y € X, we have
d(Tx,Ty)) < cd(z,y) and d(Ty,Tz) < cd(y,x).
So d*(Tx,Ty) < cd®*(z,y).

Similarly, we show that if T" is a d~!-contraction on (X, d), then it is a contraction
on (X, d®).

(2) Since, by (1), T is a contraction on the metric space (X,d*), it follows from
the proof of classical Banach Contraction Principle, that (T"zg)nen is a Cauchy

sequence in the metric space (X, d*). O

By using the preceding proposition, three well-known quasi-metric versions of the

Banach Contraction Principle are easily deduced.

Theorem 4 ([17]). Every d-(resp. every d—'-)contraction on a bicomplete quasi-

metric space (X, d) has a unique fized point.

Proof. Let T be a d-contraction or a d~!-contraction on the bicomplete quasi-
metric space (X, d). Since (X, d®) is a complete metric space and, by Proposition 3
(1), T'is a contraction on (X, d*), we deduce, from the classical Banach Contraction

Principle, that T has a unique fixed point. (|

Theorem 5 ([14]). Every d-contraction on a Hausdorff d-sequentially complete

quasi-metric space (X,d) has a unique fized point.

Proof. Let T be a d-contraction on the Hausdorff d-sequentially complete quasi-
metric space (X, d). Fix an 2o € X. By Proposition 3 (2), the sequence (T"x¢)nen
is a Cauchy sequence in the metric space (X, d®). Hence, there is y € X such that
(T™x0)nen converges to y with respect to 74, i.e., d(y, T"xo) — 0 as n — oo. Since

T is a d-contraction, there exists ¢ € [0,1) such that

d(Tyv TnJrle) < Cd(y, TnxO)v
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for all n € N. Consequently d(Ty, T"1z0) — 0 as n — oco. From Hausdorffness of
(X, d) we deduce that y = T'y. Finally, suppose that z € X is a fixed point of 7.
Then

d(y, 2) = d(Ty, Tz) < cd(y, 2),

and thus y = z. This concludes the proof. O

Corollary 6. Every d-contraction on a quasi-metric space (X, d) such that (X,d~1)

is Hausdorff and d—'-sequentially complete has a unique fized point.

Proof. Let T be a d-contraction on (X, d). Put ¢ = d~!. Then T is a g-contraction
on the Hausdorff ¢-sequentially complete quasi-metric space (X, ¢). From Theorem

5 we deduce that T has a unique fixed point. O

Theorem 7 ([10]). Every d~'-contraction on a T1 d-sequentially complete quasi-

metric space (X, d) has a unique fized point.

Proof. Let T be a d~'-contraction on the T} d-sequentially complete quasi-metric
space (X,d). Fix an 29 € X. As in the proof of Theorem 5 (see Proposition
3), (T™xo)nen is a Cauchy sequence in the metric space (X, d*). Hence, there is
y € X such that (T"xg),en converges to y with respect to 74, i.e., d(y, T"zg) — 0

as n — o0o. Since T is a d~!-contraction, there exists ¢ € [0,1) such that
d(Tn+1'r0a Ty) < Cd(y) Tn$0)7

for all n € N. Consequently d(Ty,T""'x¢) — 0 as n — oo. From the triangle
inequality we deduce d(y,Ty) = 0. Therefore y = Ty because (X, d) is a T} quasi-
metric space. Finally, suppose that z € X is a fixed point of 7. Then

d(y,z) = d(Ty,T=) < cd(z,y) = cd(Tz,Ty) < *d(y, 2),
and thus y = z. This concludes the proof. O

Corollary 8. Every d~'-contraction on a Ty quasi-metric space (X, d) such that

(X,d™1) is d~1-sequentially complete has a unique fized point.

Proof. Let T be a d~'-contraction on (X,d). Put ¢ = d=!. Then T is a ¢~ -
contraction on the 77 g-sequentially complete quasi-metric space (X,q). From

Theorem 7 we deduce that T' has a unique fixed point. O
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Remark 9. Note that, by Remark 1, Theorems 5 and 7 remain valid if “d-sequentially
complete” is replaced with “left K-sequentially complete” or “right K-sequentially

complete”.

The following example shows that Theorem 5 cannot be generalized to 17 d-

sequentially complete quasi-metric spaces.

Example 10. Let X = N and let d be the T7 quasi-metric on X given by d(n,n) =
0 for all n € X, and d(n,m) = 1/m otherwise. Clearly (X, d) is both left and right

K-sequentially complete, so it is d-sequentially complete.

Now define T : X — X as T'n = 2n for all n € X. Of course T has no fixed point.

However it is a d-contraction since for each n,m € X with n # m one has

1 1
d(Tn,Tm) = d(2n,2m) = o Ed(n,m).

We conclude the paper with an example which shows that Theorem 7 cannot be

generalized to d-sequentially complete quasi-metric spaces.

Example 11. Let X = NU{0} and let d be the quasi-metric on X given by
d(n,n) = 0 for all n € X, d(0,n) = d(n,1) = 0 for all n € N, d(n,0) = 1 for
all n € N, and d(n,m) = 2=+ 4 2=0m+1) otherwise. Observe that (X, d) is
both left and right K-sequentially complete, and hence, d-sequentially complete,

because every sequence in X converges to 0 with respect to 74.
Now define T': X — X as Tn =n+ 1 for all n € X. Of course T has no fixed

point. However, it is a d~!-contraction since for each n € N one has

1 1 1 1

and

d(Tn,T0) =d(n+1,1) =0,

whereas for n,m € N with n # m, one has

1 1 1 1 1 1
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ABSTRACT

Two aspects of the set of fuzzy number valued continuous functions are

treated: the compactness and the density of its subspaces.

1. INTRODUCTION

Let F(R) := {u : R — [0, 1]}; that is, the family of all fuzzy subsets on the real
numbers R. For u € F(R) and X € [0, 1], the A-level sets of u are defined by

[u]* ;== {x € R/u(x) > A}, X€0,1]
[u]® := clg{z € R/u(x) > 0}.

Definition 1. The fuzzy number space E! is the set of elements u of F(R) satis-

fying the following properties:

(1) w is normal, i.e., there exists an zg € R with u(zg) = 1;

I This research is supported by Universitat Jaume I (Grant P1-1B2014-35).
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(2) w is convex, i.e., u(Az + (1 — N)y) > min{u(x),u(y)} for all z,y € R\ €
[0,1];

(3) u is upper-semicontinuous;

(4) [u]® is a compact set in R.

If u € E!, then every A-level set [u]* of u is a compact interval for each A € [0, 1].
We denote [u]* = [u™()\),vT(\)].

Every real number r can be considered a fuzzy number since r can be identified

with the fuzzy number 7 defined by

B 1 ife=r
() =
0 ifx#r.
Theorem 2 ([6]). Let u € E! and [u]* = [0,1], A € [0,1]. Then the pair of
Junctions u=(X) and ut () has the following properties:

(1) u=(N) is a bounded left continuous nondecreasing function on 10, 1];

(2) ut(N) is a bounded left continuous nonincreasing function on ]0,1];
(3) u=(X) and u™(X\) are right continuous at A = 0;
(4) w= (1) <ut(1).

Conversely, if a pair of functions a()\) and B(N\) satisfies the above conditions
(i)-(iv), then there exists a unique u € E' such that [u]* = [a(N), B(\)] for each
A€ [0,1].

2. TWO TOPOLOGIES ON E! AND THEIR RESPECTIVE SPACES OF CONTINUOUS
E'-VALUED FUNCTIONS.

Let A and B be two compact subsets of R™. The Hausdorff distance between A
and B is defined as:

di (A, B) := max{d(A, B), d(B, A)}

dr([a, bl [¢,d]) = max{la — |, [b —d|}
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We can then endow E! with the following metric:

doo(u,v) := sup dH([u]’\, [v])‘) =
A€(0,1]

= sup max {|u”(A) — v~ ()|, [u(\) — v (N}
A€(0,1]

It is known (see, e.g., [1]) that (E',d) is a non-separable complete metric space.

Notice also that, by the definition of d, R endowed with the euclidean topology
can be topologically identified with the closed subspace R = {#/z € R} of (E', ds)
where T (\) = 27 (\) =« for all A € [0, 1].

Definition 3. Let C(K, (E',dy)) denote the set of all fuzzy-valued continuous

functions on K, a compact subset of a metric space. Given f,g € C(K,E!), we

can define

D(f7 g) = fg[l? doo(f(t)ag(t))

Theorem 4 ([3]). (C(K,(E',dw)), D) is a complete metric space.

On the other hand (see, e.g., [8]), let (ux)rep be a net in E!, where D is a directed
set. It is said that (u)rep levelly converges to u € El if, for each A € [0, 1],

: ANy

lim dpr(fur]®, [u]?) =0

That is,

Lim w (A) = u™(A)

s V) — ot

%161% u (A) = u" ().

Let 7(I) stand for the topology associated to the level convergence.

Proposition 5 ([2]). For each u € E*, ¢ > 0 and X € [0,1], we can define
Uu(A €) := {v € EY/dy ([u]*, []*) < e}
Then By, := {Uy () €)/e > 0,\ € [0,1]} is a local subbase of u in (E*, 7(1)).

Theorem 6 ([2]). (E',7(1)) satisfies the first countability axiom but is not com-
plete.

Theorem 7 ([4]). (E!, (1)) is separable and a Baire space.
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Definition 8. Let f : X — (E!,7(I)) be a continuous function, where X is

topological Hausdorff space. We say that f is level-continuous. Indeed

lim [f(2)]”(A) = [f(z0)] (V)

Tr—rT0o

lim [f(z)](\) = [f(z0)] T (A)

T—rTo

for each A € [0,1] and all zp € X

3. ARZELA-ASCOLI TYPE RESULTS
In this section we survey some results concerning the compactness of a subset of
the space of continuous fuzzy number valued functions.
Let fr :[0,1] x [a,b] — R be defined as fr(\,t) := [f(£)]” (N).
Let fgr:[0,1] X [a,b] — R be defined as fr(X,t) := [f(£)]T(N).

Theorem 9 ([10]). A subset F' C (C([a,b], (E',dwx)), D) is relatively compact if,
and only if, Fr, == {fr/f € F} and Fg := {fr/f € F} are relatively compact
subsets of (C([0,1] x [a, b, R), || - [[oc)-

Theorem 10 ([3]). A closed subset F C C(K, (E',dw)) is compact if, and only
if, the following conditions are satisfied:

(i) F is uniformly do-bounded on K ;

(ii) F is equi-continuous on K; i.e., for each ¢ > 0, there exists 6 > 0 such that
D(f(t), f(t)) <e forall f € F and d(t,t") < 6;

(iii) For each t € K, {[f(®)]T(")/f € F} and {[f()]”(")/f € F} are equi-left-

continuous on (0, 1].

This result is based on the following;:

Theorem 11 ([3]). A closed subset M of (E',dw,) is compact if, and only if, the

following two conditions are satisfied:

(1) M is uniformly support-bounded, i.e., there is a constant L > 0 such that
lut(0)] < L and [u=(0)] < L for allu € M;

This work is licensed under a Creative Commons License CC BY-NC-ND 4.0
EDITORIAL UNIVERSITAT POLITECNICA DE VALENCIA

36



On fuzzy number valued functions

(2) {ut/u € M} and {u~/u € M} are equi-left-continuous on (0,1]; i.e.,
for each € > 0 there exists 6 > 0 such that |[ut(N) —ut(\)| < € (resp.
[u=(N) —u=(N)| < €) for all w € M whenever X\, X' €]0,1] with X €
(A— 6.

Unfortunately, this result (and, consequently, Theorem 10) is not true as the fol-

lowing counterexample shows:

Let
0 ifx¢[0,1],
u(x) =49 1 ifzel0,1],
5 ifx €z, 1]
Then
1 ifxelo,d],
W) =0 utN) =4 ﬂ 2)
5 ifAe€]g, 1]

It is apparent that M := {u(z)} is a compact subset of (E!,d.,), but u™ is not

equi-left-continuous on 10, 1].

In [5], the authors provide a right characterization of the compact subsets of
(E',dw). We first need two definitions:

Definition 12. Let {f;};c; be a family of functions defined from the unit interval
[0,1] into the reals. Given Ag € [0,1[ such that f;(Ao+) exists for all ¢ € I, the
family {fi}ier is said to be right equicontinuous at Xg if for every € > 0, there is
0 > 0 such that |f;(\) — fi(Ao+)| < € for all ¢ € T whenever A € |Ag, Ao + J].

Definition 13. Let {f;}:cs be a family of functions defined from the unit interval
[0,1] into the reals. Given ¢ € [0, 1] such that f;(A\o—) exists for all i € I, the
family {f;}icr is said to be left equicontinuous at Ag if for every € > 0, there is
0 > 0 such that |f;(A) — fi(Ao—)| < € for all i € I whenever A € |A\g — 0, Ao

Theorem 14 ([5]). A closed subset M of (E',dw.) is compact if, and only if, it

satisfies the following properties:

(1) M is uniformly support-bounded, i.e., there is € > 0 such that dso(u,0) < €
forallue M
(2) {ut/ue M} and {u™ /u € M} are two-sided equicontinuous on [0, 1].
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Hence, a corrected version of Theorem 10 would be the following:

Theorem 15. A closed subset F' C C(X, (E!,dw)) is compact if, and only if, the
following conditions are satisfied:
(i) F is uniformly doo-bounded on X ;

(ii) F is equi-continuous on X.

(iii) For each t € X, {[f(O)]T(-)/f € F} and {[f(t)]"(:)/f € F} are two-sided

equicontinuous on (0, 1].

When we deal with level continuous functions, similar results can be obtained:
Theorem 16 ([4]). A closed subset K in (E', 7(1)) is compact if and only if

(1) K is uniformly support-bounded,
(2) K is pointwise closed.

Theorem 17 ([4]). A closed subset F C C(X, (E',7(1))) is compact in the compact-
open topology if, and only if, the following conditions are satisfied:

(i) F[z] is pointwise closed and uniformly support-bounded for any x € X ;

(ii) F' is evenly-equicontinuous.

4. WEIERSTRASS-STONE TYPE RESULTS

In this section we survey some results concerning the density of certain subsets of

the space of continuous fuzzy number valued functions:

Theorem 18 ([9]). Let f € C([a,b], (E',dw)) and € > 0. Then the polynomial

n

Pa)=>" <7;)xi(1 —a)if <;)

i=0
satisfies, for all x € [a,b],

de (P(2), f(z)) < €.
That is, D(P, f) < e.
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Theorem 19 ([9]). Let f € C([a,b],(E',dy)) and € > 0. Then there exists a
four-layer regular fuzzy neural network, say,

m

N(z) =Y Wi [> cijoly;-z+0;) ],
1=1

Jj=1

where W € EY, ¢;5,y;,0; € R and o : R — R, satisfies, for all x € |a,b),

doo(N (), f(2)) < e.
That is, D(N, f) < e.

Theorem 20 ([7]). Let f € C(la,b],(E',7(1))) and € > 0. Then there exists a

sequence of four-layer regular fuzzy neural networks (N, (z)) such that
dp ([N (@) [f(2)]Y) — 0

uniformly in [a,b] for each X € [0,1].
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ABSTRACT

The main goal of this work is to generate a probability measure from a
fractal structure. Since we want to define a measure, we take into ac-
count the theorems on construction of measures (Method I and Method
1I).

First, we define a first measure on the bicompletion of X and then we
explore conditions to ensure that the restriction of the measure to the

original space is a probability measure.

1. PRELIMINARIES.

First we introduce from [1] (see also [3] for a survey on fractal structures) the
concept of fractal structure.

IThis author acknowledges the support of the Ministry of Economy and Competitiveness of
Spain, Grant MTM2012-37894-C02-01.
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Let X be aset and I'y and I'; be coverings of X. I's is said to be a strong refinement
of 'y if it is a refinement (that is, each element of T's is contained in some element
of I';) and for each A € 'y it is satisfied that A=U{B €T'y: B C A}.

Definition 1. A fractal structure I" on a set X is a countable family of coverings
I' ={T',, : n € N} such that each cover I',,;; is a strong refinement of T';, for each

n € N. Cover I',, is called level n of the fractal structure.

For some background on fractal structures and the construction of the bicompletion

X we refer the reader to [4].

In the rest of the section we recall from [2] two of the most important theorems
on construction of outer measures, as well as other theorems on outer measures.

First, we recall Method 1.

Theorem 2 (Method I). Let A be a family of subsets of X that covers X. Let

c: A —[0,00] be any function, there is a unique outer measure M on X such that

(1) M(A) < c(A) for all Ac A.
(2) If N is any outer measure on X with N(A) < c(A) for all A € A then
N(B) < M(B) for all BC X.

Furthermore, for any subset B of X, the definition of M is given by M(B) =
inf ) scpc(A), where the infimum is over all countable covers D of B by sets of

A.

Second, we recall Method II.

Theorem 3 (Method II). Let A be a family of subsets of a metric space S, and
suppose that, for every x € S and € > 0, there exists A € A with x € A and diam
A < e. Suppose ¢ : A — [0,00] is a given function. An outer measure will be
constructed based on this data. For each e > 0, let A. = {A € A: diamA < e}.
Let M. be the previous theorem outer measure determined by c using the family
A.. Then, for a given set E, when ¢ decreases, M.(E) increases. Define M(E) =
lime oM (E) = supe>oM.(E).

The next results are important in order to construct a measure:
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Theorem 4. The outer measure M defined by Method II is a metric outer mea-

sure.

Theorem 5. A metric outer measure M is a measure on the Borel o-algebra.

2. RESULTS

Defining a measure on X directly is not easy, so we will proceed in three steps.

2.1. Defining a measure on X.

Let T = {T,, : n € N} be a fractal structure on X, and let (X, T') the completion
of (X,T) given in [4].

We will use the notation Upn = X\ U, ¢4, 4cr, 45 Uit = Nuca.ner, Aand Uy, =
Upn NUSL for cach 2 € X and n € N. For (X,T) we will use the notation Uy,
U;l and Tj';n These latter subsets are like the former ones, but with respecto to

rn

the fractal structure f‘, instead of T'.
Let G,, = {U},, : x € X}, then G,, is a partition of X (see [4]).

Let us denote by G = U, ey Gn = {Uy, : © € X,n € N}. Let w be a function
w: G — [0,1] (a pre- measure) such that:

(1) 2Aw(U) : Uy € Gi} =1
(2) w(Uy) =2 Aw(U; 41) 1 Uy i1 € Gryasy € Ug, ) for each Uy, € Gy, and
each n € N.

Now, let G = {UZ, : 2 € X;n € N}. We define @ : G — [0,1] by &(Uz,) =
w(Uz, N X) for each z € X and n € N (note that U¥, N X € G, see [4]).

rn rmn

Let 1 be the method I outer measure determined by G and &. Then w(A) =
inf{30, WUz, ); ACJUE,, }, for each A C X.

A fractal structure induces a non archimedean quasi pseudo metric. Let d be
the non archimedean quasi pseudo metric induced by T'" on X and d be the non

archimedean quasi pseudo metric induced by T on X.
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The next results show that p is a probability measure on X and that it is an

extension of w and @.
Proposition 6. p is a measure on the Borel sigma-algebras of ()?, giv*) and ()A(:, c?)

Proposition 7. y is an extension of w and &. In fact, w(U?,) = w(UZ,) = &(UZ,)
for allz € X and w(U?,) = &(U2,) for allz € X and n € N.

Proposition 8. ,u()N() =1 and hence p is a probability measure on X.

2.2. Defining a measure on X from the fractal structure.

In this section, we will define the pre-measure w for the elements of I';,, instead of
G,,. We will suppose that I' is a tiling fractal structure, that is, all levels I, are

tilings (the elements of I, are regularly closed with disjoint interiors).

Given A € T, let i,(A) = A\ Uper,.pga B and w @ U, enn = [0,1] be a

function such that:

(1) ZAeFl w(4) =1.
(2) w(4) = ZBanJrl,BgAW(B)v for each A € '), and each n € N.

From w, we can define a function (which we will call w too) on G as follows:

w(A4) ifx€iy(A)
w(Uz

xn) =

0 othewise
This function w satisfies the conditions of the previous section:

Proposition 9. w : G — [0, 1] verifies the following conditions:

(1) XAwU;1) : U5 € Gip =1
(2) w(U:{) = Z{W(U;,7z+l) : U;,n—i—l € Gn+1;y € U;n} fOT’ each U;n € GTL and
each n € N.

So by the previous section w : G — [0,1] can be extended to a metric outer
measure u, which is a measure on the Boreal o-algebra. Moreover, u is somehow

an extension of w : |, . I'n — [0,1], as shown in the next

neN
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Proposition 10. p(A) =w(A) for all A€ T, andn € N.

2.3. Defining a measure on X.

Finally, we explore some conditions in order to get a probability measure on X,
instead of X.

Definition 11. For each n € N we define C,, = | J{ANB: A, B eT',; A # B}.

Given C C X, we define St(C,T,,) = U{A €T, : AnC # 0}.

A fractal structure I' = {I';, : n € N} is said to be Cantor complete if for each
sequence (Ap)nen with A, € T, and A, C A, for each n € N, it holds that

mnEN A” 7& @

The next result gives conditions in order to get a probability measure on X from

the pre-measure defined on the fractal structure, which is our main goal.

In the next result, w(St(Cn,T'y,)) will denote > {w(UZ,,) : UL, € Gn; UL, C
St(Cn,T'm)} if w is defined on G. Note that if w is defined on (J,,cyI'n, then

SHw(UZ,) Uz € Gs Ul € SHCoy Tin)} = S{w(A) : A€ Ts ANC, # 0}

Theorem 12. Let T' be a Cantor complete tiling fractal structure on X and sup-
pose that for each n € N, w(St(Cy,Ty,)) — 0. Then X is p-measurable and
u(X)=1.
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ABSTRACT

In this paper we recompile some aspects of principal fuzzy metrics and
add some new results. Then we propose to do a similar study about con-
vergence of sequences and continuity of mappings in the class of s-fuzzy
metric and coprincipal fuzzy metric spaces, replacing p-convergence by

other conditions of convergence.

Keywords: fuzzy metric space; principal (fuzzy metric space); coprin-
cipal (fuzzy metric space); p-convergence.
MSC: 54A40; 54D35; 54E50.

1. INTRODUCTION AND PRELIMINARIES

In this paper we deal with the concept of fuzzy metric due to George and Veera-

mani. Nevertheless all definitions given here (and some of the results exposed)

1This research is supported by Ministry of Economy and Competitiveness of Spain under
Grant MTM 2012-37894-C02-01
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could be stated for fuzzy metric spaces in the sense of Kramosil and Michalek in

the modern version found in [1, 3].

Definition 1 (George and Veeramani [1]). A fuzzy metric space is an ordered
triple (X, M, %) such that X is a (non-empty) set, x is a continuous ¢-norm and
M is a fuzzy set on X x X x]0,00[ satisfying the following conditions, for all

z,y,z € X, s,t>0:

(GV1) M(z,y,t) >0

(GV2) M(x,y,t) =11if and only if z =y
(GV3) M(x,y,t) = M(y,x,t)

(GV4) M(x,y,t)* M(y,z,8) < M(z,z,t+ s)
(GV5) M(x,y,-) :]0,00[—]0,1] is continuous.

As usual, if (X, M, %) is a fuzzy metric space we will say that (M, ), or, simply,

M is a fuzzy metric on X.

Lemma 2 ([3]). The real function M(x,y,-) of Aziom (GVS5) is increasing for
all z,y € X.

Due to the appearance of the parameter parameter ¢ in the definition of a fuzzy
metric M, then in the concepts given in this fuzzy setting, in general, it appears

the parameter t. For instance
Bur(w,e,t) = {y € X : M(z,y,t) > 1 -}

represents an open ball centred at z € X with radius € €]0, 1] and parameter ¢ > 0.

When distinction is not necessary we write B instead of By;.

The family {B(z,¢,t) : ¢ € X,e €]0,1[,t > 0} is a base for a topology Tas on
X, that we say generated by M. This topology is characterized by the next

proposition. (X, M, x) is called compact if (X, 7as) is compact.

Proposition 3. A sequence {x,} in the topological space (X, Tar) converges to xg
if and only if im,, M (x,,x9,t) =1 for all t > 0.

Let (X, d) be a metric space and let ¢ :]0, c0[—]0, oo[ be a non-decreasing continu-

ous function (for the usual topology of R). Let M, be a fuzzy set on X?x]0, o0]
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defined by
o(t)
Miy(z,y,t) = ————.
‘ o(t) +d(z, y)
Then (X, Mg, ) is a fuzzy metric space [9] and 7y, , coincides with the topology
7(d) on X deduced by d. If ¢ is the identity function then we obtain the so called
standard fuzzy metric My on X given by

Mg(x,y,t) = T dz,y)

If (X, Mx) is a fuzzy metric space then the family {B((z,1,1):n € N} is a local
base at x, and the family {U,, : n € N} is a base for an uniformity Uy, compatible
with 7a7, where U,, = {(z,y) € X x X : M(z,y,1) > 1— 1} for all n € N. Since
{U,, : n € N} is countable then 7j; is metrizable and consequently a topological

space is fuzzy metrizable if and only if it is metrizable [2, 10].

In both cases, balls and bands are defined using only a letter “n”, but in both

concepts exist two parameters, r and ¢, which take simultaneously the same value.

A fuzzy metric space (X, M, *), or M, is called stationary [12] if M does not depend
on t. So, we can omit the parameter ¢ in the definition of M. In this case the
concepts stated in fuzzy setting are, in general, very similar to their corresponding
ones in metric spaces. For instance B(z,¢) = {y € X : M(x,y) > 1 — €} represents

the ball centered at = with radius € €]0, 1].

Here we are not interested in stationary fuzzy metrics, but in three classes of
fuzzy metrics which are characterized because they have special local bases. These

classes are: principal fuzzy metrics, coprincipal fuzzy metrics and s-fuzzy metrics.

2. PRINCIPAL FUZZY METRIC SPACES

In this section (X, M, *) is a fuzzy metric space and (X, 7s) is the topological

space induced by M.

The following is a weaker concept than convergence, which was defined in order

to obtain a fixed point theorem in this context.
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Definition 4 (D. Mihet [13]). A sequence{x,,} is said to be p-convergent to xo €
X, for tg > 0, if lim M (z,,, xo, to) = 1, or equivalently, there exists to > 0 such that
for € €]0, 1] we can find ng, which depends on € and tg, such that x,, € B(xo, €, tg)

for each n > ng (i.e. M(2p,xo,t9) > 1 — € for all n > ny).

Clearly, if {z,,} is p-convergent for ty then it is so for all ¢ > t;.

Definition 5. We will say that (X, M, x), or simply M, is principal at zg if
{B(z0,€,t) : € €0,1[} is a local base at zp € X, for all t > 0. If (X, M, ) is
principal at each point of X then it is called principal.

In [4] the following results was obtained.

Proposition 6. They are equivalent:

(i) M is principal at xg € X.

(ii) every p-convergent sequence to g is convergent (to xg).
Corollary 7. They are equivalent:

(i) M is principal.

(ii) every p-convergent sequence in X is convergent.

Next we will show some examples of principal fuzzy metric spaces.

Example 8. (a) Clearly, stationary fuzzy metrics are principal.
(b) Consider the fuzzy metric space (R*, M?,-), see [9], where M¢ is given
by
min{z, y} + ¢(t)
max{z, y} + ¢(t)
and where ¢ : RT — RT is a non-decreasing continuous function.

M?(x,y,t) =

For zyp € X, € €]0,1[ and t > 0 we have that

B(xog,€,t) = |xo — e(xo + @(t)), 0 + (zo + ©(t))| N]O, col.

€
1—e€
Tare is the usual topology of R restricted to RT since the diameter of this
open interval, in the real line, tends to 0 as € and ¢ tend to 0. Now, this

last assertion is true for a fixed ¢ > 0 and for every z € X and hence
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{B(z,€,t) : € €]0,1[} is a local base at x for every x € X, and so M? is
principal.
(Alternatively, let {x,} be a p-convergent sequence to zp, for some
to > 0. We have that
lim M ¥ (z,,, zo,to) = lim min{en, Zo} + ¢(to) =1
n n max{zy, Zo} + ¢ (to)

Then lim,, min{x,,, zo} = lim,, max{z,, o} and thus it is easy to conclude

that lim,, z,, = x¢, in the usual topology of R, and by the above arguments
{z,} converges to xg in Tase).
In a similar way we can prove:
(c) Mg, (and, in particular, the standard fuzzy metric) is principal.

(d) compact fuzzy metric spaces are principal [8].

In [6] it was proposed the next question which, as up we know, is unsolved (For

details about completion the reader is referred to [11, 12]).

Problem 9. If the principal fuzzy metric space (X, M, x) admits completion (X, M, %),

18 it also principal?

Clearly, proving that {x,} converges to ¢ in a fuzzy metric space (X, M, %) is eas-
ier if M is principal. Indeed, it is only necessary to prove that lim,, M (z,, zo,t) = 1
for some t. Consequently, to characterize a continuous mapping f : X — Y, where
(X, M, %) and (Y, N, o) are two principal fuzzy metric spaces is simpler than in the
general case. Several of these characterizations suggested to the authors in [5] to
introduce for a mapping f : X — Y, where (X, M, x) and (Y, N, ¢) are fuzzy met-
ric spaces, the concept of s-continuity, t-continuity, p-continuity and w-continuity.

These concepts satisfy the next chain of implications

s-continuity — t-continuity —  continuity — w-continuity

p /

p-continuity
and all these concepts coincide when M and N are principal.

The most natural concept is the t-continuity (f : X — Y is ¢-continuous at ¢ if
lim,, M (z,,xo,t) = 1 implies lim,, N(f(zy), f(x0),1) = 1). This definition states
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that if {x,} is p-convergent to xq for ¢t > 0 then {f(x,)} is p-convergent to f(zo)

for the same ¢.

Remark 10. The principal fuzzy metric’s framework is ideal for working with
topics involving convergence, because verifying that a sequence is convergent is
easier than in the general case. Further, if also the fuzzy metric M is strong then
the behaviour of M is very similar to stationary fuzzy metrics and then it is similar

to classical metrics.

3. §-FUZZY METRIC AND COPRINCIOPAL FUZZY METRIC SPACES

We have just seen that principal fuzzy metric spaces are characterized because
each point has a particular type of local base. There are in the literature other
two classes of fuzzy metrics which have a particular local base at each point, that

we revise in this section.

3.1. s-fuzzy metric spaces. A sequence {x,} is called s-convergent to xg if

lim, M (2,20, ) = 1.
A s-convergent sequence is convergent and the converse is false [7].

A fuzzy metric space (X, M, *), or simply M, is called s-fuzzy metric if every
convergent sequence is s-convergent. The fuzzy metric space (RT, M, ), where
M(z,y,t) = %, is s-fuzzy metric, and the standard fuzzy metric My,
except trivial cases, is not s-fuzzy metric.

The fuzzy metric space (X, M, %) is s-fuzzy metric if and only if (., B(z,7,1)
is a neighbourhood of z, for each x € X and each ¢ > 0, and then the family
{Nyso B(z,r,t);r €]0,1[} is a local base at x, for each z € X.

3.2. Coprincipal fuzzy metric spaces. If we have in mind the theory of metric
spaces it has no sense to study when a family of the form {B(zo,¢€,t) : t > 0} could
be a local base at xg. In fact, this is not possible for stationary fuzzy metrics. We

will see in this section that this study has sense in our general fuzzy setting.
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Definition 11. A fuzzy metric space (X, M, *), or simply M, is called coprincipal
at rg € X for a fixed e €]0, 1] if the family {B(xo,€,t) : ¢ > 0} is a local base at

Zo.

Definition 12. A fuzzy metric space (X, M, *), or simply M, is called coprincipal
if the family {B(x,¢,t) : ¢ > 0} is a local base at z, for each z € X and each
€ €]0,1].

The standard fuzzy metric My is coprincipal. Notice that it is satisfied that
lim_,0 Mg(x,y,t) = 0 for all z,y € X, with 2 # y. Now, the authors have
not found any relationship between the condition of being M coprincipal and the
condition lim;_,g M(x,y,t) =0, for all ,y € X with x # y.

The authors think that it could be interesting to continue the study of s-fuzzy
metrics and coprincipal fuzzy metrics imitating the study done with principal

fuzzy metrics.
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ABSTRACT

In this paper we recall some fixed point theorems in fuzzy metric spaces,
in the sense of George and Veeramani, and two unsolved questions

related to them.
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1. INTRODUCTION AND PRELIMINARIES

In 1994 A. George and P. Veeramani give the next concept of fuzzy metric space.

Definition 1 (George and Veeramani [1]). A fuzzy metric space is an ordered
triple (X, M, %) such that X is a (non-empty) set, x is a continuous t-norm and
M is a fuzzy set on X x Xx]0, 00| satisfying the following conditions, for all
r,y,z € X, s,t>0:

1This research is supported by Ministry of Economy and Competitiveness of Spain under
Grant MTM 2012-37894-C02-01
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(GV1) M(x,y,t) > 0;

(GV2) M(x,y,t) =1if and only if x = y;
(GV3) M(z,y,t) = M(y,z,1);

(GV4) M(x,y,t)* M(y,z,8) < M(x,z,t+ s);
(GV5) M(x,y, ) :]0,00[—]0,1] is continuous.

Further, the authors showed that M generates a topology 7a; on X which has a
base the family of open sets of the form {Bys(z,¢,t) : 2 € X,0 < e < 1,t > 0},
where By (z,e,t) ={y € X : M(z,y,t) >1 —¢€} forallz € X, e €]0,1[ and t > 0

[1]. A characterization of convergent sequences for this topology is the next one.

Proposition 2 (George and Veeramani [1]). A sequence {x,} in X converges to

x if and only if lim, M (x,,z,t) = 1, for all t > 0.

Also, George and Veeramani introduced the next concept of Cauchy sequence and

complete fuzzy metric space.

Definition 3 (George and Veeramani [1]). A sequence {z,} in a fuzzy metric
space (X, M, x) is said to be M-Cauchy, or simply Cauchy, if for each e €]0, 1] and
each t > 0 there exists ng € N such that M (z,, 2,t) > 1 — ¢ for all n,m > ng or,
equivalently, im M (x,,, z,,,t) = 1 for all ¢ > 0. X is said to be complete if every
Cauchy seque?igze in X is convergent with respect to 7ps. In such a case M is also

said to be complete.

Later, Gregori and Romaguera [3] proved that the class of topological spaces
metrizable coincides with the class of topological spaces fuzzy metrizable, i.e. fuzzy
metric spaces and classical metrics are topologically identical. But from the met-
rical point of view we can find some differences between them. For instance, there
exist fuzzy metric spaces which do not admit completion. The fixed point theory
also constitutes a difference between classical metrics and fuzzy metrics. In fact,
there is not in the literature an analogous version of the Banach Fixed Point The-
orem in fuzzy setting for complete fuzzy metric spaces, in the sense of Georege and
Veeramani. Nevertheless, several authors have approached this topic giving fixed
point theorems for a stronger completeness or demanding additional conditions to

the completeness.
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In the next we recall some approaches to extend the Banach’s fixed point theorem

to the theory of fuzzy metric spaces, in the sense of George and Veeramani.

2. ON THE GREGORI AND SAPENA’S FIXED POINT THEOREM

The first attempt was given by Gregori and Sapena [5]. They introduced the next

concepts of fuzzy contractive mapping and fuzzy contractive sequence, respectively.

Let (X, M, %) be a fuzzy metric space. A mapping f : X — X is said to be fuzzy
G S-contractive if there exists k €]0, 1] such that for all z,y € X and ¢ > 0 it is
satisfied
1 1

1 l—-—————<k|l1l———].
. @ < (- )
A sequence {z,} is said to be fuzzy GS-contractive, if for each n € N and each
t > 0 we have that

1 1
2 1— <kll-—F—7-—-].
( ) M(xn-&-%xn-l-lvt) o < M(-Tn-l-laxnvt))

Using these two concepts they proved the next theorem.

Theorem 4. Let (X, M, x) be a complete fuzzy metric space in which fuzzy GS-
contractive sequences are Cauchy. Let f : X — X be a fuzzy GS-contractive

mapping. Then, f has a unique fized point.

As well as, they proposed the next question.

Question 5. Is a GS-fuzzy contractive sequence a Cauchy sequence?

3. ON THE MIHET’S FIXED POINT THEOREM

Later, Mihet [6] generalized the concept of fuzzy contractive mapping given by
Gregori and Sapena and others appeared in the literature. He introduced the next
concepts and gave his theorem for K M-fuzzy metric spaces. In this paper we do

a slight modification in order to adapt them to fuzzy metric spaces (see [6]).

Let ¥ be the class of continuous increasing functions v : [0,1] — [0, 1] such that
P(z) > z for all z €]0,1[.
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Example 6. Given k €]0,1]. The following are examples of functions belonging
to the class U.

(1) ¥1(2) = m;
(2) 2(2) = 2%
(3) Y3(2) =1—Fk(1—2).

A mapping f: X — X is said to be fuzzy -contractive for ¢ if there exists ¢ € ¥
such that for all z,y € X and ¢ > 0 it is satisfied

(3) M(f(z), f(y),t) = ¢ (M(z,y,1))
Remark 7. A fuzzy 1-contractive mapping for ¢ is a fuzzy GS-contractive map-

ping.

Mihet restricted his result to a class of fuzzy metric spaces that we recall here.

Definition 8. A fuzzy metric (X, M, *) is said to be strong if for all z,y,z € X
and all ¢t > 0 satisfies

M(z,2,t) 2 M(z,y,t) « M(y, 2,1).

Theorem 9. Let (X, M,x) be a complete strong fuzzy metric space and let f :
X — X be a fuzzy Y-contractive mapping. Then, f has a unique fixed point.

D. Mihet generalized the concept of fuzzy contractive sequence as follows:

A sequence {z,} is said to be fuzzy -contractive [6], if for each n € N and each

t > 0 we have that
(4) M(zpi2,Tnt1,t) > P(M(Tnt1, T, t)).
Attending to Question 5 and taking into account that the last result is given for a

subclass of complete fuzzy metric spaces, the authors in [2] propose the next more

general question.

Question 10. Is a fuzzy ¥-contractive sequence a Cauchy sequence?
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Imitating the proof of [5, Theorem 4.4] it is easy to verify the next theorem.

Theorem 11. Let (X, M, *) be a complete fuzzy metric space in which fuzzy -
contractive sequences are Cauchy. Let f : X — X be a fuzzy ¥-contractive map-

ping. Then, f has a unique fized point.

Remark 12. From the proof of Theorem 9 one can deduce that in a strong fuzzy

metric space the answer to Question 10 is affirmative.

4. ON THE GREGORI AND MINANA’S FIXED POINT THEOREM

Recently, Gregori and Mifiana have characterized in [2] those complete fuzzy metric
spaces in which a fuzzy -contractive mapping has a unique fixed point by means

of the next result.

Theorem 13. Let (X, M, x) be a complete fuzzy metric space and let f: X — X

be a fuzzy -contractive mapping. Then,

[ has a unique fized point iff there exists v € X such that \,. Mz, f(x),t) > 0.

An immediate corollary of the last theorem, in which the last condition is de-

manded on the whole space is the next one.

Corollary 14. Let (X, M, x*) be a complete fuzzy metric space in which for each
z,y € X we have that \,o o M(z,y,t) > 0 and let f : X — X be a fuzzy -

contractive mapping. Then, f has a unique fixed point.

Remark 15. From the proof of Theorem 13 one can deduce that Question 10 has

affirmative answer for the class of fuzzy metrics that satisfy the next condition:

/\ M (z,y,t) > 0 for each z,y € X.

t>0
Remark 16. It is the purpose of these authors to continue the study of those fuzzy
metric spaces in which fuzzy i-contractive sequences are Cauchy. We will try
to provide partial answers to Question 10 for some subclass of ¥ or demanding

another conditions on the whole fuzzy metric space.
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ABSTRACT

The notion of compatible pair of convergence and Cauchyness in fuzzy
metric spaces has been recently introduced by Gregori and Minana in
[7]. In this paper we study some well-motivated notions of convergence
and Cauchyness in fuzzy metric spaces which have appeared in the
literature and we survey the corresponding compatible pair defined for

each one of them.

1. INTRODUCTION

Several well-motivated notions of convergence and Cauchyness in fuzzy metric
spaces have been recently introduced in the literature. In particular, M. Grabiec
introduced in [2] the notion of Cauchy sequence, which we will call G-Cauchy
sequence, in order to prove his celebrated fixed point theorem. After, Mihet in-
troduced in [9] the notion of p-convergent sequence in order to find new results

on fixed point theory. In [11], Ricarte and Romaguera introduced the notion of

This work is licensed under a Creative Commons License CC BY-NC-ND 4.0
EDITORIAL UNIVERSITAT POLITECNICA DE VALENCIA

61



S. Morillas and A. Sapena

standard Cauchy sequence in order to extend the domain theory to fuzzy met-
ric spaces. As Mihet proposed in his paper, the authors in [4] found a notion of
p-Cauchyness related to p-convergence. Similarly and following a natural way, Mo-
rillas and Sapena introduced the concept of standard convergent sequence (which
we call std*-convergence). Nevertheless, in this case, the expected diagram of im-
plications is not fulfilled. This fact has motivated the appearance of the notion
of compatible pair of convergence and Cauchyness in fuzzy metric spaces (Defi-
nition 12) to define a notion of Cauchyness (resp. convergence) for each notion
of convergence (resp. Cauchyness) to satisfy some demanded conditions. In this
paper we survey the corresponding compatible pairs for several notions which have

appeared recently in the context of fuzzy metric spaces.

2. PRELIMINARIES

Definition 1 (A. George and P. Veeramani, 1994). A fuzzy metric space is an
ordered triple (X, M, x) such that X is a (nonempty) set, * is a continuous ¢-norm
and M is a fuzzy set on X x X x R™T satisfying the following conditions, for all
x,y,z2 € X, 5,t>0:

(GV1) M(z,y,t) >0

(GV2) M(z,y,t)=1ifandonlyifz =y
(GV3) M(z,y,t) = M(y,x,t)

(GV4) M(z,y,t)* M(y,z,8) < M(z,z,t+s)
(GV5) M(z,y,.): Rt —]0,1] is continuous

If (X, M,x) is a fuzzy metric space we say that (M, x), or simply M, is a fuzzy

metric on X. Also, we say that (X, M) or, simply, X is a fuzzy metric space.

Definition 2 (A. George and P. Veeramani, 1994). Let (X, d) be a metric space.

Denote by a - b the usual product for all a,b € [0, 1], and let My be the fuzzy set
defined on X x X x RT by

My(z,y,t) = ——

al@y,t) t+d(z,y)

Then (Mg, ) is a fuzzy metric on X called standard fuzzy metric induced by d.
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George and Veeramani proved that every fuzzy metric M on X generates a topol-
ogy Tar on X which has as a base the family of open sets of the form {By/(z,¢,t) :
re X,0<e<1,t>0}, where By(z,e,t) ={y € X : M(z,y,t) > 1 —¢} for all
x € X, e€]0,1] and ¢t > 0.

In the case of the standard fuzzy metric My it is well-known that the topology
7(d) on X deduced from d satisfies 7(d) = 7pz,. From now on we will suppose X

endowed with the topology 7.

Definition 3 (V. Gregori and S. Romaguera, 2002). (X, M, x) is called compact

if (X, 7ar) is compact.

Definition 4 (V. Gregori and S. Romaguera, 2004). A fuzzy metric M on X is
said to be stationary if M does not depend on ¢, i.e. if for each z,y € X, the
function M, ,(t) = M(x,y,t) is constant. In this case we write M (x,y) instead of
M(z,y,t),

Proposition 5 (A. George and P. Veeramani, 1994). A sequence {x,} in a fuzzy
metric space (X, M, *) converges to xo if and only if lim M (xg, z,,t) = 1, for all
t> 0.

Definition 6 (A. George and P. Veeramani, 1994). A sequence {z, }ncn in a fuzzy
metric space (X, M, *) is called Cauchy if for each ¢ €]0,1[ and each t > 0 there
exists ng € N such that M(xy,,xm,t) > 1 — € for all n,m > ng or equivalently
grrrllM(:cn,xm,t) =1forall £ > 0.

3. COMPATIBLE PAIRS OF CONVERGENCE AND CAUCHYNESS

The classical idea which associates a Cauchy notion to a corresponding notion of
convergence have been extended in a natural way to the fuzzy setting. Neverthe-
less, the natural way to extend each classical notion to define the corresponding

one in the fuzzy setting is not always satisfactory and several problems have arisen.

First we will see three well-motivated definitions which have been recently intro-

duced in the literature.
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In order to establish a Banach Contraction Principle in the context of fuzzy metric
spaces in the sense of Kramosil and Michalek, M. Grabiec gave the following weaker

concept than Cauchy sequence that we denote G-Cauchy.

Definition 7 (M. Grabiec, 1988). A sequence {z,} in a fuzzy metric space
(X, M, ) is called G-Cauchy if lim M (2., Zpn4p,t) = 1 for each ¢ > 0 and each
peN.

After, in 2007, D. Mihet [9] introduced the following definition in order to extend

the fixed point theory in fuzzy metric spaces.

Definition 8 (D. Mihet, 2007). A sequence {z,} in a fuzzy metric space (X, M, *)

is called p-convergent to x¢ if lim M (z,,, zo,to) = 1 for some ¢y > 0.
n

Later, in 2013, S. Romaguera and L.A. Ricarte introduced the following definition

in order to extend the domain theory to the fuzzy metric context.

Definition 9 (S. Romaguera and L.A. Ricarte, 2013). A sequence {x,} in a fuzzy
metric space (X, M, *) is called standard Cauchy if for each ¢ €]0, 1] there exists
no € N, depending on ¢, such that

t
t+e

M(xp, Ty, t) >

b

for all n,m > ng and t > 0.

Now, it arises to give appropriate definitions of G-convergence, p-Cauchyness and
standard convergence associated to their corresponding pair in such a manner
which we call a natural way. That is, as in the classical case, by replacing the
simple limit by a double limit or vice-versa. So, chronologically, the notion of p-
convergence was the first to be associated to a Cauchy notion. In fact, the authors

in [4] gave the following definition.
Definition 10 (V. Gregori et al., 2007). A sequence {z,} in a fuzzy metric space
(X, M, %) is called p-Cauchy to zg if lim M (z,,, ., to) = 1 for some ¢y > 0.

The authors proved that the following diagram of implications was accomplished.
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convergence —  p-convergence

3 \J
Cauchy — p-Cauchy

Now, when considering the concept of standard Cauchy sequence, S. Morillas and

A. Sapena introduced in [10] the following definition.

Definition 11 (S. Morillas and A. Sapena, 2013). A sequence {z,} in a fuzzy
metric space (X, M, «) is called std* convergent if for each e €]0, 1] there exist

rg € X and ng € N such that

for all n > ng and ¢t > 0.

A question that arises when considering the previous definition is if it satisfies
the corresponding diagram of implications. Nevertheless, as Gregori and Minana
pointed out in [5], there exist standard convergent sequences which are not stan-

dard Cauchy and so, the diagram of implications is not fulfilled in this case.

In the G-Cauchy case, if we try to define in a natural way a corresponding notion

of G-convergence we have the notion of convergence.

To overcome this inconveniences, Gregori and Minana have introduced in [5] the
following definition to extend the classical idea that convergence implies Cauchy-

ness and not reciprocally to the fuzzy setting.

Definition 12 (V. Gregori and J.J. Minana, 2015). Suppose that it is given
a sequential stronger (weaker, respectively) concept than Cauchy sequence, say
s-Cauchy sequence (w-Cauchy, respectively). A concept of convergence, say s-
convergence (w-convergence, respectively), is said to be compatible with s-Cauchy
(w-Cauchy, respectively), and vice-versa, if the diagram of implications below on
the left (on the right, respectively) is fulfilled.

s-convergence — convergence convergence — w-convergence
) \J 1 \J
s-Cauchy — Cauchy Cauchy — w-Cauchy
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and there is not any other implication, in general, among these concepts. In such
a case we also say that w-convergence and w-Cauchy (respectively, s-convergence

and s-Cauchy) is a compatible pair.

3.1. On p-convergence. In order to define a compatible pair for p-convergent
sequences, Gregori et al. introduced the notion of principal fuzzy metric space as

follows.

Definition 13 (V. Gregori et al., 2009). A fuzzy metric space (X, M, *) is said
to be principal (or simply, M is principal) if {B(x,r,t) : r €]0,1[} is a local base
at x € X, for each x € X and each t > 0.

This definition was used to characterize those fuzzy metric spaces where p-convergent
sequences are convergent since a fuzzy metric space (X, M, ) is principal if and

only if every p-convergent sequence in X is convergent in (X, 7ar).

Now, the following notion was introduced.

Definition 14 (V. Gregori et al., 2009). A sequence {x, } in a fuzzy metric space
(X, M, %) is called p-Cauchy if there exists to > 0 such that for each € €]0, 1] there
exists ng € N such that M(z,,, xm,,t0) > 1 — € for all n,m > ng, or equivalently,
lim M (2, T, to) = 1 for some ¢y > 0.

n,m

It can be proved the the pair p-convergence and p-Cauchyness is a compatible pair.

3.2. On G-Cauchyness. In order to define a compatible pair of G-convergence

and G-Cauchyness, the authors in [8] have introduced the following definition.

Definition 15. We will say that a sequence {x,,} in a fuzzy metric space (X, M, *)
is G-convergent to x if {z,, } has a subsequence converging to z (i.e., z¢ is a cluster

point of {z,}) and lim M (z,,, ®p41,t) = 1 for all £ > 0.

With the previous definition it can be proved that G-convergence and G-Cauchyness

is a compatible pair.
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3.3. On standard Cauchyness. As commented before, Gregori and Minana
proved the existence of std*-convergent sequences which are not standard Cauchy
and, in consequence, std*-convergence is not compatible with standard Cauchy.

To overcome this inconvenience, they gave the following definition.

Definition 16 (V. Gregori and J-J. Mifiana, 2014). A sequence {x,} is called

standard convergent if it is convergent and standard Cauchy.

It is easy to verify that standard convergence and standard Cauchyness is a com-

patible pair.

3.4. On s-convergence and s-Cauchyness. The following stronger concept
than convergence, called s-convergence, tries to extend the classical metric for-
mulation of convergence using a simple limit and it has been recently introduced

by Gregori and Minana in [7].

Definition 17. A sequence {z,} in a fuzzy metric space (X, M, ) is s-convergent
to zg € X if limy,, M (2, o, =) = 1.

A fuzzy metric space in which every convergent sequence is s-convergent is said to

be an s-fuzzy metric space (or M is an s-fuzzy metric on X).

The previous definition allows to characterize s-fuzzy metric spaces as follows.

Proposition 18. Let (X, M,*) be a fuzzy metric space and consider N(x,y) =
Niso M(x,y,t) for all x,y € X. Then:

(i) (N,x*) is a stationary fuzzy metric on X.

(il) (X, M, x) is an s-fuzzy metric space if and only if TN = Tas-

The corresponding concept of Cauchyness deduced in a natural way from the s-

convergence is the following.

Definition 19. A sequence {z,} in a fuzzy metric space (X, M, x) is s*-Cauchy
if lim M (@, @y, 2 ) = 1.

n,m
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Unfortunately, in [7] the authors have proved that there exist s-convergent se-
quences which are not z*-Cauchy. Consequently, s*-Cauchy is not compatible
with s-convergence. To overcome this inconvenience, the following definition has

been introduced.

Definition 20. A sequence in a fuzzy metric space (X, M, *) is s-Cauchy if
lim M (x,,, 2y, Z2) = 1.

m.n mn

It is easy to verify that an s-Cauchy sequence is Cauchy.

Proposition 21. Every s-convergent sequence in a fuzzy metric space (X, M, *)

1s s-Cauchy.
So, the pair s-convergence and s-Cauchyness is a compatible pair.
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ABSTRACT

Fractal structures are somehow equivalent to non archimedean quasi
pseudo metrics, though its recursiveness allows its use in many different
topics where non archimedean quasi pseudo metrics are not used in a
natural way. In this talk, we show a constructive way to construct the

(bi)completion of a fractal structure.

1. FRACTAL STRUCTURES AND NON ARCHIMEDEAN QUASI METRICS

Fractal structures were introduced in [1] to study non archimedean quasi metriza-
tion, but they have also been used to study other topological or uniform con-
cepts like metrization ([2, 3]), compactification and completion ([4, 5, 7]), topo-
logical dimension ([6]), topological properties like normal, paracompact, compact-
ness, etc. ([17]) or continua ([8, 18]). On the other hand, its recursive charac-

ter allows the use of fractal structures to study some other fields like fractals,

IThis author acknowledges the support of the Ministry of Economy and Competitiveness of
Spain, Grant MTM2012-37894-C02-01.
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in particular, self homeomorphic or self similar sets ([9]) or fractal dimension
([10, 11, 12, 13, 14, 15, 16, 19)).

Let X be a set and I'; and I'; be coverings of X. T's is said to be a strong refinement
of I'y if it is a refinement (that is, each element of I's is contained in some element
of T'1) and for each A € I'y it is satisfied that A = U{B €Ty : B C A}.

Definition 1. A fractal structure I" on a set X is a countable family of coverings
I' = {T',, : n € N} such that each cover I, is a strong refinement of I',, for each

n € N. Cover I',, is called level n of the fractal structure.

A fractal structure induces a transitive base of quasi-uniformity, given by {Ur, :
n € N}, where entourages Ur are defined as Ur = {(z,y) € X x X : y ¢ U{A €

I:xz¢g A}}.

We will use the notation U,,, = {y € X : (z,y) € Ur, }, Ul ={y € X : (y,x) €
Ur,} and UZ, = Uy, N UL,

A quasi pseudo metric on a set X is a function d : X x X — [0, oo[ such that:

(1) d(z,x) =0, for each x € X.
(2) d(z,2) <d(x,y) + d(y, z) for each z,y, z € X.

d is called a pseudo metric if it also satisfies that d(z,y) = d(y, x) for each x,y € X.
A quasi pseudo metric (resp. a pseudo metric) is said to be a quasi metric (resp.

a metric) if d(z,y) = d(y,x) = 0 implies that = y, for each z,y € X.

If d is a quasi pseudo metric, the function defined by d=!(z,y) = d(y, ) is also a
quasi (pseudo) metric, called conjugate quasi (pseudo) metric of d. Furthermore,

the function d*(z,y) = max{d(z,y),d" (z,y)} is a (pseudo) metric.

A quasi pseudo metric is said to be non archimedean if d(z, z) < max{d(z,y),d(y,z)}

for each x,y,z € X.

If d is a non archimedean quasi (pseudo) metric, then d~! is also a non archimedean

quasi (pseudo) metric and d* is a non archimedean (pseudo) metric.

Definition 2. A quasi (pseudo) metric d is said to be bicomplete if the (pseudo)

metric d* is complete.
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A fractal structure I" induces a non archimedean quasi pseudo metric dr given by:

Qin Zf Yy € Uzn\Um,nJrl
dl"(xa y) =
Laf Yy & Un

Conversely, a non archimedean quasi pseudo metric d induces a fractal structure
by defining level n as I',, = {Bg-1(xz, QL) :x € X}, where Bd—l(x,%) is the
ball with respect to the conjugate quasi pseudo metric d~!, given as usual by

By-a(w,57) ={y € X :d™ (z,y) < 5 }-

Proposition 3. Let T' = {I',, : n € N} be a fractal structure on a set X. Some

properties of the previous defined sets are the following ones:

(1) Uzn = X\U,¢a aer, 4, for each z € X andn € N.

(2) U = Maeea,ner, As for each x € X and n € N.

(3) Uzn = Usn N Uz = Myeaner, A\Usgaaer, 4, for cach x € X and
n € N.

(4) y € Uz, if and only if x and y belong exactly to the same elements of level
n of the fractal structure.

(5) Us =Uy, or Uy, NUy, =0 for each z,y € X and n € N.

(6) G, ={U%, : x € X} is a partition of X for each n € N.

Now, we can construct an extension of X from the sets G,,, defined in the previous

proposition, as follow (see [1]):

First, we can define the projection of X onto G, by p, : X — G, given by
Note that G, is a partially ordered set with the order p,(z) < p,(y) iff y € Uypp.

Then we define the bonding maps ¢, : G141 — Gy, given by ¢, (pn+1(x)) = pn().
So we can consider the inverse limit [imGr = {(g1,92,...) € 12, Gn: ¢(gnt1) =
9n, Vn € N}, which will be our extension space, so we will use the notation X =
@Gn. Finally, the embedding of X into the inverse limit is given by p: X — X
defined as p(z) = (pn(z))nen-
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2. COMPLETION OF A FRACTAL STRUCTURE

Next, we define the fractal structure on the extension X.

Definition 4. Let I' = {I',, : n € N} be a fractal structure on a set X, and X
the extension defined in the previous section. We define r= {fn :n € N}, where
I,={A:Ael,}and A= {(pp(zx))ren € X : 2, € A} for each A € T,,.

If we identify = p(x), then we can see that the previous definition is an extension,
not only of the fractal structure, but also of all the structures associated with a

fractal structure.

Proposition 5. Some properties of the fractal structure r defined on the extension

X:

U tnX =Ug,! for each z € X andn € N.
ﬁ;nﬂX:U;n for each x € X and n € N.

This extension is a completion in the sense of bicompleteness of the induced quasi

metrics.

Theorem 6. Let I' be a fractal structure on X. Then ()Z’,dlz) is a bicompletion
Of (X7 dI‘)
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ABSTRACT

A paratopological group (G, T) can be regarded as a bitopological space
(G, T, 7'71) where 77! is the conjugate topology of T. In this paper we
summarize several known results related to two bitopological properties

of a paratopological groups: C-compactness and 2-pseudocompactness.

1. INTRODUCTION

Let G be a semigroup which is also a topological space. G is said to be a topological
semigroup if the operation -: S x S — S is continuous. Following Bourbaki [4],
a topological semigroup which is algebraically a group is called a paratopological
group. Paratopological groups have received considerable attention in the last
decades. The interesting reader can consult the surveys [17, 21]. Topological

groups are paratopological groups with the inverse operation continuous.

IThis research is supported by Universitat Jaume I, Spain (Grant P1-1B2014-35).
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A ordered triple (X, 0, 7)) is said to be a bitopological space (in short, a bispace)
if both ¢ and 7 are topologies on X. If £(e) is the filter of neighborhoods of
the identity e of a paratopological group (G, 7), then the family {U*1 |U € 5(6)}

1 named the conjugate of 7, in such a way that (G,77!)

defines a topology 7~
is a paratopological group homeomorphic to (G,7) (but, in general, (G,7) and
(G,771) fail to be isomorphic, see [3, Example 4]). So a paratopological group
(G,T) can be regarded in a natural way as the bispace (G, 7,77 %). It is a well-
known fact that (G,7 Vv 77!) is a topological group which is a Hausdorff space
whenever (G,7) is a Ty space. So far as the author knows, the first to use this

approach in the framework of paratopological groups were Raghavan and Reilly
((12]).

The paper is organized as follows. In the second section we present two useful tools
in the study of paratopological groups: the semiregularization and the Ty reflec-
tion of a paratopological group. Section 3 is devoted to C-compact paratopological
groups and the last section to 2-pseudocompact paratopological groups. Our ter-
minology and notation is standard. Our basic reference for bispaces is [11] and for

paratopological groups is [2].

2. TWO HELPFUL TOOLS

We explain in this section two notions that became useful devices in the theory of
paratopological groups: the semiregularization of a paratopological group and the

Ty-reflection of a paratopological group.

Given a topological space (X, 7) Stone [19] and Katétov [10] consider the topology
Tsr on X generated by the base consisting of all canonically open sets of the space

(X, 7). This topology is called the semiregularization of the topology 7.

One of the main results regarding the semiregularization of paratopological groups

is the following theorem:

Theorem 1 ([13, 5]). The semiregularization (G, Ts) of an arbitrary paratopo-
logical group (G,T) is again a paratopological group satisfying the T3 separation

aziom. Therefore, if (G, 7) is Hausdorff, then (G, T4 ) is a regular paratopological
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group. Furthermore, if H is an arbitrary subgroup of G, then the quotient space

G/H satisfies the Ts separation axiom.

Here for T3 separation axiom it is understood the following: if x ¢ F with F a
closed subset, then there exist pairwise open subsets U, V such that x € U and

F C V. Thus, a regular space is a space that satisfies 77 + T3.

We turn now to the notion of T;-reflection of a paratopological group (G, 1), T;(G)
(i €{0,1,2,3}), which is defined as a pair (H, ¢g,;) where H is a paratopological
group satisfying the T; separation axiom and ¢¢ ; is a continuous homomorphism
of G onto H with the following property: for every continuous mapping f: G — X
to a Tj-space X, there exists a continuous mapping h: H — X such that f =
h o g i, that is, the diagram

PG,i

G——H

A

X

commutes. Similarly, a regular reflection of a paratopological group (G, 7) is a pair
(H,¢q,), where H is a regular paratopological group and ¢¢,, is a continuous
homomorphism of G onto H such that every continuous mapping of G to a regular
space admits a continuous factorization through ¢ . The corresponding group
H is denoted by Reg(G).

Abusing of terminology, we will usually refer to To(G), T1(G), To(G), and Reg(G)
as the Ty-, T1-, Hausdorff, and regular reflection, respectively, of the paratopolog-
ical group (G, 7). It is shown in [20] that for every paratopological group (G, ),
the Ty-, T1-, Hausdorff, and regular reflections of (G, 7) exist and are unique up

to a topological isomorphism. The Ty-relection can be easily described:

Theorem 2 ([20, Theorem 3.1]). Let (G,7) be a paratopological group, P =
N{N|Ne€é&(e)}, and K = PN P~L. Then K is an invariant subgroup of G
and (G/K, ) is the Ty-refelction of G, where m: G — G/K is the quotient homo-
morphism. Further, the homomorphism m satisfies U = = 1(x(U)), for each open
set U C G. Moreover (G, 1) is a topological group if and only if its Ty-reflection

18 a topological group.
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3. C-COMPACT PARATOPOLOGICAL GROUPS

A function f from a bispace (X,o,7) into a bispace (Y,0*,7*) is said to be bi-
continuous if both f: (X,0) — (Y,0*) and f: (X,7) — (Y,7*) ara continuous
functions. The letters v and [ stand for the upper topology and the lower topol-
ogy, respectively, on the reals R. The family of all continuous functions from a
bispace (X, o, 7) into (R, u,!) will denote by BC(X, o, 7).

A bispace (X, o, 7) is said to be C-compact if (fV g)(X) is compact in (R, u,!) for
every f € BC(X,o0,7) and every g € BC(X,7,0). This concept was introduced in
[9] and characterized in [9, Theorem 1.7]. A paratopological group (G, 7) is named
C-compact if the bispace (G, 7,7 1) is C-compact and it is said to be locally C-
compact if the identity has a C-compact neighborhood. The most important result
about (locally) C-compact paratopological groups is the following theorem. Recall
that a Tychonoff space (X, ) is pseudocompact if every continuous real-valued

function on X is bounded.

Theorem 3 ([16, Proposition 3.4], [18, Theorem 4]). A Ty (locally) C-compact

paratopological group is a (locally) pseudocompact topological group.

In this type of situations it highlights the importance of the Typ-reflexion. In fact,
it is easy to show that (locally) C-compactness is preserved in the passage from
a paratopological group (G,7) to its Tp-reflexion. Thus, we can remove the Tj

separation axiom of the previous theorem.

Theorem 4. Every (locally) C-compact paratopological group is a (locally) pseu-

docompact topological group.

4. 2-PSEUDOCOMPACT PARATOPOLOGICAL GROUPS

A bispace (X, 0,7) is said to be 2-pseudocompact if every bicontinuous function
f:(X,0,7) = (R,u,l) is bounded in R. The concept of 2-pseudocompactness was
considered implicitly by Briimmer in [6] and by Briimmer and Salbany in [7]. It

was explicitly introduced and systematically studied in [9].
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In this section we present some results on paratopological groups (G, 7) such that
(G, 7,771) is a 2-pseudocompact bispace (in short, 2-pseudocompact paratopologi-
cal groups). In this setting, the following characterization of 2-pseudocompactness

will be useful.

Theorem 5 ([9, Corrolary 1.5]). A bispace (X,0,7) is 2-pseudocompact if and
only if for every decreasing sequence (Up)n<w of non-empty o-open subsets of X,
and for every decreasing sequence (Vy,)n<w of non-empty 7-open subsets of X, we
have <., clix,r) Un # 0 and N, o, clix,0) Vi # 0.

In particular, the previous theorem implies that a bispace (X, o, 7) is 2-pseudocom-
pact whenever the topologies ¢ and 7 are countably compact. Thus, a countably

compact paratopological group (G, 7) is 2-pseudocompact.

The following proposition is straightforward

Proposition 6. A paratopological group (G, 1) is 2-pseudocompact if, and only if,

for every decreasing sequence (Up)n<w of non-empty open sets, we have

() e Uit #0.

n<w

Some authors take the above property as the definition of a 2-pseudocompact
paratopological group: the reason is that this property involves the topology 7

but not its conjugate.

It is worth noting that a 2-pseudocompact paratopological can fail to be a topo-
logical group. A topological space (X, 7) is said to be feebly compact if every
locally finite family of pairwise disjoint open sets is finite (no separation axioms
are assumed). Notice that for Tychonoff spaces feebly compactness is equivalent

to pseudocompactness.

Example 7 ([18, Theorem 1]). There exists a feebly compact, 2-pseudocompact
Hausdorff paratopological group G with the Fréchet-Urysohn property which is

not a topological group.

This work is licensed under a Creative Commons License CC BY-NC-ND 4.0
EDITORIAL UNIVERSITAT POLITECNICA DE VALENCIA

81



M. Sanchis

A useful property of 2-pseudocompact paratopological groups is given in the fol-
lowing theorem. Recall that a topological space (X, 7) is said to be a Baire space

if the intersection of every decreasing sequence of dense open sets is a dense set.

Theorem 8 ([1, Theorem 2.2]). Every 2-pseudocompact paratopological group is

a Baire space.

The following proposition characterizes 2-pseudocompact group which are topo-
logical groups. Recall that a topological group (G, ) is called w-bounded if for
every neighborhood U of the identity, there exists a countable set A such that
G = AU.

Theorem 9 ([1, Theorem 2.4]). For a paratopological group (G,T), the following

conditions are equivalent:
(i) (G, 1) is a pseudocompact topological group.

(i) (G,7) is a 2-pseudocompact paratopological group and (G,7V 771) is an

w-bounded topological group.

The minimum cardinality of a family U of open sets in a paratopological group
(G, 1) such that (¢, U = {e} is called the pseudocharacter of (G,7). Two

interesting particular cases of Theorem 9 are:

Theorem 10 ([14, Proposition 6]). Each 2-pseudocompact paratopological group

of countable pseudocharacter is a topological group.

Theorem 11 ([14, Lemma 10]). Every T3 2-pseudocompact paratopological group

18 a pseudocompact topological group.

The previous theorem allows us to point out how the semiregularization works
in the field of paratopological groups. Throughout what follows, we shall freely
use without explicit mention the elementary fact that a topological space is feebly

compact if, and only if, its semiregularization is feebly compact.

Theorem 12 ([14, Proposition 2]). Each 2-pseudocompact paratopological group

1s feebly compact.
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Proof. Let (G, 7) be such a group. It is an easy matter to show that the semireg-
ularization (G, 7s,) of the paratopological group (G, 7) is 2-pseudocompact. Since
(G, Tsr) is a T3 space, Theorem 11 tells us that (G, 74, ) is a pseudocompact topo-
logical group. Thus, (G, 7) is feebly compact. O

The converse of Theorem 12 fails to be true: there exists a Hausdorff feebly com-
pact paratopological group which is a Baire space and that it is not 2-pseudocompact
([18, Theorem 2]).

An outstanding theorem by Comfort and Ross states that an arbitrary product of
Hausdorff pseudocompact topological groups is a pseudocompact topological group
([8]). By means of the notion of semiregularization and the concept of Ty-reflection
of a paratopological group is not difficult to show that an arbitrary product of
feebly compact paratopological groups is a feebly compact paratopological group
(see [15, Proposition 20] for details). Thus, a natural question to ask is whether

this result continues to hold for 2-pseudocompact paratopological groups.

Question ([15, Problem 5]) Is an arbitrary product of 2-pseudocompact paratopo-
logical groups 2-pseudocompact? What about the product of two 2-pseudocompact

paratopological groups?
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